This map provides a colorized representation of slope, generated dynamically using server-side slope function on the Terrain layer. The degree of slope steepness is depicted by light to dark colors - flat surfaces as gray, shallow slopes as light yellow, moderate slopes as light orange and steep slopes as red-brown. A scaling is applied to slope values to generate appropriate visualization at each map scale. This service should only be used for visualization, such as a base layer in applications or maps. Note: If access to non-scaled slope values is required, use the Slope Degrees or Slope Percent functions, which return values from 0 to 90 degrees, or 0 to 1000%, respectively.Units: DegreesUpdate Frequency: QuarterlyCoverage: World/GlobalData Sources: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see World Elevation Coverage Map.What can you do with this layer?Use for Visualization: Yes. This colorized slope is appropriate for visualizing the steepness of the terrain at all map scales. This layer can be added to applications or maps to enhance contextual understanding. Use for Analysis: No. 8 bit color values returned by this service represent scaled slope values. For analysis with non-scaled values, use the Slope Degrees or Slope Percent functions.For more details such as Data Sources, Mosaic method used in this layer, please see the Terrain layer. This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single export image request.
This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.
https://maps.islandcountywa.gov/WebFiles/DataDownloads/Metadata/steepslopes.htmlhttps://maps.islandcountywa.gov/WebFiles/DataDownloads/Metadata/steepslopes.html
Data were derived from 2014 6" resolution Island County lidar data using ArcGIS and Spatial Analyst Tools. The resulting raster was then converted to polygons. Polygons spanning elevation differences <10' were deleted.
This data set represents a 5-meter resolution LiDAR-derived percent slope layer for New Hampshire. It was generated from a statewide Esri Mosaic Dataset which comprised 8 separate LiDAR collections that covered the state as of January, 2020. The Mosaic Dataset was used as input to the ArcGIS Spatial Analyst "Slope" geoprocessing tool which calculates the percent slope for each cell of the input raster, in this case, the statewide mosaic dataset.
This data set includes ArcInfo-formatted maps of the Kuparuk River Basin Region of the Alaskan North Slope (at 1:250,000 scale) and five subset study areas: the Upper Kuparuk River Basin Subregion (1:25,000), the Imnavait Creek Landscape (1:6,000), the Toolik Lake Landscape (1:5,000), the Imnavait Creek Grid (1:500), and the Toolik Lake Grid (1:500). Land cover (satellite-derived) and elevation data (United States Geological Survey digital elevation model (USGS DEM-derived)) are provided for the Kuparuk River Basin Region. For the five subset areas, an integrated terrain unit mapping (ITUM) approach simultaneously mapped vegetation and other terrain features as interpreted in the field from a common aerial-photograph base. The result is a single ITUM map for each area, including vegetation, geomorphology, glacial geology, and many other features. Various supplemental maps (e.g., hydrologic features and roads) for each of the areas are available for use as overlays. Data is only available as a single tar.gz file containing all of the files.
This statewide product was created and will continue to be maintained by the Eastern Shore Regional GIS Cooperative (ESRGC). It's a comprehensive mosaic of the most current LiDAR available for the State of Maryland.The creation and maintenance of this dataset, along with the creation of its services, was funded by the Maryland Department of Information Technology.This is a MD iMAP hosted service. Find more information at https://imap.maryland.gov.Image Service Link: https://mdgeodata.md.gov/lidar/rest/services/Statewide/MD_statewide_slope_m/ImageServer
Geographic Extent: Garrett County, MD, covering approximately 739 square miles. Dataset Description: Garrett County, MD 2015 LiDAR project called for the Planning, Acquisition, processing and derivative products of LiDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1. The data was developed based on a horizontal projection/datum of UTM Zone 17, NAD83 (2011), meters and vertical datum of NAVD1988 (GEOID12A), meters. LiDAR data was delivered in RAW flight line swath format, processed to create Classified LAS 1.4 Files formatted to 6 individual 1829 meter X 1219 meter tiles for the pilot (948 individual 1829 meter X 1219 meter tiles for the entire project area), and corresponding Intensity Images and Bare Earth DEMs tiled to the same 1829 meter X 1219 meter tile schema, and Breaklines in Esri geodatabase format. Ground Conditions: LiDAR was collected in spring of 2015, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications, Quantum Spatial established a total of 87 Land Cover control points that were used to calibrate the LiDAR to known ground locations established throughout the Garrett County, MD project area (20 calibration control points).This is a MD iMAP hosted service. Find more information at https://imap.maryland.gov.Image Service Link: https://mdgeodata.md.gov/lidar/rest/services/Garrett/MD_garrett_slope_m/ImageServer
This dataset identifies areas with steep slopes in two categories used in local planning agencies: slopes 15-25% and slopes over 25% (slope=rise/run).
