Facebook
TwitterThe smallest country in the world is Vatican City, with a landmass of just **** square kilometers (0.19 square miles). Vatican City is an independent state surrounded by Rome. Vatican City is not the only small country located inside Italy. San Marino is another microstate, with a land area of ** square kilometers, making it the fifth-smallest country in the world. Many of these small nations have equally small populations, typically less than ************** inhabitants. However, the population of Singapore is almost *** million, and it is the twentieth smallest country in the world with a land area of *** square kilometers. In comparison, Jamaica is almost eight times larger than Singapore, but has half the population.
Facebook
TwitterThe Vatican City, often called the Holy See, has the smallest population worldwide, with only *** inhabitants. It is also the smallest country in the world by size. The islands Niue, Tuvalu, and Nauru followed in the next three positions. On the other hand, India is the most populous country in the world, with over *** billion inhabitants.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Refugee Population by Country or Territory of Asylum for Other Small States (SMPOPREFGOSS) from 1990 to 2023 about refugee, small, World, and population.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for SMALL BUSINESS SENTIMENT reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population rankings of the world's smallest countries
Facebook
TwitterIn 2022, Australia's installed small hydropower capacity reached *** megawatts, leading the small hydropower generation among other countries in Oceania. New Zealand trailed in second, with approximately *** megawatts during the same year.
Facebook
TwitterWith 450,295 square kilometers, Sweden is the largest Nordic country by area size, followed by Finland and Norway. This makes it the fifth largest country in Europe. Meanwhile, Denmark is the smallest of the five Nordic countries with only 43,094 square kilometers, however, the Danish autonomous region of Greenland is significantly larger than any of the Nordic countries, and is almost double the size of the other five combined.
Population
Sweden is also the Nordic country with the largest population. 10.45 million people live in the country. Denmark, Finland, and Norway all have between five and six million inhabitants, whereas only 370,000 people live in Iceland. Meanwhile, Denmark has the highest population density of the five countries. Greenland is the most sparsely populated permanently-inhabited country in the world, followed by the regions of Svalbard and Jan Mayen.
Geography
The five Nordic countries vary geographically. While Denmark is mostly flat, its highest point only stretching around 170 meters above sea level, Norway's highest peak is nearly 2,500 meters high. Moreover, Finland is known for its many lakes and is often called the land of a thousand lakes, whereas Iceland is famous for its volcanoes.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Refugee Population by Country or Territory of Asylum for Pacific Island Small States (SMPOPREFGPSS) from 1995 to 2023 about refugee, Pacific Islands, small, World, and population.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The World Bank's data for 2021 on total land area by country provides detailed information on the size of land in square kilometers for various countries worldwide. Here are some key highlights from the dataset:
Russia is the largest country by land area, with approximately 16.38 million square kilometers. Canada follows with around 9.98 million square kilometers. China has a land area of about 9.42 million square kilometers, making it the third largest. The United States (excluding territories) covers around 9.14 million square kilometers. Smaller countries and regions include:
Vatican City, with an area of about 0.44 square kilometers. Monaco, with 2 square kilometers
THIS DATA WAS LAST UPDATED IN 2024 and it is owned by https://data.worldbank.org/indicator/AG.LND.TOTL.K2?end=2021&start=2021&view=map
Facebook
TwitterWorld Countries is a detailed layer of country level boundaries which is best used at large scales (e.g. below 1:2m scale). For a more generalized layer to use at small-to-medium scales, refer to the World Countries (Generalized) layer. It has been designed to be used as a layer that can be easily edited to fit a users needs and view of the political world. Included are attributes for name and ISO codes, along with continent information. Particularly useful are the Land Type and Land Rank fields which separate polygons based on their areal size. These attributes are useful for rendering at different scales by providing the ability to turn off small islands which may clutter small scale views.This dataset represents the world countries as they existed in January 2015.
Facebook
TwitterWorldwide, the male population is slightly higher than the female population. As of 2024, the country with the highest percentage of men was Qatar, with only slightly more than *********** of the total population being women. The United Arab Emirates followed with ** percent. Different factors can influence the gender distribution in a population, such as life expectancy, the sex ratio at birth, and immigration. For instance, in Qatar, the large share of males is due to the high immigration flows of male labor in the country.
Facebook
TwitterThe data and programs replicate tables and figures from "Export Conditions in Small Countries and their Effects on Domestic Markets", by Alfaro and Warzynski. Please see the ReadMe file for additional details.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
this graph was created in OurDataWorld:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F5ba70e2a6c4926d6d6cf25183d04d768%2Fgraph1.png?generation=1721857623801679&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F37881b8889c3e253207b67f0115b704e%2Fgraph2.png?generation=1721857629220811&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F6391ebd97d7f80974d7acd60a10b914d%2Fgraph3.png?generation=1721857634439762&alt=media" alt="">
Population growth is one of the most important topics we cover at Our World in Data.
For most of human history, the global population was a tiny fraction of what it is today. Over the last few centuries, the human population has gone through an extraordinary change. In 1800, there were one billion people. Today there are more than 8 billion of us.
But after a period of very fast population growth, demographers expect the world population to peak by the end of this century.
On this page, you will find all of our data, charts, and writing on changes in population growth. This includes how populations are distributed worldwide, how this has changed, and what demographers expect for the future. Geographical maps show us where the world's landmasses are; not where people are. That means they don't always give us an accurate picture of how global living standards are changing.
