The number of smartphone users in the United States was forecast to continuously increase between 2024 and 2029 by in total 17.4 million users (+5.61 percent). After the fifteenth consecutive increasing year, the smartphone user base is estimated to reach 327.54 million users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Mexico and Canada.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
## Overview
Mobile Phone Detection is a dataset for object detection tasks - it contains Cell Phone Detection annotations for 198 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [Public Domain license](https://creativecommons.org/licenses/Public Domain).
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Percentage of smartphone users by selected smartphone use habits in a typical day.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The effective utilization of a communication channel like calling a person involves two steps. The first step is storing the contact information of another user, and the second step is finding contact information to initiate a voice or text communication. However, the current smartphone interfaces for contact management are mainly textual; which leaves many emergent users at a severe disadvantage in using this most basic functionality to the fullest. Previous studies indicated that less-educated users adopt various coping strategies to store and identify contacts. However, all of these studies investigated the contact management issues of these users from a qualitative angle. Although qualitative or subjective investigations are very useful, they generally need to be augmented by a quantitative investigation for a comprehensive problem understanding. This work presents an exploratory study to identify the usability issues and coping strategies in contact management by emergent users; by using a mixture of qualitative and quantitative approaches. We identified coping strategies of the Pakistani population and the effectiveness of these strategies through a semi-structured qualitative study of 15 participants and a usability study of 9 participants, respectively. We then obtained logged data of 30 emergent and 30 traditional users, including contact-books and dual-channel (call and text messages) logs to infer a more detailed understanding; and to analyse the differences in the composition of contact-books of both user groups. The analysis of the log data confirmed problems that affect the emergent users' communication behaviour due to the various difficulties they face in storing and searching contacts. Our findings revealed serious usability issues in current communication interfaces over smartphones. The emergent users were found to have smaller contact-books and preferred voice communication due to reading/writing difficulties. They also reported taking help from others for contact saving and text reading. The alternative contact management strategies adopted by our participants include: memorizing whole number or last few digits to recall important contacts; adding special character sequence with contact numbers for better recall; writing a contact from scratch rather than searching it in the phone-book; voice search; and use of recent call logs to redial a contact. The identified coping strategies of emergent users could aid the developers and designers to come up with solutions according to emergent users' mental models and needs.
This dataset is collected by DataCluster Labs, India. To download full dataset or to submit a request for your new data collection needs, please drop a mail to: sales@datacluster.ai This dataset is an extremely challenging set of over 3000+ original Mobile Phone images captured and crowdsourced from over 1000+ urban and rural areas, where each image is manually reviewed and verified by computer vision professionals at ****DC Labs.
Dataset Features
Dataset size : 3000+ Captured by : Over 1000+ crowdsource contributors Resolution : 99% images HD and above (1920x1080 and above) Location : Captured with 600+ cities accross India Diversity : Various lighting conditions like day, night, varied distances, view points etc. Device used : Captured using mobile phones in 2020-2021 Applications : Mobile Phone detection, cracked screen detection, etc.
Available Annotation formats COCO, YOLO, PASCAL-VOC, Tf-Record
To download full datasets or to submit a request for your dataset needs, please ping us at sales@datacluster.ai Visit www.datacluster.ai to know more.
Note: All the images are manually captured and verified by a large contributor base on DataCluster platform
Collecty dataset is a dataset for multimodal transport analytics from mobile devices collected by users as they move through the transportation network. Each sample in dataset is labelled with a corresponding transport mode. Eight transport modes are present in the dataset: Car, Bus, Walking, Bicycle, Train, Tram, Running and Electric Scooter. During data collection, data from the accelerometer, magnetometer, and gyroscope sensors mounted within the mobile device were stored.
CITATION:
When incorporating these data into a research output, such as a publication or presentation, kindly cite the provided source and indicate that comprehensive details regarding the dataset are available within the same article:
Dataset for multimodal transport analytics of smartphone users - Collecty, M. Erdelić, T. Erdelić and T. Carić, Data in Brief, 2023
@article{ERDELIC2023109481, title = {Dataset for multimodal transport analytics of smartphone users - Collecty}, journal = {Data in Brief}, volume = {50}, pages = {109481}, year = {2023}, issn = {2352-3409}, doi = {https://doi.org/10.1016/j.dib.2023.109481}, url = {https://www.sciencedirect.com/science/article/pii/S2352340923005814}, author = {Martina Erdelić and Tomislav Erdelić and Tonči Carić} }
The global number of smartphone users in was forecast to continuously increase between 2024 and 2029 by in total *** billion users (+***** percent). After the fifteenth consecutive increasing year, the smartphone user base is estimated to reach *** billion users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to *** countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like the Americas and Asia.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This Dataset is instrumental if you are working on a machine-learning project where you are working in which you need information about smartphones, and feature phone available in the Indian market. This Dataset is having 5 columns -> model name, price, ratings, reviews, and specifications. Do not confuse it with the duplicated values in the name and the price columns, because in the model name, there are the same phones available with different color options Google pixel 6pro is available in 2-3 color options but the price was the same. So your domain knowledge and how better you do the feature engineering over this dataset is dependent. The price is in the Indian rupee you can convert it according to your use case. Now I Updated the dataset and added a new version of the dataset after some Preprocessing (Updated_Mobile_Dataset.csv) In which the new version does not contain any null values added the company column in the new version and also separated the Rom and Ram columns. The shape of the newly updated data set is (28036, 8) The objective here is to forecast the price of mobile phones. Please upvote if you find the dataset useful.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides comprehensive information about various Samsung smartphones, including their dimensions, system-on-chip (SoC), central processing unit (CPU), graphics processing unit (GPU), RAM, storage capacity, display specifications, battery details, operating system (OS), and camera attributes. Each row represents a different Samsung smartphone model, and the dataset contains valuable data for comparative analysis, research, or exploring the features of these smartphones. With details on multiple key specifications, this dataset is a valuable resource for tech enthusiasts, consumers, and analysts interested in Samsung's mobile offerings.
