8 datasets found
  1. D

    Replication Data for: Slicing up global value chains

    • dataverse.nl
    • test.dataverse.nl
    png, xlsx, zip
    Updated Nov 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M.P. Timmer; A.A. Erumban; B. Los; R. Stehrer; de . de Vries; M.P. Timmer; A.A. Erumban; B. Los; R. Stehrer; de . de Vries (2021). Replication Data for: Slicing up global value chains [Dataset]. http://doi.org/10.34894/I4RJGH
    Explore at:
    xlsx(57415), xlsx(395716), xlsx(33346), xlsx(25420), xlsx(23415), xlsx(24922), xlsx(27000), xlsx(28878), png(10294), zip(296063704), png(3744), png(12067), xlsx(440842)Available download formats
    Dataset updated
    Nov 26, 2021
    Dataset provided by
    DataverseNL
    Authors
    M.P. Timmer; A.A. Erumban; B. Los; R. Stehrer; de . de Vries; M.P. Timmer; A.A. Erumban; B. Los; R. Stehrer; de . de Vries
    License

    https://dataverse.nl/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.34894/I4RJGHhttps://dataverse.nl/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.34894/I4RJGH

    Description

    Timmer, M. P., Erumban, A. A., Los, B., Stehrer, R., & De Vries, G. J. (2014). Slicing up global value chains. Journal of economic perspectives, 28(2), 99-118, DOI: 10.1257/jep.28.2.99 Related website

  2. Volume per slice of sediment core PS70/035-3

    • doi.pangaea.de
    html, tsv
    Updated Oct 31, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Volume per slice of sediment core PS70/035-3 [Dataset]. https://doi.pangaea.de/10.1594/PANGAEA.867402
    Explore at:
    html, tsvAvailable download formats
    Dataset updated
    Oct 31, 2016
    Dataset provided by
    PANGAEA
    Authors
    Jürgen Titschack; Daniel Baum; Ricardo De Pol-Holz; Matthias López Correa; Dierk Hebbeln; Nina Förster; Sascha Flögel; André Freiwald
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Time period covered
    Jun 16, 2007
    Area covered
    Variables measured
    Coral, Volume, Number of slice, DEPTH, sediment/rock
    Description

    This dataset is about: Volume per slice of sediment core PS70/035-3. Please consult parent dataset @ https://doi.org/10.1594/PANGAEA.867451 for more information.

  3. f

    Table_1_The Benefit of Slice Timing Correction in Common fMRI Preprocessing...

    • frontiersin.figshare.com
    • figshare.com
    docx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David B. Parker; Qolamreza R. Razlighi (2023). Table_1_The Benefit of Slice Timing Correction in Common fMRI Preprocessing Pipelines.DOCX [Dataset]. http://doi.org/10.3389/fnins.2019.00821.s005
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Frontiers
    Authors
    David B. Parker; Qolamreza R. Razlighi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Due to the nature of fMRI acquisition protocols, slices cannot be acquired simultaneously, and as a result, are temporally misaligned from each other. To correct from this misalignment, preprocessing pipelines often incorporate slice timing correction (STC). However, evaluating the benefits of STC is challenging because it (1) is dependent on slice acquisition parameters, (2) interacts with head movement in a non-linear fashion, and (3) significantly changes with other preprocessing steps, fMRI experimental design, and fMRI acquisition parameters. Presently, the interaction of STC with various scan conditions has not been extensively examined. Here, we examine the effect of STC when it is applied with various other preprocessing steps such as motion correction (MC), motion parameter residualization (MPR), and spatial smoothing. Using 180 simulated and 30 real fMRI data, we quantitatively demonstrate that the optimal order in which STC should be applied depends on interleave parameters and motion level. We also demonstrate the benefit STC on sub-second-TR scans and for functional connectivity analysis. We conclude that STC is a critical part of the preprocessing pipeline that can be extremely beneficial for fMRI processing. However, its effectiveness interacts with other preprocessing steps and with other scan parameters and conditions which may obscure its significant importance in the fMRI processing pipeline.

  4. f

    Data from: A Slice Tour for Finding Hollowness in High-Dimensional Data

    • tandf.figshare.com
    zip
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    A Slice Tour for Finding Hollowness in High-Dimensional Data [Dataset]. https://tandf.figshare.com/articles/dataset/A_slice_tour_for_finding_hollowness_in_high-dimensional_data/12430331
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Ursula Laa; Dianne Cook; German Valencia
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Taking projections of high-dimensional data is a common analytical and visualization technique in statistics for working with high-dimensional problems. Sectioning, or slicing, through high dimensions is less common, but can be useful for visualizing data with concavities, or nonlinear structure. It is associated with conditional distributions in statistics, and also linked brushing between plots in interactive data visualization. This short technical note describes a simple approach for slicing in the orthogonal space of projections obtained when running a tour, thus presenting the viewer with an interpolated sequence of sliced projections. The method has been implemented in R as an extension to the tourr package, and can be used to explore for concave and nonlinear structures in multivariate distributions. Supplementary materials for this article are available online.