Geographic Extent: SANDY_Restoration_DE_MD_QL2 Area of Interest covers approximately 3.096 square miles. Lot #5 contains the full project area Dataset Description: The SANDY_Restoration_DE_MD_QL2 project called for the Planning, Acquisition, processing and derivative products of LiDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1. The data was developed based on a horizontal projection/datum of State Plane Zone Maryland (1900), NAD83, feet and vertical datum of NAVD1988 (GEOID12A), feet. LiDAR data was delivered in RAW flight line swath format, processed to create Classified LAS 1.2 Files formatted to 3842 individual 1500m x 1500m tiles, and corresponding Intensity Images and Bare Earth DEMs tiled to the same 1500m x 1500m schema, and Breaklines in ESRI shapefile format. Ground Conditions: LiDAR was collected in Winter 2013 / Spring 2014, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications, Quantum Spatial established a total of 78 QA control points and 99 Land Cover control points that were used to calibrate the LiDAR to known ground locations established throughout the SANDY_Restoration_DE_MD_QL2 project area.This is a MD iMAP hosted service. Find more information at https://imap.maryland.gov.Image Service Link: https://mdgeodata.md.gov/lidar/rest/services/Dorchester/MD_dorchester_slope_m/ImageServer
https://www.nconemap.gov/pages/termshttps://www.nconemap.gov/pages/terms
An aspect map (slope direction) derived from Digital Elevation Models (DEMs) with a 3ft. grid cell size. Compass direction is rendered using the following colors: red (north), magenta (northwest), blue (west), cyan (southwest), light cyan (south), light green (southeast), light orange (east), orange (northeast). Data used to create the DEMs was derived from LiDAR collected by the NC Floodplain Mapping Program and processed by NC Department of Public Safety - Division of Emergency Management.Download county-based DEMs from the NC OneMap Direct Data Downloads. Data should not be downloaded using the map on the dataset's item page.
DEM raster for Anne Arundel County.This is a MD iMAP hosted service. Find more information at https://imap.maryland.gov.Image Service Link: https://mdgeodata.md.gov/lidar/rest/services/AnneArundel/MD_annearundel_slope_m/ImageServer
The marsh-forest boundary in the Chesapeake Bay was determined by geoprocessing high-resolution (1 square meter) land use and land cover data sets. Perpendicular transects were cast at standard intervals (30 meters) along the boundary within a GIS by repurposing the Digital Shoreline Analysis System (DSAS) Version 5.0, an ArcGIS extension developed by the U.S. Geological Survey. Average and maximum slope values were assigned to each transect from surface elevation data. The same values were also provided as points at the center of the transect where it crossed over the boundary. The slope values across the marsh-forest transition zone and at the boundary itself provide comprehensive data layers for local, state, and Federal managers to improve understanding of salt marsh migration. This additionally aids the U.S. Geological Survey in its effort to assess the coastal vulnerability and response of salt marsh ecosystems, including the Chesapeake Bay region.
The slope image in this tile service from MassGIS shows the variation in elevation (steepness), expressed in degrees (0 is flat, 89 is nearly vertical). A 3X3 window was used to calculate the slope at each pixel. Darker areas represent steeper slopes.For more information, see MassGIS' Lidar Terrain Data page.
