80 datasets found
  1. a

    Income Disparity: Concentrations of Wealth and Poverty in the USA

    • chi-phi-nmcdc.opendata.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Apr 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2022). Income Disparity: Concentrations of Wealth and Poverty in the USA [Dataset]. https://chi-phi-nmcdc.opendata.arcgis.com/maps/1d4bab3a6ed74c17a2d99645ffdc931f
    Explore at:
    Dataset updated
    Apr 27, 2022
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    Description

    This map shows households within high ($200,000 or more) and low (less than $25,000) annual income ranges. This is shown as a percentage of total households. The data is attached to tract, county, and state centroids and shows:Percent of households making less than $25,000 annuallyPercent of households making $200,000 or more annuallyThe data shown is household income in the past 12 months. These are the American Community Survey (ACS) most current 5-year estimates: Table B19001. The data layer is updated annually, so this map always shows the most current values from the U.S. Census Bureau. To find the layer used in this map and see the full metadata, visit this Living Atlas item.These categories were constructed using an Arcade expression, which groups the lowest census income categories and normalizes them by total households.

  2. d

    Connecticut Qualified Census Tracts

    • catalog.data.gov
    • data.ct.gov
    • +1more
    Updated Aug 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). Connecticut Qualified Census Tracts [Dataset]. https://catalog.data.gov/dataset/ct-qualified-census-tracts
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Area covered
    Connecticut
    Description

    This dataset provides access to Qualified Census Tracts (QCTs) in Connecticut to assist in administration of American Rescue Plan (ARP) funds. The Secretary of HUD must designate QCTs, which are areas where either 50 percent or more of the households have an income less than 60 percent of the AMGI for such year or have a poverty rate of at least 25 percent. HUD designates QCTs based on new income and poverty data released in the American Community Survey (ACS). Specifically, HUD relies on the most recent three sets of ACS data to ensure that anomalous estimates, due to sampling, do not affect the QCT status of tracts. QCTs are identified for the purpose of Low-Income Housing Credits under IRC Section 42, with the purpose of increasing the availability of low-income rental housing by providing an income tax credit to certain owners of newly constructed or substantially rehabilitated low-income rental housing projects. Also included are the number of households from the 2010 census (the “p0150001” variable), the average poverty rate using the 2014-2018 ACS data (the “pov_rate_18” variable), and the ratio of Tract Average Household Size Adjusted Income Limit to Tract Median Household Income using the 2014-2018 ACS data (the “inc_factor_18” variable). For the last variable mentioned in the previous paragraph, the income limit is the limit for being considered a very low income household (size-adjusted and based on Area Mean Gross Income). This value is divided by the median household income for the given tract, to get a sense of how the limit and median incomes compare. For example, if ratio>1, it implies that the tract is very low income because the limit income is greater than the median income. This ratio is a compact way to include the separate variables for the household income limit and median household income for each tract.

  3. s

    Persistent low income

    • ethnicity-facts-figures.service.gov.uk
    csv
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Race Disparity Unit (2025). Persistent low income [Dataset]. https://www.ethnicity-facts-figures.service.gov.uk/work-pay-and-benefits/pay-and-income/low-income/latest
    Explore at:
    csv(81 KB), csv(304 KB)Available download formats
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    Race Disparity Unit
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    United Kingdom
    Description

    Between 2018 and 2022, people in households in the ‘other’, Asian and black ethnic groups were the most likely to be in persistent low income, both before and after housing costs, out of all ethnic groups.

  4. S

    Somalia SO: Poverty Gap at $2.15 a Day: 2017 PPP: %

    • ceicdata.com
    Updated Dec 15, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2017). Somalia SO: Poverty Gap at $2.15 a Day: 2017 PPP: % [Dataset]. https://www.ceicdata.com/en/somalia/social-poverty-and-inequality/so-poverty-gap-at-215-a-day-2017-ppp-
    Explore at:
    Dataset updated
    Dec 15, 2017
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2017
    Area covered
    Somalia
    Variables measured
    Indicator
    Description

    Somalia SO: Poverty Gap at $2.15 a Day: 2017 PPP: % data was reported at 30.600 % in 2017. Somalia SO: Poverty Gap at $2.15 a Day: 2017 PPP: % data is updated yearly, averaging 30.600 % from Dec 2017 (Median) to 2017, with 1 observations. The data reached an all-time high of 30.600 % in 2017 and a record low of 30.600 % in 2017. Somalia SO: Poverty Gap at $2.15 a Day: 2017 PPP: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Somalia – Table SO.World Bank.WDI: Social: Poverty and Inequality. Poverty gap at $2.15 a day (2017 PPP) is the mean shortfall in income or consumption from the poverty line $2.15 a day (counting the nonpoor as having zero shortfall), expressed as a percentage of the poverty line. This measure reflects the depth of poverty as well as its incidence.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).

  5. A

    ‘CT Qualified Census Tracts’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘CT Qualified Census Tracts’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-ct-qualified-census-tracts-876f/4efe2585/?iid=019-848&v=presentation
    Explore at:
    Dataset updated
    Jan 27, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘CT Qualified Census Tracts’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/2109deb6-e5d4-4ce8-a4db-49f64db79930 on 27 January 2022.

    --- Dataset description provided by original source is as follows ---

    This dataset provides access to Qualified Census Tracts (QCTs) in Connecticut to assist in administration of American Rescue Plan (ARP) funds.

