How many incorporated places are registered in the U.S.?
There were 19,502 incorporated places registered in the United States as of July 31, 2019. 16,410 had a population under 10,000 while, in contrast, only 10 cities had a population of one million or more.
Small-town America
Suffice it to say, almost nothing is more idealized in the American imagination than small-town America. When asked where they would prefer to live, 30 percent of Americans reported that they would prefer to live in a small town. Americans tend to prefer small-town living due to a perceived slower pace of life, close-knit communities, and a more affordable cost of living when compared to large cities.
An increasing population
Despite a preference for small-town life, metropolitan areas in the U.S. still see high population figures, with the New York, Los Angeles, and Chicago metro areas being the most populous in the country. Metro and state populations are projected to increase by 2040, so while some may move to small towns to escape city living, those small towns may become more crowded in the upcoming decades.
As of 2019, most rural inhabitants in Africa resided close to small and mid-sized towns. The nearest city to almost 70 percent of the rural population had between 10,000 and 50,000 inhabitants. Smaller shares of rural households, on the other hand, lived closer to larger urban areas. As of the same year, roughly half of the rural residents lived within 14 kilometers from a city.
Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, the yellow areas of highest density range from 30,000 to 150,000 persons per square kilometer. In those areas, if the people were spread out evenly across the area, there would be just 4 to 9 meters between them. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics
https://www.maine-demographics.com/terms_and_conditionshttps://www.maine-demographics.com/terms_and_conditions
A dataset listing Maine cities by population for 2024.
https://www.iowa-demographics.com/terms_and_conditionshttps://www.iowa-demographics.com/terms_and_conditions
A dataset listing Iowa cities by population for 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Little Valley town population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Little Valley town across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Little Valley town was 1,650, a 0.48% decrease year-by-year from 2022. Previously, in 2022, Little Valley town population was 1,658, a decline of 0.48% compared to a population of 1,666 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Little Valley town decreased by 122. In this period, the peak population was 1,772 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Little Valley town Population by Year. You can refer the same here
In 2023, there were approximately 55.94 million people living in rural areas in the United States, while about 278.98 million people were living in urban areas. Within the provided time period, the number of people living in urban U.S. areas has increased significantly since totaling only 126.46 million in 1960.
https://www.washington-demographics.com/terms_and_conditionshttps://www.washington-demographics.com/terms_and_conditions
A dataset listing Washington cities by population for 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Little Compton town by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Little Compton town across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of male population, with 50.26% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Little Compton town Population by Race & Ethnicity. You can refer the same here
This data set includes cities in the United States, Puerto Rico and the U.S. Virgin Islands. These cities were collected from the 1970 National Atlas of the United States. Where applicable, U.S. Census Bureau codes for named populated places were associated with each name to allow additional information to be attached. The Geographic Names Information System (GNIS) was also used as a source for additional information. This is a revised version of the December, 2003, data set.
This layer is sourced from maps.bts.dot.gov.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Little Falls town population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Little Falls town. The dataset can be utilized to understand the population distribution of Little Falls town by age. For example, using this dataset, we can identify the largest age group in Little Falls town.
Key observations
The largest age group in Little Falls Town, New York was for the group of age 60 to 64 years years with a population of 142 (8.84%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Little Falls Town, New York was the 75 to 79 years years with a population of 26 (1.62%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Little Falls town Population by Age. You can refer the same here
This data layer produced by the National Center for Education Statistics’ (NCES) Education Demographic and Geographic Estimates (EDGE) program provides a geographic locale framework that classifies all U.S. territory into twelve categories ranging from Large Cities to Remote Rural areas. NCES uses this framework to describe the type of geographic area where schools and school districts are located. The criteria for these classifications are defined by NCES and rely on standard geographic areas developed and maintained by the U.S. Census Bureau. The NCES Locale boundaries are based on geographic areas represented in Census TIGER/Line. For more information about the NCES locale framework, and to download the data, see: https://nces.ed.gov/programs/edge/Geographic/LocaleBoundaries. The classifications include:City - Large (11): Territory inside an Urban Area with a population of 50,000 or more and inside a Principal City with population of 250,000 or more.City - Midsize (12): Territory inside an Urban Area with a population of 50,000 or more and inside a Principal City with population less than 250,000 and greater than or equal to 100,000.City - Small (13): Territory inside an Urban Area with a population of 50,000 or more and inside a Principal City with population less than 100,000.Suburb – Large (21): Territory outside a Principal City and inside an Urban Area with population of 250,000 or more.Suburb - Midsize (22): Territory outside a Principal City and inside an Urban Area with population less than 250,000 and greater than or equal to 100,000.Suburb - Small (23): Territory outside a Principal City and inside an Urban Area with population less than 100,000. Town - Fringe (31): Territory inside an Urban Area with a population less than 50,000 that is less than or equal to 10 miles from an Urban Area with a population of 50,000 or more.Town - Distant (32): Territory inside an Urban Area with a population less than 50,000 that is more than 10 miles and less than or equal to 35 miles from an Urban Area with a population of 50,000 or more.Town - Remote (33): Territory inside an Urban Area with a population less than 50,000 that is more than 35 miles of an Urban Area with a population of 50,000 or more.Rural - Fringe (41): Census-defined rural territory that is less than or equal to 5 miles from an Urban Area of 50,000 or more, as well as rural territory that is less than or equal to 2.5 miles from an Urban Area with a population less than 50,000.Rural - Distant (42): Census-defined rural territory that is more than 5 miles but less than or equal to 25 miles from an Urban Area with a population of 50,000 or more, as well as rural territory that is more than 2.5 miles but less than or equal to 10 miles from an Urban Area with a population less than 50,000.Rural - Remote (43): Census-defined rural territory that is more than 25 miles from an Urban Area with a population of 50,000 or more and is also more than 10 miles from an Urban Area with a population less than 50,000.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.