The dataset offers a structured format for easily comparing and contrasting different Samsung smartphone models, making it a valuable tool for decision-making, market analysis, and understanding the evolving landscape of Samsung's mobile devices.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Handphone Users Survey - Intention to Change to 3G Smartphone since 2012
The global number of smartphone users in was forecast to continuously increase between 2024 and 2029 by in total 1.8 billion users (+42.62 percent). After the ninth consecutive increasing year, the smartphone user base is estimated to reach 6.1 billion users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Australia & Oceania and Asia.
MobiFace is the first dataset for single face tracking in mobile situations. It consists of 80 unedited live-streaming mobile videos captured by 70 different smartphone users in fully unconstrained environments. Over 95K bounding boxes are manually labelled. The videos are carefully selected to cover typical smartphone usage. The videos are also annotated with 14 attributes, including 6 newly proposed attributes and 8 commonly seen in object tracking.
The S3 dataset contains the behavior (sensors, statistics of applications, and voice) of 21 volunteers interacting with their smartphones for more than 60 days. The type of users is diverse, males and females in the age range from 18 until 70 have been considered in the dataset generation. The wide range of age is a key aspect, due to the impact of age in terms of smartphone usage. To generate the dataset the volunteers installed a prototype of the smartphone application in on their Android mobile phones.
All attributes of the different kinds of data are writed in a vector. The dataset contains the fellow vectors:
Sensors:
This type of vector contains data belonging to smartphone sensors (accelerometer and gyroscope) that has been acquired in a given windows of time. Each vector is obtained every 20 seconds, and the monitored features are:- Average of accelerometer and gyroscope values.- Maximum and minimum of accelerometer and gyroscope values.- Variance of accelerometer and gyroscope values.- Peak-to-peak (max-min) of X, Y, Z coordinates.- Magnitude for gyroscope and accelerometer.
Statistics:
These vectors contain data about the different applications used by the user recently. Each vector of statistics is calculated every 60 seconds and contains : - Foreground application counters (number of different and total apps) for the last minute and the last day.- Most common app ID and the number of usages in the last minute and the last day. - ID of the currently active app. - ID of the last active app prior to the current one.- ID of the application most frequently utilized prior to the current application. - Bytes transmitted and received through the network interfaces.
Voice:
This kind of vector is generated when the microphone is active in a call o voice note. The speaker vector is an embedding, extracted from the audio, and it contains information about the user's identity. This vector, is usually named "x-vector" in the Speaker Recognition field, and it is calculated following the steps detailed in "egs/sitw/v2" for the Kaldi library, with the models available for the extraction of the embedding.
A summary of the details of the collected database.
- Users: 21 - Sensors vectors: 417.128 - Statistics app's usage vectors: 151.034 - Speaker vectors: 2.720 - Call recordings: 629 - Voice messages: 2.091
China is leading the ranking by number of smartphone users, recording ****** million users. Following closely behind is India with ****** million users, while Seychelles is trailing the ranking with **** million users, resulting in a difference of ****** million users to the ranking leader, China. Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
https://data.gov.sg/open-data-licencehttps://data.gov.sg/open-data-licence
Dataset from Info-communications Media Development Authority. For more information, visit https://data.gov.sg/datasets/d_5fb7ffda1ffd756151b1650d4c64363c/view
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Percentage of Canadians using a smartphone for personal use and selected habits of use during a typical day.
The number of smartphone users in Turkey was forecast to continuously increase between 2024 and 2029 by in total *** million users (****** percent). After the ninth consecutive increasing year, the smartphone user base is estimated to reach ***** million users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find further information concerning Bulgaria and Serbia.
Smartphone call log data used to mine contextual behavioral rules of individual mobile phone users
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Handphone Users Survey - Read E-Books Trend Through Smartphone since 2012
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains information about mobile phones available in Ghana, including details about various phone models, their specifications, and pricing. The data was collected through web scraping, providing a comprehensive overview of the mobile phone market in Ghana.
Brand & Model: The dataset includes details on various phone models from different brands, allowing users to explore a wide range of options.
Specifications: Detailed phone specifications are provided, such as whether the phone supports an SD card, the main camera setup, resolution, display type, SIM card configuration, operating system, color options, and more.
Geographical Information: Users can filter and analyze the dataset based on region and location in Ghana, making it useful for understanding the availability of different phone models in specific areas.
Hardware & Software: Essential hardware features like screen size (in inches), battery capacity (in mAh), storage (in GB), RAM (in GB), and selfie camera resolution (in MP) are included.
Pricing: The dataset also provides pricing information (in Ghanaian Cedis - ¢), enabling users to compare the cost of various phone models.
This dataset is valuable for consumers, researchers, and businesses interested in the mobile phone market in Ghana. It can be used for market analysis, consumer insights, and decision-making related to mobile phone purchases. Researchers can also use the data for further analysis and modeling.
The number of smartphone users in the United States was forecast to continuously increase between 2024 and 2029 by in total 17.4 million users (+5.61 percent). After the fifteenth consecutive increasing year, the smartphone user base is estimated to reach 327.54 million users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Mexico and Canada.