    The Secretary of HUD must designate QCTs, which are areas where either 50 percent or more of the households have an income less than 60 percent of the AMGI for such year or have a poverty rate of at least 25 percent.

    HUD designates QCTs based on new income and poverty data released in the American Community Survey (ACS). Specifically, HUD relies on the most recent three sets of ACS data to ensure that anomalous estimates, due to sampling, do not affect the QCT status of tracts.

    QCTs are identified for the purpose of Low-Income Housing Credits under IRC Section 42, with the purpose of increasing the availability of low-income rental housing by providing an income tax credit to certain owners of newly constructed or substantially rehabilitated low-income rental housing projects.

    Also included are the number of households from the 2010 census (the “p0150001” variable), the average poverty rate using the 2014-2018 ACS data (the “pov_rate_18” variable), and the ratio of Tract Average Household Size Adjusted Income Limit to Tract Median Household Income using the 2014-2018 ACS data (the “inc_factor_18” variable). For the last variable mentioned in the previous paragraph, the income limit is the limit for being considered a very low income household (size-adjusted and based on Area Mean Gross Income). This value is divided by the median household income for the given tract, to get a sense of how the limit and median incomes compare. For example, if ratio>1, it implies that the tract is very low income because the limit income is greater than the median income. This ratio is a compact way to include the separate variables for the household income limit and median household income for each tract.

    --- Original source retains full ownership of the source dataset ---

  6. c

    Where are there people living in poverty?

    • hub.scag.ca.gov
    • hub.arcgis.com
    Updated Feb 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    rdpgisadmin (2022). Where are there people living in poverty? [Dataset]. https://hub.scag.ca.gov/maps/703ab1a8a38849eb9af15d1f012ab3c8
    Explore at:
    Dataset updated
    Feb 1, 2022
    Dataset authored and provided by
    rdpgisadmin
    Area covered
    Description

    This map compares the number of people living above the poverty line to the number of people living below. Why do this?There are people living below the poverty line everywhere. Nearly every area of the country has a balance of people living above the poverty line and people living below it. There is not an "ideal" balance, so this map makes good use of the national ratio of 6 persons living above the poverty line for every 1 person living below it. Please consider that there is constant movement of people above and below the poverty threshold, as they gain better employment or lose a job; as they encounter a new family situation, natural disaster, health issue, major accident or other crisis. There are areas that suffer chronic poverty year after year. This map does not indicate how long people in the area have been below the poverty line. "The poverty rate is one of several socioeconomic indicators used by policy makers to evaluate economic conditions. It measures the percentage of people whose income fell below the poverty threshold. Federal and state governments use such estimates to allocate funds to local communities. Local communities use these estimates to identify the number of individuals or families eligible for various programs." Source: U.S. Census BureauIn the U.S. overall, there are 6 people living above the poverty line for every 1 household living below. Green areas on the map have a higher than normal number of people living above compared to below poverty. Orange areas on the map have a higher than normal number of people living below the poverty line compared to those above in that same area.The map shows the ratio for counties and census tracts, using these layers, created directly from the U.S. Census Bureau's American Community Survey (ACS)For comparison, an older layer using 2013 ACS data is also provided.The layers are updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Poverty status is based on income in past 12 months of survey. Current Vintage: 2014-2018ACS Table(s): B17020Data downloaded from: Census Bureau's API for American Community Survey National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -555555...) have been set to null. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small. NOTE: any calculated percentages or counts that contain estimates that have null margins of error yield null margins of error for the calculated fields.

  7. g

    Residents 25+ with permanently low income standard (absolute),...

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Residents 25+ with permanently low income standard (absolute), age-standardised, share (%) | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_http-api-kolada-se-v2-kpi-n01455
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Low income standard is a so-called absolute measure of income poverty used to classify low-income households and describes how well the household's income is sufficient to pay necessary living expenses such as housing, home insurance, childcare, local travel, etc. Persistently low income standard means that they had a low income standard in the last measurable year as well as at least two of the three previous years. numerator: Number of persons aged 25 and over living in households where income is not sufficient to cover necessary living expenses such as housing, home insurance, childcare, local travel, etc. and who have also had a low income standard in the last measurable year and at least two of the three previous years. Denominator: Number of persons aged 25 and over who have been registered in the population register in the current year and the previous three years. Data are available according to gender breakdown.

  8. a

    Detroit Demographic Analysis

    • africageoportal.com
    Updated Feb 12, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2021). Detroit Demographic Analysis [Dataset]. https://www.africageoportal.com/datasets/africageoportal::detroit-demographic-analysis-3
    Explore at:
    Dataset updated
    Feb 12, 2021
    Dataset authored and provided by
    Africa GeoPortal
    Area covered
    Detroit
    Description

    This map app shows demographic and income data in Detroit. Assuming an assignment where the poverty fighting charity I work for would like to alleviate suffering among impoverished children in Detroit. Detroit is a Michigan city that always ranks among America's poorest urban centers. Orange circles have below average median household income, the darker shades indicate households with a very low income-close to poverty level. The size of the circles: larger circles indicate a greater number of children in the area.What stands out is the obvioud pattern of low-income households in the city center combined with areas of high child population. This pattern helps answer where in Detroit our charity will focus its resources to help children living in poverty-in places shown on the map where there is a cluster of several large dark Orange circles like Dearborn and Pontiac (for example). The charity may and will offer free after school care and/Or but not limited to breakfast programs.