This North Slope infrastructure GIS dataset includes roads (line), pipelines (line) and developed areas (polygon) as separate feature classes. Downloads are in shapefile and geodatabase format. Major, maintained road features on the North Slope are provided. Minor connections or roads within developed areas may not be represented or are generalized. Above surface pipeline features are provided. Multiple adjacent pipelines may be represented as one pipeline, features along routes may be simplified and pipelines within developed areas omitted. Developed area features include gravel pads, material pits, constructed water features and village areas. Road locations within villages have been updated using Alaska Department of Transportation GIS data. Road, pipeline and developed area feature attributes have been assigned oil and gas unit designations using Alaska Division of Oil and Gas GIS data. The Trans-Alaska Pipeline (TAPS) was not digitized and is available via the link below. These infrastructure data were originally compiled by Audubon in 2014 and provided to the Bureau of Land Management (BLM) Rapid Ecological Assessment (REA) project for the North Slope region. Those data were edited by the Alaska Center for Conservation Science (ACCS) for the REA and released for public distribution on the BLM/REA website. The North Slope Science Initiative (NSSI) subsequently updated the REA product using high resolution imagery as a verification base and heads up digitizing to produce an initial version of this infrastructure dataset. Annual updates to these data have been performed by ACCS and funded by BLM. These updates are based on interpretation of 2022 Sentinel imagery for the Prudhoe Bay development area and other image products as available for the greater North Slope region. All locations are approximate. Neither ACCS, BLM, NSSI or other contributors to this dataset shall be held liable for improper or incorrect use of the data described and/or contained herein. In an effort to provide the most comprehensive overview possible, these updates have incorporated many data sources, using a variety compilation methods. As a result, there are a variety of limitations to the thematic and spatial accuracy of these data. The appropriate use of these data is the responsibility of the user. A link to a web map containing this infrastructure data as well as land ownership and administrative information is provided below.
OrthoImagery/imagery_GIS_SLOPE_2007
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A continous, multiscale stream steepness raster dataset produced for the INVAFISH project (Norges forskningsråd 243910) with the following script: connectivity.py
It covers Norway, Sweden and Finland. The stream network has been derived with the GRASS GIS r.stream.extract module from a 10m digital elevation model (DEM). Slope has been calculated with r.slope.direction module at 10, 30, 50, 70, 110, and 150 m steps following the direction of the stream network.
Resolution of the raster data follows the pixels of the underlying 10m DEM. Raster values represent slope in degree * 100, so for example a value of 732 refers to 7.32 degree in slope. Negative slope values indicated artifacts in the underlying DEM and occure where the r.stream.extract module had to hydrologically enforce overland flow through pits or over ridges.
Data format is LZW-compressed GeoTiff in EPSG: 25833 coordinate system.
This map provides a colorized representation of slope, generated dynamically using server-side slope function on Terrain service. The degree of slope steepness is depicted by light to dark colors - flat surfaces as gray, shallow slopes as light yellow, moderate slopes as light orange and steep slopes as red-brown. A scaling is applied to slope values to generate appropriate visualization at each map scale. This service should only be used for visualization, such as a base layer in applications or maps. If access to non-scaled slope values is required, use the Slope Degrees or Slope percent functions, which return values from 0 to 90 degrees, or 0 to 1000%, respectively.What can you do with this layer?Use for Visualization: Yes. This colorized slope is appropriate for visualizing the steepness of the terrain at all map scales. This layer can be added to applications or maps to enhance contextual understanding. Use for Analysis: No. 8 bit color values returned by this service represent scaled slope values. For analysis with non-scaled values, use the Slope Degrees or Slope percent functions.For more details such as Data Sources, Mosaic method used in this layer, please see the Terrain layer. This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single export image request.This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.
