10 datasets found
  1. f

    A comparative analysis of earlier studies.

    • plos.figshare.com
    xls
    Updated Jan 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Praveen Talari; Bharathiraja N; Gaganpreet Kaur; Hani Alshahrani; Mana Saleh Al Reshan; Adel Sulaiman; Asadullah Shaikh (2024). A comparative analysis of earlier studies. [Dataset]. http://doi.org/10.1371/journal.pone.0292100.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 18, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Praveen Talari; Bharathiraja N; Gaganpreet Kaur; Hani Alshahrani; Mana Saleh Al Reshan; Adel Sulaiman; Asadullah Shaikh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Diabetes prediction is an ongoing study topic in which medical specialists are attempting to forecast the condition with greater precision. Diabetes typically stays lethargic, and on the off chance that patients are determined to have another illness, like harm to the kidney vessels, issues with the retina of the eye, or a heart issue, it can cause metabolic problems and various complexities in the body. Various worldwide learning procedures, including casting a ballot, supporting, and sacking, have been applied in this review. The Engineered Minority Oversampling Procedure (Destroyed), along with the K-overlay cross-approval approach, was utilized to achieve class evening out and approve the discoveries. Pima Indian Diabetes (PID) dataset is accumulated from the UCI Machine Learning (UCI ML) store for this review, and this dataset was picked. A highlighted engineering technique was used to calculate the influence of lifestyle factors. A two-phase classification model has been developed to predict insulin resistance using the Sequential Minimal Optimisation (SMO) and SMOTE approaches together. The SMOTE technique is used to preprocess data in the model’s first phase, while SMO classes are used in the second phase. All other categorization techniques were outperformed by bagging decision trees in terms of Misclassification Error rate, Accuracy, Specificity, Precision, Recall, F1 measures, and ROC curve. The model was created using a combined SMOTE and SMO strategy, which achieved 99.07% correction with 0.1 ms of runtime. The suggested system’s result is to enhance the classifier’s performance in spotting illness early.

  2. f

    Confusion matrix.

    • plos.figshare.com
    xls
    Updated Jan 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Praveen Talari; Bharathiraja N; Gaganpreet Kaur; Hani Alshahrani; Mana Saleh Al Reshan; Adel Sulaiman; Asadullah Shaikh (2024). Confusion matrix. [Dataset]. http://doi.org/10.1371/journal.pone.0292100.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 18, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Praveen Talari; Bharathiraja N; Gaganpreet Kaur; Hani Alshahrani; Mana Saleh Al Reshan; Adel Sulaiman; Asadullah Shaikh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Diabetes prediction is an ongoing study topic in which medical specialists are attempting to forecast the condition with greater precision. Diabetes typically stays lethargic, and on the off chance that patients are determined to have another illness, like harm to the kidney vessels, issues with the retina of the eye, or a heart issue, it can cause metabolic problems and various complexities in the body. Various worldwide learning procedures, including casting a ballot, supporting, and sacking, have been applied in this review. The Engineered Minority Oversampling Procedure (Destroyed), along with the K-overlay cross-approval approach, was utilized to achieve class evening out and approve the discoveries. Pima Indian Diabetes (PID) dataset is accumulated from the UCI Machine Learning (UCI ML) store for this review, and this dataset was picked. A highlighted engineering technique was used to calculate the influence of lifestyle factors. A two-phase classification model has been developed to predict insulin resistance using the Sequential Minimal Optimisation (SMO) and SMOTE approaches together. The SMOTE technique is used to preprocess data in the model’s first phase, while SMO classes are used in the second phase. All other categorization techniques were outperformed by bagging decision trees in terms of Misclassification Error rate, Accuracy, Specificity, Precision, Recall, F1 measures, and ROC curve. The model was created using a combined SMOTE and SMO strategy, which achieved 99.07% correction with 0.1 ms of runtime. The suggested system’s result is to enhance the classifier’s performance in spotting illness early.

  3. f

    Performance measure.