  9. U.S. poverty rate 1990-2023

    • statista.com
    Updated Sep 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. poverty rate 1990-2023 [Dataset]. https://www.statista.com/statistics/200463/us-poverty-rate-since-1990/
    Explore at:
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, the around 11.1 percent of the population was living below the national poverty line in the United States. Poverty in the United StatesAs shown in the statistic above, the poverty rate among all people living in the United States has shifted within the last 15 years. The United Nations Educational, Scientific and Cultural Organization (UNESCO) defines poverty as follows: “Absolute poverty measures poverty in relation to the amount of money necessary to meet basic needs such as food, clothing, and shelter. The concept of absolute poverty is not concerned with broader quality of life issues or with the overall level of inequality in society.” The poverty rate in the United States varies widely across different ethnic groups. American Indians and Alaska Natives are the ethnic group with the most people living in poverty in 2022, with about 25 percent of the population earning an income below the poverty line. In comparison to that, only 8.6 percent of the White (non-Hispanic) population and the Asian population were living below the poverty line in 2022. Children are one of the most poverty endangered population groups in the U.S. between 1990 and 2022. Child poverty peaked in 1993 with 22.7 percent of children living in poverty in that year in the United States. Between 2000 and 2010, the child poverty rate in the United States was increasing every year; however,this rate was down to 15 percent in 2022. The number of people living in poverty in the U.S. varies from state to state. Compared to California, where about 4.44 million people were living in poverty in 2022, the state of Minnesota had about 429,000 people living in poverty.

  10. C

    Poverty Indicators (Work & Income)

    • ckan.mobidatalab.eu
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OverheidNl (2023). Poverty Indicators (Work & Income) [Dataset]. https://ckan.mobidatalab.eu/dataset/utrecht-indicatoren-armoede-werk-inkomen
    Explore at:
    http://publications.europa.eu/resource/authority/file-type/xlsx, https://data.overheid.nl/format/unknownAvailable download formats
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    OverheidNl
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description Utrecht in Figures is the online database of the municipality of Utrecht. Here the Research & Advice department publishes figures about the city of Utrecht and the Utrecht districts and neighbourhoods. With Utrecht in Figures we want to show everyone interested in Utrecht how things are actually going in Utrecht. Utrecht in Figures is divided into themes. Within the theme 'Poverty (Work & income)' you will find information about the following 10 'indicators': - % of low-income households - % of households with rent subsidy - % of households with ink. up to 105% social minimum - % households with ink. up to 110% social minimum - % households with ink. up to 125% of the social minimum - % of households with long-term income up to 125% of the social minimum - % of children (up to 18) in households with an income of up to 125% of the social minimum - Share of residents who have (very) poor income - households with income up to 125% of the Statutory Social Minimum by income type - households with income up to 125% of the statutory social minimum by household type #### Number of indicators Number of indicators under this theme: 10 #### Source CBS, Regional Income Statistics, Research & Advice, Municipality of Utrecht, Residents' Survey #### Update frequency Annual #### Related datasets Other datasets that fall within this theme: - Indicators Income & benefits (Work & Income) - Indicators Debt (Work & Income)

  11. H

    Data from: A Multifaceted Program Causes Lasting Progress for the Very Poor:...

    • dataverse.harvard.edu
    Updated Nov 13, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abhijit Banerjee; Esther Duflo; Nathanael Goldberg; Dean Karlan; Robert Osei; William Parienté; Jeremy Shapiro; Bram Thuysbaert; Christopher Udry (2019). A Multifaceted Program Causes Lasting Progress for the Very Poor: Evidence From Six Countries [Dataset]. http://doi.org/10.7910/DVN/NHIXNT
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 13, 2019
    Dataset provided by
    Harvard Dataverse
    Authors
    Abhijit Banerjee; Esther Duflo; Nathanael Goldberg; Dean Karlan; Robert Osei; William Parienté; Jeremy Shapiro; Bram Thuysbaert; Christopher Udry
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Tigray, Ethiopia, Kilte Awlaelo district, Kolkata, India, Murshidabad district, Peru, Canas and Acomayo, Pakistan, Sindh, Lempira, Honduras, Ghana, Northern and Upper Eastern regions
    Dataset funded by
    International Initiative for Impact Evaluation (3ie)
    Ford Foundation
    USAID
    Description

    We present results from six randomized control trials of an integrated approach to improve livelihoods among the very poor. The approach combines the transfer of a productive asset with consumption support, training, and coaching plus savings encouragement and health education and/or services. Results from the implementation of the same basic program, adapted to a wide variety of geographic and institutional contexts and with multiple implementing partners, show statistically significant cost-effective impacts on consumption (fueled mostly by increases in self-employment income) and psychosocial status of the targeted households. The impact on the poor households lasted at least a year after all implementation ended. It is possible to make sustainable improvements in the economic status of the poor with a relatively short-term intervention.