  5. d

    Project Y2 30 images of successive depth slices through the tomography...

    • datadiscoverystudio.org
    • ecat.ga.gov.au
    • +2more
    pdf v.unknown
    Updated Jan 1, 2004
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Blewett, R. (2004). Project Y2 30 images of successive depth slices through the tomography volume Each slice is 125 km apart [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/59bef42b98884577888ac5c86838ac7c/html
    Explore at:
    pdf v.unknownAvailable download formats
    Dataset updated
    Jan 1, 2004
    Authors
    Blewett, R.
    Area covered
    Description

    Project Y2 30 images of successive depth slices through the tomography volume. Each slice is 12.5 km apart.

  6. Volume per slice of sediment core POS325/2_472

    • doi.pangaea.de
    html, tsv
    Updated Oct 31, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Volume per slice of sediment core POS325/2_472 [Dataset]. https://doi.pangaea.de/10.1594/PANGAEA.867400
    Explore at:
    html, tsvAvailable download formats
    Dataset updated
    Oct 31, 2016
    Dataset provided by
    PANGAEA
    Authors
    Jürgen Titschack; Daniel Baum; Ricardo De Pol-Holz; Matthias López Correa; Dierk Hebbeln; Nina Förster; Sascha Flögel; André Freiwald
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Time period covered
    Jul 30, 2005
    Area covered
    Variables measured
    Coral, Volume, Number of slice, DEPTH, sediment/rock
    Description

    This dataset is about: Volume per slice of sediment core POS325/2_472. Please consult parent dataset @ https://doi.org/10.1594/PANGAEA.867451 for more information.

  7. f

    Data from: A slice tour for finding hollowness in high-dimensional data

    • tandf.figshare.com
    text/x-tex
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ursula Laa; Dianne Cook; German Valencia (2023). A slice tour for finding hollowness in high-dimensional data [Dataset]. http://doi.org/10.6084/m9.figshare.12430331.v1
    Explore at:
    text/x-texAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Ursula Laa; Dianne Cook; German Valencia
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Taking projections of high-dimensional data is a common analytical and visualisation technique in statistics for working with high-dimensional problems. Sectioning, or slicing, through high dimensions is less common, but can be useful for visualising data with concavities, or non-linear structure. It is associated with conditional distributions in statistics, and also linked brushing between plots in interactive data visualisation. This short technical note describes a simple approach for slicing in the orthogonal space of projections obtained when running a tour, thus presenting the viewer with an interpolated sequence of sliced projections. The method has been implemented in R as an extension to the tourr package, and can be used to explore for concave and non-linear structures in multivariate distributions.

  8. f

    Patient information and pressure data at baseline and follow-up when...

    • plos.figshare.com
    xls
    Updated Jun 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Qingyu Wang; Gador Canton; Jian Guo; Xiaoya Guo; Thomas S. Hatsukami; Kristen L. Billiar; Chun Yuan; Zheyang Wu; Dalin Tang (2023). Patient information and pressure data at baseline and follow-up when available (Scan time intervals were about 18 months; L: left carotid artery; R: right carotid artery). [Dataset]. http://doi.org/10.1371/journal.pone.0180829.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 6, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Qingyu Wang; Gador Canton; Jian Guo; Xiaoya Guo; Thomas S. Hatsukami; Kristen L. Billiar; Chun Yuan; Zheyang Wu; Dalin Tang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Patient information and pressure data at baseline and follow-up when available (Scan time intervals were about 18 months; L: left carotid artery; R: right carotid artery).

  9. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
M.P. Timmer; A.A. Erumban; B. Los; R. Stehrer; de . de Vries; M.P. Timmer; A.A. Erumban; B. Los; R. Stehrer; de . de Vries (2021). Replication Data for: Slicing up global value chains [Dataset]. http://doi.org/10.34894/I4RJGH

Replication Data for: Slicing up global value chains

Related Article
Explore at:
xlsx(57415), xlsx(395716), xlsx(33346), xlsx(25420), xlsx(23415), xlsx(24922), xlsx(27000), xlsx(28878), png(10294), zip(296063704), png(3744), png(12067), xlsx(440842)Available download formats
Dataset updated
Nov 26, 2021
Dataset provided by
DataverseNL
Authors
M.P. Timmer; A.A. Erumban; B. Los; R. Stehrer; de . de Vries; M.P. Timmer; A.A. Erumban; B. Los; R. Stehrer; de . de Vries
License

https://dataverse.nl/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.34894/I4RJGHhttps://dataverse.nl/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.34894/I4RJGH

Description

Timmer, M. P., Erumban, A. A., Los, B., Stehrer, R., & De Vries, G. J. (2014). Slicing up global value chains. Journal of economic perspectives, 28(2), 99-118, DOI: 10.1257/jep.28.2.99 Related website

Search
Clear search
Close search
Google apps
Main menu