One way to understand the distribution of people worldwide is to redraw the world map – not based on the area but according to population.
This is shown here as a population cartogram: a geographical presentation of the world where the size of countries is not drawn according to the distribution of land but by the distribution of people. It’s shown for the year 2018.
As the population size rather than the territory is shown in this map, you can see some significant differences when you compare it to the standard geographical map we’re most familiar with.
Small countries with a high population density increase in size in this cartogram relative to the world maps we are used to – look at Bangladesh, Taiwan, or the Netherlands. Large countries with a small population shrink in size – look for Canada, Mongolia, Australia, or Russia.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Use this regional model layer when performing analysis within a single continent. This layer displays a single global land cover map that is modeled by region for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice
Facebook
TwitterThe statistic shows the largest countries in South America, based on land area. Brazil is the largest country by far, with a total area of over 8.5 million square kilometers, followed by Argentina, with almost 2.8 million square kilometers.
Facebook
TwitterWorld Countries provides a detailed basemap layer for the countries of the world. This layer has been designed to be used as a basemap and includes fields for official names and country codes, along with fields for continent and display. Particularly useful are the fields LAND_TYPE and LAND_RANK that separate polygons based on their size. These fields are helpful for rendering at different scales by providing the ability to turn off small islands that may clutter small-scale (zoomed out) views. The sources of this dataset are Esri, Garmin, U.S. Central Intelligence Agency (The World Factbook), and International Organization for Standardization (ISO). This layer was published in October 2024. It is updated every 12-18 months or as significant changes occur.
Facebook
TwitterCOVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. 100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent one third of case days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 63 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 6-21 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 6 to 21 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 6-21 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 6-21 days and less than past 2 days indicates slight positive trend, but likely still within peak trend timeframe.Past five days is less than the past 6-21 days. This means a downward trend. This would be an important trend for any administrative area in an epidemic trend that the rate of spread is slowing.If less than the past 2 days, but not the last 6-21 days, this is still positive, but is not indicating a passage out of the peak timeframe of the daily new cases curve.Past 5 days has only one or two new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 6 to 21 days. Most recent 6-21 days: Represents the full tail of the curve and provides context for the past 2- and 5-day trends.If this is greater than both the 2- and 5-day trends, then a short-term downward trend has begun. Mean of Recent Tail NCD in the context of the Mean of All NCD, and raw counts of cases:Mean of Recent NCD is less than 0.5 cases per 100,000 = high level of controlMean of Recent NCD is less than 1.0 and fewer than 30 cases indicate continued emergent trend.3. Mean of Recent NCD is less than 1.0 and greater than 30 cases indicate a change from emergent to spreading trend.Mean of All NCD less than 2.0 per 100,000, and areas that have been in epidemic trends have Mean of Recent NCD of less than 5.0 per 100,000 is a significant indicator of changing trends from epidemic to spreading, now going in the direction of controlled trend.Similarly, in the context of Mean of All NCD greater than 2.0
Facebook
TwitterHi guys, This is a portion of the very small dataset I preprocessed.
My first dataset project may be small and humble, but I hope it can serve as a simple briefing material or provide insights to others. In this dataset, I have included Air Quality Index (AQI) values for nitrogen, ozone, and PM2.5, along with Gross Domestic Product (GDP) per capita. During the process of merging AQI and GDP, there was significant data loss due to handling NaN values.
When I examined the correlation between PM2.5 and GDP, I found that most countries with lower GDP values, except for one, had AQI values exceeding the standard index of 50. However, in countries with higher GDP, only three countries surpassed this threshold. For ozone, I observed a similar pattern in both lower and higher GDP countries. As for nitrogen dioxide, countries with higher GDP tended to show slightly higher AQI values compared to those with lower GDP.
For PM2.5, I speculated that it could be influenced by various factors such as infrastructure, neighboring countries, and desert conditions.
On the other hand, the contrasting trend for nitrogen dioxide could be attributed to its origin from high-temperature combustion processes in facilities like vehicles and power plants, more common in countries with more of such industries.
I hope you all can combine this data with other datasets to derive even more fascinating results! 😃😃😃
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F14165116%2Fd8f4fcafd138cb838d228af4697edc52%2F2023-07-22%20%204.39.25.png?generation=1690011635518978&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F14165116%2Fcd1b12917dc5de87c7096176dc39e18b%2F2023-07-22%20%204.42.01.png?generation=1690011741146584&alt=media" alt="">
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for SMALL BUSINESS SENTIMENT reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
I rely on data from 31,754 electoral districts in the United States from 1834 until 2016 to explore how the nationalization of politics occurs within districts. I argue that in the early stages of the American democracy local concerns were more prominent in the distant districts from the capital city than in the nearby districts, and therefore the number of parties was greater in the former than in the latter. However, these differences vanished after the New Deal, when authority was centralized. Nationalization reduced the number of parties everywhere, but above all in the most distant district from Washington, D.C.
Facebook
TwitterThe smallest country in the world is Vatican City, with a landmass of just **** square kilometers (0.19 square miles). Vatican City is an independent state surrounded by Rome. Vatican City is not the only small country located inside Italy. San Marino is another microstate, with a land area of ** square kilometers, making it the fifth-smallest country in the world. Many of these small nations have equally small populations, typically less than ************** inhabitants. However, the population of Singapore is almost *** million, and it is the twentieth smallest country in the world with a land area of *** square kilometers. In comparison, Jamaica is almost eight times larger than Singapore, but has half the population.