  12. Dhaka Low Income Area Gender, Inclusion, and Poverty Survey 2018 -...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Mar 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The World Bank Group (2020). Dhaka Low Income Area Gender, Inclusion, and Poverty Survey 2018 - Bangladesh [Dataset]. https://microdata.worldbank.org/index.php/catalog/3635
    Explore at:
    Dataset updated
    Mar 9, 2020
    Dataset provided by
    World Bankhttp://worldbank.org/
    Authors
    The World Bank Group
    Time period covered
    2018
    Area covered
    Bangladesh
    Description

    Abstract

    The 2018 Dhaka Low Income Area Gender, Inclusion, and Poverty (DIGNITY) survey attempts to fill in the data and knowledge gaps on women's economic empowerment in urban areas, specifically the factors that constrain women in slums and low-income neighborhoods from engaging in the labor market and supplying their labor to wage earning or self-employment. While an array of national-level datasets has collected a wide spectrum of information, they rarely comprise all of the information needed to study the drivers of Female Labor Force Participation (FLFP). This data gap is being filled by the primary data collection of the specialized DIGNITY survey; it is representative of poor urban areas and is specifically designed to address these limitations. The DIGNITY survey collected information from 1,300 urban households living in poor areas of Dhaka in 2018 on a range of issues that affect FLFP as identified through the literature. These range from household composition and demographic characteristics to socioeconomic characteristics such as detailed employment history and income (including locational data and travel details); and from technical and educational attributes to issues of time use, migration history, and attitudes and perceptions.

    The DIGNITY survey was designed to shed light on poverty, economic empowerment, and livelihood in urban areas of Bangladesh. It has two main modules: the traditional household module (in which the head of household is interviewed on basic information about the household); and the individual module, in which two respondents from each household are interviewed individually. In the second module, two persons - one male and one female from each household, usually the main couple, are selected for the interview. The survey team deployed one male and one female interviewer for each household, so that the gender of the interviewers matched that of the respondents. Collecting economic data directly from a female and male household member, rather than just the head of the household (who tend to be men in most cases), was a key feature of the DIGNITY survey.

    Geographic coverage

    The DIGNITY survey is representative of low-income areas and slums of the Dhaka City Corporations (North and South, from here on referred to as Dhaka CCs), and an additional low-income site from the Greater Dhaka Statistical Metropolitan Area (SMA).

    Analysis unit

    • Household
    • Individual

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling procedure followed a two-stage stratification design. The major features include the following steps (they are discussed in more detail in a copy of the study's report and the sampling document located in "External Resources"):

    FIRST STAGE: Selection of the PSUs

    Low-income primary sampling units (PSUs) were defined as nonslum census enumeration areas (EAs), in which the small-sample area estimate of the poverty rate is higher than 8 percent (using the 2011 Bangladesh Poverty Map). The sampling frame for these low-income areas in the Dhaka City Corporations (CCs) and Greater Dhaka is based on the population census of 2011. For the Dhaka CCs, all low-income census EAs formed the sampling frame. In the Greater Dhaka area, the frame was formed by all low-income census EAs in specific thanas (i.e. administrative unit in Bangladesh) where World Bank project were located.

    Three strata were used for sampling the low-income EAs. These strata were defined based on the poverty head-count ratios. The first stratum encompasses EAs with a poverty headcount ratio between 8 and 10 percent; the second stratum between 11 and 14 percent; and the third stratum, those exceeding 15 percent.

    Slums were defined as informal settlements that were listed in the Bangladesh Bureau of Statistics' slum census from 2013/14. This census was used as sampling frame of the slum areas. Only slums in the Dhaka City Corporations are included. Again, three strata were used to sample the slums. This time the strata were based on the size of the slums. The first stratum comprises slums of 50 to 75 households; the second 76 to 99 households; and the third, 100 or more households. Small slums with fewer than 50 households were not included in the sampling frame. Very small slums were included in the low-income neighborhood selection if they are in a low-income area.

    Altogether, the DIGNITY survey collected data from 67 PSUs.

    SECOND STAGE: Selection of the Households

    In each sampled PSU a complete listing of households was done to form the frame for the second stage of sampling: the selection of households. When the number of households in a PSU was very large, smaller sections of the neighborhood were identified, and one section was randomly selected to be listed. The listing data collected information on the demographics of the household to determine whether a household fell into one of the three categories that were used to stratify the household sample:

    i) households with both working-age male and female members; ii) households with only a working-age female; iii) households with only a working-age male.

    Households were selected from each stratum with the predetermined ratio of 16:3:1. In some cases there were not enough households in categories (ii) and (iii) to stick to this ratio; in this case all of the households in the category were sampled, and additional households were selected from the first category to bring the total number of households sampled in each PSU to 20.

    The total sample consisted of 1,300 households (2,378 individuals).

    Sampling deviation

    The sampling for 1300 households was planned after the listing exercise. During the field work, about 115 households (8.8 percent) could not be interviewed due to household refusal or absence. These households were replaced with reserved households in the sample.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    The questionnaires for the survey were developed by the World Bank, with assistance from the survey firm, DATA. Comments were incorporated following the pilot tests and practice session/pretest.

    Cleaning operations

    Collected data was entered into a computer by using the customized MS Access data input software developed by Data Analysis and Technical Assistance (DATA). Once data entry was completed, two different techniques were employed to check consistency and validity of data as follows:

    1. Five (5%) percent of the filled-in questionnaire was checked against entered data to measure the transmission error or typos, and;
    2. A logical consistency checking technique was employed to identify inconsistencies using SPSS and or STATA software.
  13. w

    Chattogram Low Income Area Gender, Inclusion, and Poverty Survey 2019 -...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated May 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johannes Hoogeveen (2020). Chattogram Low Income Area Gender, Inclusion, and Poverty Survey 2019 - Bangladesh [Dataset]. https://microdata.worldbank.org/index.php/catalog/3704
    Explore at:
    Dataset updated
    May 21, 2020
    Dataset provided by
    Jyotirmoy Saha
    Syud Amer Ahmed
    Johannes Hoogeveen
    Wameq Azfar Raza
    Time period covered
    2019
    Area covered
    Bangladesh
    Description

    Abstract

    The main objective of the 2019 Chattogram for Low Income Area Gender, Inclusion, and Poverty (CITY) study is to collect primary data from male and female residents in slum and non-slum poor neighborhoods in Chattogram, the second largest city of Bangladesh, and build the evidence base about their constraints to access more and better jobs. The CITY survey was designed to shed light on poverty, economic empowerment, and livelihood in urban areas of Bangladesh as well as to identify key constraints and solutions for low-income women trying to obtain better jobs.