This is the complete dataset for the 500 Cities project 2016 release. This dataset includes 2013, 2014 model-based small area estimates for 27 measures of chronic disease related to unhealthy behaviors (5), health outcomes (13), and use of preventive services (9). Data were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. The project was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. It represents a first-of-its kind effort to release information on a large scale for cities and for small areas within those cities. It includes estimates for the 500 largest US cities and approximately 28,000 census tracts within these cities. These estimates can be used to identify emerging health problems and to inform development and implementation of effective, targeted public health prevention activities. Because the small area model cannot detect effects due to local interventions, users are cautioned against using these estimates for program or policy evaluations. Data sources used to generate these measures include Behavioral Risk Factor Surveillance System (BRFSS) data (2013, 2014), Census Bureau 2010 census population data, and American Community Survey (ACS) 2009-2013, 2010-2014 estimates. More information about the methodology can be found at www.cdc.gov/500cities. Note: During the process of uploading the 2015 estimates, CDC found a data discrepancy in the published 500 Cities data for the 2014 city-level obesity crude prevalence estimates caused when reformatting the SAS data file to the open data format. . The small area estimation model and code were correct. This data discrepancy only affected the 2014 city-level obesity crude prevalence estimates on the Socrata open data file, the GIS-friendly data file, and the 500 Cities online application. The other obesity estimates (city-level age-adjusted and tract-level) and the Mapbooks were not affected. No other measures were affected. The correct estimates are update in this dataset on October 25, 2017.
2010 Rural-Urban Commuting Area Codes (revised 7/3/2019) , joined to SD, SPA, and CSA as of Dec. 2023.Data from https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/. Downloaded 1/9/2024.Primary RUCA Codes, 20101 Metropolitan area core: primary flow within an urbanized area (UA)2 Metropolitan area high commuting: primary flow 30% or more to a UA3 Metropolitan area low commuting: primary flow 10% to 30% to a UA4 Micropolitan area core: primary flow within an Urban Cluster of 10,000 to 49,999 (large UC)5 Micropolitan high commuting: primary flow 30% or more to a large UC6 Micropolitan low commuting: primary flow 10% to 30% to a large UC7 Small town core: primary flow within an Urban Cluster of 2,500 to 9,999 (small UC)8 Small town high commuting: primary flow 30% or more to a small UC9 Small town low commuting: primary flow 10% to 30% to a small UC10 Rural areas: primary flow to a tract outside a UA or UC99 Not coded: Census tract has zero population and no rural-urban identifier informationSecondary RUCA Codes, 20101 Metropolitan area core: primary flow within an urbanized area (UA)1No additional code1.1Secondary flow 30% to 50% to a larger UA2 Metropolitan area high commuting: primary flow 30% or more to a UA2No additional code2.1Secondary flow 30% to 50% to a larger UA3 Metropolitan area low commuting: primary flow 10% to 30% to a UA3No additional code4 Micropolitan area core: primary flow within an Urban Cluster of 10,000 to 49,999 (large UC)4No additional code4.1Secondary flow 30% to 50% to a UA5 Micropolitan high commuting: primary flow 30% or more to a large UC5No additional code5.1Secondary flow 30% to 50% to a UA6 Micropolitan low commuting: primary flow 10% to 30% to a large UC6No additional code7 Small town core: primary flow within an Urban Cluster of 2,500 to 9,999 (small UC)7No additional code7.1Secondary flow 30% to 50% to a UA7.2Secondary flow 30% to 50% to a large UC8 Small town high commuting: primary flow 30% or more to a small UC8No additional code8.1Secondary flow 30% to 50% to a UA8.2Secondary flow 30% to 50% to a large UC9 Small town low commuting: primary flow 10% to 30% to a small UC9No additional code10 Rural areas: primary flow to a tract outside a UA or UC10No additional code10.1Secondary flow 30% to 50% to a UA10.2Secondary flow 30% to 50% to a large UC10.3Secondary flow 30% to 50% to a small UC99 Not coded: Census tract has zero population and no rural-urban identifier informationData Sources:Population data for census tracts, by urban-rural components, 2010:U.S. Census Bureau, Census of Population and Housing, 2010. Summary File 1, FTP download: https://www.census.gov/census2000/sumfile1.htmlAssignment of census tracts to specific