    • plos.figshare.com
    xls
    Updated Jan 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Praveen Talari; Bharathiraja N; Gaganpreet Kaur; Hani Alshahrani; Mana Saleh Al Reshan; Adel Sulaiman; Asadullah Shaikh (2024). Performance measure. [Dataset]. http://doi.org/10.1371/journal.pone.0292100.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 18, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Praveen Talari; Bharathiraja N; Gaganpreet Kaur; Hani Alshahrani; Mana Saleh Al Reshan; Adel Sulaiman; Asadullah Shaikh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Diabetes prediction is an ongoing study topic in which medical specialists are attempting to forecast the condition with greater precision. Diabetes typically stays lethargic, and on the off chance that patients are determined to have another illness, like harm to the kidney vessels, issues with the retina of the eye, or a heart issue, it can cause metabolic problems and various complexities in the body. Various worldwide learning procedures, including casting a ballot, supporting, and sacking, have been applied in this review. The Engineered Minority Oversampling Procedure (Destroyed), along with the K-overlay cross-approval approach, was utilized to achieve class evening out and approve the discoveries. Pima Indian Diabetes (PID) dataset is accumulated from the UCI Machine Learning (UCI ML) store for this review, and this dataset was picked. A highlighted engineering technique was used to calculate the influence of lifestyle factors. A two-phase classification model has been developed to predict insulin resistance using the Sequential Minimal Optimisation (SMO) and SMOTE approaches together. The SMOTE technique is used to preprocess data in the model’s first phase, while SMO classes are used in the second phase. All other categorization techniques were outperformed by bagging decision trees in terms of Misclassification Error rate, Accuracy, Specificity, Precision, Recall, F1 measures, and ROC curve. The model was created using a combined SMOTE and SMO strategy, which achieved 99.07% correction with 0.1 ms of runtime. The suggested system’s result is to enhance the classifier’s performance in spotting illness early.

  4. eCommerce Revenue Analytics: smoke-shop.ch

    • ecommercedb.com
    Updated Nov 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECDB (2022). eCommerce Revenue Analytics: smoke-shop.ch [Dataset]. https://ecommercedb.com/store/smoke-shop.ch
    Explore at:
    Dataset updated
    Nov 4, 2022
    Dataset authored and provided by
    ECDB
    Area covered
    Switzerland
    Description

    The online revenue of smoke-shop.ch amounted to US$0.7m in 2024. Discover eCommerce insights, including sales development, shopping cart size, and many more.

  5. Boston smoke shop USA Import & Buyer Data

    • seair.co.in
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seair Exim, Boston smoke shop USA Import & Buyer Data [Dataset]. https://www.seair.co.in
    Explore at:
    .bin, .xml, .csv, .xlsAvailable download formats
    Dataset provided by
    Seair Exim Solutions
    Authors
    Seair Exim
    Area covered
    United States
    Description

    Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.

  6. eCommerce Revenue Analytics: famous-smoke.com

    • ecommercedb.com
    Updated Apr 27, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECDB (2018). eCommerce Revenue Analytics: famous-smoke.com [Dataset]. https://ecommercedb.com/store/famous-smoke.com
    Explore at:
    Dataset updated
    Apr 27, 2018
    Dataset authored and provided by
    ECDB
    Area covered
    United States
    Description

    The online revenue of famous-smoke.com amounted to US$24.6m in 2024. Discover eCommerce insights, including sales development, shopping cart size, and many more.

  7. eCommerce Revenue Analytics: smoke-village.ru

    • ecommercedb.com
    Updated Nov 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECDB (2022). eCommerce Revenue Analytics: smoke-village.ru [Dataset]. https://ecommercedb.com/store/smoke-village.ru
    Explore at:
    Dataset updated
    Nov 4, 2022
    Dataset authored and provided by
    ECDB
    Area covered
    Russia
    Description

    The online revenue of smoke-village.ru amounted to US$2.8m in 2024. Discover eCommerce insights, including sales development, shopping cart size, and many more.