    A broad array of information was collected on issues related to women's economic empowerment, ranging from demographic and socioeconomic characteristics to detailed work history, time use, attitudes about work, and perceptions of work. The key feature of this survey is to collect economic data directly from the main household members, generally the main couples, unlike traditional surveys which only interviewed the heads of households (who tend to be men in most cases); thus, failed to gather valuable information from the female population.

    Geographic coverage

    Poor areas of slum & non-slum areas of Chattogram, the second largest city of Bangladesh.

    Analysis unit

    Household, individual

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The CITY 2019 survey was designed using a two-stage sampling strategy. The major features include the following steps:

    FIRST STAGE: The primary sampling units (PSUs) in the first stage were selected using a probability proportional to size (PPS) methods. Using the 2011 census sampling frame, low-income PSUs were defined as non-slum census enumeration areas (EAs) using the 2011 Bangladesh Poverty Map. Three strata were used for sampling the low-income EAs. These strata were defined based on the poverty head-count ratios. The first stratum encompasses EAs with a poverty headcount ratio less than 10%; the second stratum between 11% and 14%; and the third stratum, those exceeding 15%. Overall, 22 low-income EAs were selected in the Chattogram City Corporation (CC).

    Slums were defined as informal settlements that were listed in the Bangladesh Bureau of Statistics' slum census from 2013/14. This census was used as sampling frame of the slum areas. Based on the sizes of the slums, three strata were used for sampling purposes. This time the strata were based on the size of the slums. The first stratum comprises slums of 50 to 75 households; the second 76 to 99 households; and the third, more than 100 households. Small slums with fewer than 50 households were not included in the sampling frame. Overall, 18 slums were included as a part of the survey.

    SECOND STAGE: The second stage of the selection process in each of the EAs began with a listing exercise. For very large EAs, a smaller section was delineated for the listing. The second level of stratification are defined as follows:

    i) Households with both working-age male and female members; ii) Households with only a working-age female; iii) Households with only a working-age male.

    Households were randomly selected from each stratum with the predetermined ratio of 16:3:1. Overall, data was collected from 805 households (1289 individuals - 580 in slum and 709 in non-slum areas).

    Sampling deviation

    For EAs where the ratio was unable to be attained due to absence of households in certain strata, households from the first category to arrive at a final number of 20 per EA.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Response rate

    77%

  14. W

    Housing Burden

    • wifire-data.sdsc.edu
    geotiff, wcs, wms
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Wildfire & Forest Resilience Task Force (2025). Housing Burden [Dataset]. https://wifire-data.sdsc.edu/dataset/clm-housing-burden
    Explore at:
    wms, geotiff, wcsAvailable download formats
    Dataset updated
    Mar 25, 2025
    Dataset provided by
    California Wildfire & Forest Resilience Task Force
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Housing-Burdened Low-Income Households. Percent of households in a census tract that are both low income (making less than 80% of the HUD Area Median Family Income) and severely burdened by housing costs (paying greater than 50% of their income to housing costs). (5-year estimates, 2013-2017).

    The cost and availability of housing is an important determinant of well- being. Households with lower incomes may spend a larger proportion of their income on housing. The inability of households to afford necessary non-housing goods after paying for shelter is known as housing-induced poverty. California has very high housing costs relative to much of the country, making it difficult for many to afford adequate housing. Within California, the cost of living varies significantly and is largely dependent on housing cost, availability, and demand.

    Areas where low-income households may be stressed by high housing costs can be identified through the Housing and Urban Development (HUD) Comprehensive Housing Affordability Strategy (CHAS) data. We measure households earning less than 80% of HUD Area Median Family Income by county and paying greater than 50% of their income to housing costs. The indicator takes into account the regional cost of living for both homeowners and renters, and factors in the cost of utilities. CHAS data are calculated from US Census Bureau's American Community Survey (ACS).