urban areas or to rural status was completed using ESRI's ArcMap software and Census Bureau shape files:U.S. Census Bureau. Tiger/Line Shapefiles, Census Tracts and Urban Areas, 2010: https://www.census.gov/programs-surveys/geography.htmlCensus tract commuting flows, 2006-2010:U.S. Census Bureau, American Community Survey 2006-2010 Five-year estimates. Special Tabulation: Census Transportation Planning Products, Part 3, Worker Home-to-Work Flow Tables. https://www.fhwa.dot.gov/planning/census_issues/ctpp/data_products/2006-2010_table_list/sheet04.cfmTract-to-tract commuting flow files were constructed from ACS data as part of a special tabulation for the Department of Transportation—the Census Transportation Planning Package. To derive estimates for small geographic units such as census tracts, information collected annually from over 3.5 million housing units was combined across 5 years (2006-2010). As with all survey data, ACS estimates are not exact because they are based on a sample. In general, the smaller the estimate, the larger the degree of uncertainty associated with it.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Little Falls Town, New York population pyramid, which represents the Little Falls town population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Little Falls town Population by Age. You can refer the same here
https://www.indiana-demographics.com/terms_and_conditionshttps://www.indiana-demographics.com/terms_and_conditions
A dataset listing Indiana cities by population for 2024.
https://www.southdakota-demographics.com/terms_and_conditionshttps://www.southdakota-demographics.com/terms_and_conditions
A dataset listing South Dakota cities by population for 2024.
https://www.westvirginia-demographics.com/terms_and_conditionshttps://www.westvirginia-demographics.com/terms_and_conditions
A dataset listing West Virginia cities by population for 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
City population size is a crucial measure when trying to understand urban life. Many socio-economic indicators scale superlinearly with city size, whilst some infrastructure indicators scale sublinearly with city size. However, the impact of size also extends beyond the city’s limits. Here, we analyse the scaling behaviour of cities beyond their boundaries by considering the emergence and growth of nearby cities. Based on an urban network from African continental cities, we construct an algorithm to create the region of influence of cities. The number of cities and the population within a region of influence are then analysed in the context of urban scaling. Our results are compared against a random permutation of the network, showing that the observed scaling power of cities to enhance the emergence and growth of cities is not the result of randomness. By altering the radius of influence of cities, we observe three regimes. Large cities tend to be surrounded by many small towns for small distances. For medium distances (above 114 km), large cities are surrounded by many other cities containing large populations. Large cities boost urban emergence and growth (even more than 190 km away), but their scaling power decays with distance.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides population forecasts by single year for 2023 to 2043. Prepared by SGS Economics and Planning (Feb-Sep 2024), forecasts are available for the municipality and small areas, as well as by gender and 5 year age groups.
Further information can be found on our City Forecasts page.
Related datasets are also available on Open Data.
How many incorporated places are registered in the U.S.?
There were 19,502 incorporated places registered in the United States as of July 31, 2019. 16,410 had a population under 10,000 while, in contrast, only 10 cities had a population of one million or more.
Small-town America
Suffice it to say, almost nothing is more idealized in the American imagination than small-town America. When asked where they would prefer to live, 30 percent of Americans reported that they would prefer to live in a small town. Americans tend to prefer small-town living due to a perceived slower pace of life, close-knit communities, and a more affordable cost of living when compared to large cities.
An increasing population
Despite a preference for small-town life, metropolitan areas in the U.S. still see high population figures, with the New York, Los Angeles, and Chicago metro areas being the most populous in the country. Metro and state populations are projected to increase by 2040, so while some may move to small towns to escape city living, those small towns may become more crowded in the upcoming decades.