  8. Famous Smoke Shop-PA, Inc. eCommerce insights

    • ecommercedb.com
    Updated Jan 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECDB (2024). Famous Smoke Shop-PA, Inc. eCommerce insights [Dataset]. https://ecommercedb.com/company/famous-smoke-shop-pa-inc-3488
    Explore at:
    Dataset updated
    Jan 18, 2024
    Dataset authored and provided by
    ECDB
    Description

    The eCommerce activity of Famous Smoke Shop-PA, Inc. amounted to US$26m in 2024. Learn more about their online business including detailed eCommerce revenue analytics.

  9. Good timez smoke shop USA Import & Buyer Data

    • seair.co.in
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seair Exim, Good timez smoke shop USA Import & Buyer Data [Dataset]. https://www.seair.co.in
    Explore at:
    .bin, .xml, .csv, .xlsAvailable download formats
    Dataset provided by
    Seair Exim Solutions
    Authors
    Seair Exim
    Area covered
    United States
    Description

    Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.

  10. Finansijski podaci za SMOKE SHOP

    • companywall.rs
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agencija za privredne registre - APR, Finansijski podaci za SMOKE SHOP [Dataset]. https://www.companywall.rs/firma/smoke-shop/MMx7r1iwq
    Explore at:
    Dataset provided by
    Агенција за привредне регистре
    Authors
    Agencija za privredne registre - APR
    License

    http://www.companywall.rs/Home/Licencehttp://www.companywall.rs/Home/Licence

    Description

    Ovaj skup podataka uključuje finansijske izvještaje, račune i blokade, te nekretnine. Podaci uključuju prihode, rashode, dobit, imovinu, obaveze i informacije o nekretninama u vlasništvu kompanije. Finansijski podaci, finansijski sažetak, sažetak kompanije, preduzetnik, zanatlija, udruženje, poslovni subjekti.

  11. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Praveen Talari; Bharathiraja N; Gaganpreet Kaur; Hani Alshahrani; Mana Saleh Al Reshan; Adel Sulaiman; Asadullah Shaikh (2024). A comparative analysis of earlier studies. [Dataset]. http://doi.org/10.1371/journal.pone.0292100.t001

A comparative analysis of earlier studies.

Related Article
Explore at:
5 scholarly articles cite this dataset (View in Google Scholar)
xlsAvailable download formats
Dataset updated
Jan 18, 2024
Dataset provided by
PLOS ONE
Authors
Praveen Talari; Bharathiraja N; Gaganpreet Kaur; Hani Alshahrani; Mana Saleh Al Reshan; Adel Sulaiman; Asadullah Shaikh
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Diabetes prediction is an ongoing study topic in which medical specialists are attempting to forecast the condition with greater precision. Diabetes typically stays lethargic, and on the off chance that patients are determined to have another illness, like harm to the kidney vessels, issues with the retina of the eye, or a heart issue, it can cause metabolic problems and various complexities in the body. Various worldwide learning procedures, including casting a ballot, supporting, and sacking, have been applied in this review. The Engineered Minority Oversampling Procedure (Destroyed), along with the K-overlay cross-approval approach, was utilized to achieve class evening out and approve the discoveries. Pima Indian Diabetes (PID) dataset is accumulated from the UCI Machine Learning (UCI ML) store for this review, and this dataset was picked. A highlighted engineering technique was used to calculate the influence of lifestyle factors. A two-phase classification model has been developed to predict insulin resistance using the Sequential Minimal Optimisation (SMO) and SMOTE approaches together. The SMOTE technique is used to preprocess data in the model’s first phase, while SMO classes are used in the second phase. All other categorization techniques were outperformed by bagging decision trees in terms of Misclassification Error rate, Accuracy, Specificity, Precision, Recall, F1 measures, and ROC curve. The model was created using a combined SMOTE and SMO strategy, which achieved 99.07% correction with 0.1 ms of runtime. The suggested system’s result is to enhance the classifier’s performance in spotting illness early.

Search
Clear search
Close search
Google apps
Main menu