  15. a

    Food Access USDA

    • arc-garc.opendata.arcgis.com
    Updated Jun 16, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2015). Food Access USDA [Dataset]. https://arc-garc.opendata.arcgis.com/datasets/fc012a756cdb40f58ba28e3f534509d8
    Explore at:
    Dataset updated
    Jun 16, 2015
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer represents USDA Food Access Research Atlas data at the census tract geography. Low Income is defined as tracts with a poverty rate of 20% or higher, or tracts with median family income less than 80% of median family income of the state or metropolitan area. Low Access is defined as tracts where a significant number or share of residents is more than 1 mile (urban) or 10 miles (rural) from the nearest supermarket.http://www.ers.usda.gov/data-products/food-access-research-atlas/go-to-the-atlas.aspxFood accessLimited access to supermarkets, supercenters, grocery stores, or other sources of healthy and affordable food may make it harder for some Americans to eat a healthy diet. There are many ways to measure food store access for individuals and for neighborhoods, and many ways to define which areas are food deserts—neighborhoods that lack healthy food sources. Most measures and definitions take into account at least some of the following indicators of access:Accessibility to sources of healthy food, as measured by distance to a store or by the number of stores in an area.Individual-level resources that may affect accessibility, such as family income or vehicle availability.Neighborhood-level indicators of resources, such as the average income of the neighborhood and the availability of public transportation.In the Food Access Research Atlas, several indicators are available to measure food access along these dimensions. For example, users can choose alternative distance markers to measure low access in a neighborhood, such as the number and share of people more than half a mile to a supermarket or 1 mile to a supermarket. Users can also view other census-tract-level characteristics that provide context on food access in neighborhoods, such as whether the tract has a high percentage of households far from supermarkets and without vehicles, individuals with low income, or people residing in group quarters.Low-income neighborhoodsThe criteria for identifying a census tract as low income are from the Department of Treasury’s New Markets Tax Credit (NMTC) program. This program defines a low-income census tract as any tract where:The tract’s poverty rate is 20 percent or greater; orThe tract’s median family income is less than or equal to 80 percent of the State-wide median family income; orThe tract is in a metropolitan area and has a median family income less than or equal to 80 percent of the metropolitan area's median family income.Low-access census tractsIn the Food Access Research Atlas, low access to healthy food is defined as being far from a supermarket, supercenter, or large grocery store ("supermarket" for short). A census tract is considered to have low access if a significant number or share of individuals in the tract is far from a supermarket.In the original Food Desert Locator, low access was measured as living far from a supermarket, where 1 mile was used in urban areas and 10 miles was used in rural areas to demarcate those who are far from a supermarket. In urban areas, about 70 percent of the population was within 1 mile of a supermarket, while in rural areas over 90 percent of the population was within 10 miles (see Access to Affordable and Nutritious Food: Updated Estimates of Distance to Supermarkets Using 2010 Data). Updating the original 1- and 10-mile low-access measure shows that an estimated 18.3 million people in these low-income and low-access census tracts were far from a supermarket in 2010.Three additional measures of food access based on distance to a supermarket are provided in the Atlas:One additional measure applies a 0.5-mile demarcation in urban areas and a 10-mile distance in rural areas. Using this measure, an estimated 52.5 million people, or 17 percent of the U.S. population, have low access to a supermarket;A second measure applies a 1.0-mile demarcation in urban areas and a 20-mile distance in rural areas. Under this measure, an estimated 16.5 million people, or 5.3 percent of the U.S. population, have low access to a supermarket; andA slightly more complex measure incorporates vehicle access directly into the measure, delineating low-income tracts in which a significant number of households are located far from a supermarket and do not have access to a vehicle. This measure also includes census tracts with populations that are so remote, that, even with a vehicle, driving to a supermarket may be considered a burden due to the great distance. Using this measure, an estimated 2.1 million households, or 1.8 percent of all households, in low-income census tracts are far from a supermarket and do not have a vehicle. An additional 0.3 million people are more than 20 miles from a supermarket.For each of the first three measures that are based solely on distance, a tract is designated as low access if the aggregate number of people in the census tract with low access is at least 500 or the percentage of people in the census tract with low access is at least 33 percent. For the final measure using vehicle availability, a tract is designated as having low vehicle access if at least one of the following is true:at least 100 households are more than ½ mile from the nearest supermarket and have no access to a vehicle; orat least 500 people or 33 percent of the population live more than 20 miles from the nearest supermarket, regardless of vehicle access.Methods used to assess distance to the nearest supermarket are the same for each of these measures. First, the entire country is divided into ½-km square grids, and data on the population are aerially allocated to these grids (see Access to Affordable and Nutritious Food: Updated Estimates of Distance to Supermarkets Using 2010 Data). Then, distance to the nearest supermarket is measured for each grid cell by calculating the distance between the geographic center of the ½-km square grid that contains estimates of the population (number of people and other subgroup characteristics) and the center of the grid with the nearest supermarket.Once the distance to the nearest supermarket is calculated for each grid cell, the estimated number of people or housing units that are more than 1 mile from a supermarket in urban tracts, or 10 miles in rural census tracts, is aggregated at the census-tract level (and similarly for the alternative distance markers). A census tract is considered rural if the population-weighted centroid of that tract is located in an area with a population of less than 2,500; all other tracts are considered urban tracts.Food desertsThe Food Access Research Atlas maps census tracts that are both low income (li) and low access (la), as measured by the different distance demarcations. This tool provides researchers and other users multiple ways to understand the characteristics that can contribute to food deserts, including income level, distance to supermarkets, and vehicle access.Additional tract-level indicators of accessVehicle availabilityA tract is identified as having low vehicle availability if more than 100 households in the tract report having no vehicle available and are more than 0.5 miles from the nearest supermarket. This corresponds closely to the 80th percentile of the distribution of the number of housing units in a census tract without vehicles at least 0.5 miles from a supermarket (the 80th percentile value was 106 housing units). This means that about 20 percent of all census tracts had more than 100 housing units that were 0.5 miles from a supermarket and without a vehicle. This indicator was applied to both urban and rural census tracts.Overall, 8.8 percent of all housing units in the United States do not have a vehicle, and 4.2 percent of all housing units are at least 0.5 mile from a store and without a vehicle. Vehicle availability is defined in the American Community Survey as the number of passenger cars, vans, or trucks with a capacity of 1-ton or less kept at the home and available for use by household members. The number of available vehicles includes those vehicles leased or rented for at least 1 month, as well as company, police, or government vehicles that are kept at home and available for non-business use.Whether a vehicle is available to a household for private use is an important additional indicator of access to healthy and affordable food. For households living far from a supermarket or large grocery store, access to a private vehicle may make accessing these retailers easier than relying on public or alternative means of transportation.Group quarters populationUsers may be interested in highlighting tracts with large shares of people living in group quarters. Group quarters are residential arrangements where an entity or organization owns and provides housing (and often services) for individuals residing in these buildings. This includes college dormitories, military quarters, correctional facilities, homeless shelters, residential treatment centers, and assisted living or skilled nursing facilities. These living arrangements frequently provide dining and food retail solely for their residents. While individuals living in these areas may appear to be far from a supermarket or grocery store, they may not truly experience difficulty accessing healthy and affordable food. Tracts in which 67 percent of individuals or more live in group quarters are highlighted.General tract characteristicsPopulation, tract totalGeographic level: census tractYear of data: 2010Definition: Total number of individuals residing in a tract.Data sources: Data are from the 2012 report, Access to Affordable and Nutritious Food: Updated Estimates of Distances to Supermarkets Using 2010 Data. Population data are reported at the block level from the 2010 Census of Population and Housing. These data were aerially allocated down to ½-kilometer-square grids across the United States.Low-income tractGeographic level: census tractYear of data: 2010Definition: A tract with either a poverty rate of 20