Geographic Extent: SANDY_Restoration_VA_MD_DC_QL2 Area of Interest covers approximately 2,002 square miles. Lot #5 contains the full project area Dataset Description: The SANDY_Restoration_VA_MD_DC_QL2 project called for the Planning, Acquisition, processing and derivative products of LiDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1. The data was developed based on a horizontal projection/datum of UTM Zone 18 North, NAD83, meters and vertical datum of NAVD1988 (GEOID12A), meters. LiDAR data was delivered in RAW flight line swath format, processed to create Classified LAS 1.2 Files formatted to 2283 individual 1500m x 1500m tiles, and corresponding Intensity Images and Bare Earth DEMs tiled to the same 1500m x 1500m schema, and Breaklines in ESRI Shapefile format. The data was then converted to a horizontal projection/datum of NAD83 Maryland State Plane Coordinate System, Feet. LiDAR was delivered in Classified LAS 1.2 Files formatted to 1927 individual 4000' x 6000' tiles, and corresponding Intensity Images and Bare Earth DEMs tiled to the same 4000' x 6000' schema, and Breaklines in ESRI Shapefile format. Ground Conditions: LiDAR was collected in Winter 2014, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications, Quantum Spatial established a total of 59 QA control points and 95 Land Cover control points that were used to calibrate the LiDAR to known ground locations established throughout the SANDY_Restoration_VA_MD_DC_QL2 project area.This is a MD iMAP hosted service. Find more information at https://imap.maryland.gov.Image Service Link: https://mdgeodata.md.gov/lidar/rest/services/Charles/MD_charles_slope_m/ImageServer
Area with a slope equal to or greater than 10 percent. Date of last data update: 2003-01-15 This is official RLIS data. Contact Person: Joe Gordon joe.gordon@oregonmetro.gov 503-797-1587 RLIS Metadata Viewer: https://gis.oregonmetro.gov/rlis-metadata/#/details/1916 RLIS Terms of Use: https://rlisdiscovery.oregonmetro.gov/pages/terms-of-use
https://www.nconemap.gov/pages/termshttps://www.nconemap.gov/pages/terms
Raster functions are operations that apply processing directly to raster dataset pixels. The raster functions supplied here are the same operations applied to the 3 ft. DEM-related web services from NC OneMap (Aspect, Hillshade, Shaded Elevation, Shaded Relief, Slope, and raster contours for 1 foot, 2 feet, 4 feet, 20 feet, and 100 feet). The downloaded functions can be used in ArcGIS products.
These could be helpful if there is a need to use an NC OneMap DEM-derivative elevation product in a disconnected environment, an instance where web service use is not practical. The county-based DEMs can be downloaded and the raster functions applied in ArcGIS Pro, for use in an offline environment.
In the downloaded raster functions ZIP file are XML files for:
Aspect
Hillshade
Shaded Elevation
Shaded Relief
Slope
Raster Contours for intervals: 1 ft., 2 ft., 4 ft., 20 ft., 100 ft.
Information on using raster functions in ArcGIS Pro can be found here.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data is provided as raster GIS layer in .img format. The project final report is included in the full data download or can be downloaded separately. This map is the outcome of a multi-year project to produce a moderate resolution landcover base map for the North Slope of Alaska to serve as a primary base layer for long-term science and planning activities on the North Slope. New Landsat Thematic Mapper (TM) 30 meter resolution landcover maps were produced for the far western arctic, and for the area between the National Petroleum Reserve - Alaska (NPRA) and Arctic National Wildlife Refuge. In the NPRA, an existing land cover map from the 1990's was "crosswalked" to the NSSI land cover map classes, and a large portion of the map was updated using more recently acquired Landsat TM images. The remaining areas of the NSSI land cover map utilized an existing statewide land cover mosaic compiled by the Alaska Natural Heritage Program (AKNHP) that consisted of land cover classes that already matched the NSSI land cover classes and originated primarily from National Park Service (NPS) and U.S. Fish and Wildlife (FWS) land cover maps. Twenty four classes are identified in the map, covering approximately 60 million acres (24.3 million hectares) stretching from the border of Canada to the western arctic coast and from the Arctic Ocean south to the Brooks Range. References Ducks Unlimited. 2013. North Slope Science Initiative Landcover Mapping Summary Report. 51 pp.
This map provides a colorized representation of slope, generated dynamically using server-side slope function on the Terrain layer. The degree of slope steepness is depicted by light to dark colors - flat surfaces as gray, shallow slopes as light yellow, moderate slopes as light orange and steep slopes as red-brown. A scaling is applied to slope values to generate appropriate visualization at each map scale. This service should only be used for visualization, such as a base layer in applications or maps. Note: If access to non-scaled slope values is required, use the Slope Degrees or Slope Percent functions, which return values from 0 to 90 degrees, or 0 to 1000%, respectively.Units: DegreesUpdate Frequency: QuarterlyCoverage: World/GlobalData Sources: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see World Elevation Coverage Map.What can you do with this layer?Use for Visualization: Yes. This colorized slope is appropriate for visualizing the steepness of the terrain at all map scales. This layer can be added to applications or maps to enhance contextual understanding. Use for Analysis: No. 8 bit color values returned by this service represent scaled slope values. For analysis with non-scaled values, use the Slope Degrees or Slope Percent functions.For more details such as Data Sources, Mosaic method used in this layer, please see the Terrain layer. This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single export image request.
This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.