  16. S

    Somalia SO: Poverty Gap at $6.85 a Day: 2017 PPP: %

    • ceicdata.com
    Updated Oct 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2022). Somalia SO: Poverty Gap at $6.85 a Day: 2017 PPP: % [Dataset]. https://www.ceicdata.com/en/somalia/social-poverty-and-inequality
    Explore at:
    Dataset updated
    Oct 5, 2022
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2017
    Area covered
    Somalia
    Variables measured
    Indicator
    Description

    SO: Poverty Gap at $6.85 a Day: 2017 PPP: % data was reported at 72.400 % in 2017. SO: Poverty Gap at $6.85 a Day: 2017 PPP: % data is updated yearly, averaging 72.400 % from Dec 2017 (Median) to 2017, with 1 observations. The data reached an all-time high of 72.400 % in 2017 and a record low of 72.400 % in 2017. SO: Poverty Gap at $6.85 a Day: 2017 PPP: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Somalia – Table SO.World Bank.WDI: Social: Poverty and Inequality. Poverty gap at $6.85 a day (2017 PPP) is the mean shortfall in income or consumption from the poverty line $6.85 a day (counting the nonpoor as having zero shortfall), expressed as a percentage of the poverty line. This measure reflects the depth of poverty as well as its incidence.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).

  17. S

    Somalia SO: Poverty Headcount Ratio at $2.15 a Day: 2017 PPP: % of...

    • ceicdata.com
    Updated Oct 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2022). Somalia SO: Poverty Headcount Ratio at $2.15 a Day: 2017 PPP: % of Population [Dataset]. https://www.ceicdata.com/en/somalia/social-poverty-and-inequality
    Explore at:
    Dataset updated
    Oct 5, 2022
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2017
    Area covered
    Somalia
    Variables measured
    Indicator
    Description

    SO: Poverty Headcount Ratio at $2.15 a Day: 2017 PPP: % of Population data was reported at 70.700 % in 2017. SO: Poverty Headcount Ratio at $2.15 a Day: 2017 PPP: % of Population data is updated yearly, averaging 70.700 % from Dec 2017 (Median) to 2017, with 1 observations. The data reached an all-time high of 70.700 % in 2017 and a record low of 70.700 % in 2017. SO: Poverty Headcount Ratio at $2.15 a Day: 2017 PPP: % of Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Somalia – Table SO.World Bank.WDI: Social: Poverty and Inequality. Poverty headcount ratio at $2.15 a day is the percentage of the population living on less than $2.15 a day at 2017 purchasing power adjusted prices. As a result of revisions in PPP exchange rates, poverty rates for individual countries cannot be compared with poverty rates reported in earlier editions.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).

  18. a

    Location Affordability Index

    • chi-phi-nmcdc.opendata.arcgis.com
    • ars-geolibrary-usdaars.hub.arcgis.com
    • +6more
    Updated May 10, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2022). Location Affordability Index [Dataset]. https://chi-phi-nmcdc.opendata.arcgis.com/datasets/location-affordability-index
    Explore at:
    Dataset updated
    May 10, 2022
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    Description

    There is more to housing affordability than the rent or mortgage you pay. Transportation costs are the second-biggest budget item for most families, but it can be difficult for people to fully factor transportation costs into decisions about where to live and work. The Location Affordability Index (LAI) is a user-friendly source of standardized data at the neighborhood (census tract) level on combined housing and transportation costs to help consumers, policymakers, and developers make more informed decisions about where to live, work, and invest. Compare eight household profiles (see table below) —which vary by household income, size, and number of commuters—and see the impact of the built environment on affordability in a given location while holding household demographics constant.*$11,880 for a single person household in 2016 according to US Dept. of Health and Human Services: https://aspe.hhs.gov/computations-2016-poverty-guidelinesThis layer is symbolized by the percentage of housing and transportation costs as a percentage of income for the Median-Income Family profile, but the costs as a percentage of income for all household profiles are listed in the pop-up:Also available is a gallery of 8 web maps (one for each household profile) all symbolized the same way for easy comparison: Median-Income Family, Very Low-Income Individual, Working Individual, Single Professional, Retired Couple, Single-Parent Family, Moderate-Income Family, and Dual-Professional Family.An accompanying story map provides side-by-side comparisons and additional context.--Variables used in HUD's calculations include 24 measures such as people per household, average number of rooms per housing unit, monthly housing costs (mortgage/rent as well as utility and maintenance expenses), average number of cars per household, median commute distance, vehicle miles traveled per year, percent of trips taken on transit, street connectivity and walkability (measured by block density), and many more.To learn more about the Location Affordability Index (v.3) visit: https://www.hudexchange.info/programs/location-affordability-index/. There you will find some background and an FAQ page, which includes the question:"Manhattan, San Francisco, and downtown Boston are some of the most expensive places to live in the country, yet the LAI shows them as affordable for the typical regional household. Why?" These areas have some of the lowest transportation costs in the country, which helps offset the high cost of housing. The area median income (AMI) in these regions is also high, so when costs are shown as a percent of income for the typical regional household these neighborhoods appear affordable; however, they are generally unaffordable to households earning less than the AMI.Date of Coverage: 2012-2016 Date Released: March 2019Date Downloaded from HUD Open Data: 4/18/19Further Documentation:LAI Version 3 Data and MethodologyLAI Version 3 Technical Documentation_**The documentation below is in reference to this items placement in the NM Supply Chain Data Hub. The documentation is of use to understanding the source of this item, and how to reproduce it for updates**

    Title: Location Affordability Index - NMCDC Copy

    Summary: This layer contains the Location Affordability Index from U.S. Dept. of Housing and Urban Development (HUD) - standardized household, housing, and transportation cost estimates by census tract for 8 household profiles.

    Notes: This map is copied from source map: https://nmcdc.maps.arcgis.com/home/item.html?id=de341c1338c5447da400c4e8c51ae1f6, created by dianaclavery_uo, and identified in Living Atlas.

    Prepared by: dianaclavery_uo, copied by EMcRae_NMCDC

    Source: This map is copied from source map: https://nmcdc.maps.arcgis.com/home/item.html?id=de341c1338c5447da400c4e8c51ae1f6, created by dianaclavery_uo, and identified in Living Atlas. Check the source documentation or other details above for more information about data sources.

    Feature Service: https://nmcdc.maps.arcgis.com/home/item.html?id=447a461f048845979f30a2478b9e65bb

    UID: 73

    Data Requested: Family income spent on basic need

    Method of Acquisition: Search for Location Affordability Index in the Living Atlas. Make a copy of most recent map available. To update this map, copy the most recent map available. In a new tab, open the AGOL Assistant Portal tool and use the functions in the portal to copy the new maps JSON, and paste it over the old map (this map with item id

    Date Acquired: Map copied on May 10, 2022

    Priority rank as Identified in 2022 (scale of 1 being the highest priority, to 11 being the lowest priority): 6

    Tags: PENDING

  19. HUD: Home Income Limits

    • datalumos.org
    Updated Feb 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Housing and Urban Development (2025). HUD: Home Income Limits [Dataset]. http://doi.org/10.3886/E219164V1
    Explore at:
    Dataset updated
    Feb 12, 2025
    Dataset authored and provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Text source: https://www.huduser.gov/portal/datasets/HOME-Income-limits.htmlLanding page description:HOME Income Limits data are available from FY 1998 to the present. The HOME Income Limits are calculated using the same methodology that HUD uses for calculating the income limits for the Section 8 program, in accordance with Section 3(b)(2) of the U.S. Housing Act of 1937, as amended. These limits are based on HUD estimates of median family income, with adjustments based on family size. Please note that the 30 percent income limits for the HOME program have been calculated based on the definition of Extremely Low–Income Family (ELI) as described in Consolidated Submission for CPD Programs section of 24 CFR part 91.5. Therefore, the ELI Limit is calculated as 30 percent of median family income for the area and may not be the same as the Section 8 ELI Limit for your jurisdiction. The Section 8 Limit is calculated based on the definition of ELI as described in The 2014 Consolidated Appropriations Act, (Section 238 on page 128 Stat 635) which defines ELI as very low–income families whose incomes do not exceed the higher of the Federal poverty level or 30% of area median income. Family sizes in excess of 8 persons are calculated by adding 8% of the four-person income limit for each additional family member. That is, a 9-person limit should be 140% of the 4-person limit, the 10-person limit should be 148%.The HOME income limit values for large households (9-12 persons) must be rounded to the nearest $50. Therefore, all values from 1 to 24 are rounded down to 0, and all values from 25 to 49 are rounded up to 50.Note: The FY 2024 HOME Income Limits effective date is June 01, 2024.

  20. w

    Learning Poverty Global Database

    • data360.worldbank.org
    Updated Apr 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Learning Poverty Global Database [Dataset]. https://data360.worldbank.org/en/dataset/WB_LPGD
    Explore at:
    Dataset updated
    Apr 18, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2001 - 2023
    Description

    Will all children be able to read by 2030? The ability to read with comprehension is a foundational skill that every education system around the world strives to impart by late in primary school—generally by age 10. Moreover, attaining the ambitious Sustainable Development Goals (SDGs) in education requires first achieving this basic building block, and so does improving countries’ Human Capital Index scores. Yet past evidence from many low- and middle-income countries has shown that many children are not learning to read with comprehension in primary school. To understand the global picture better, we have worked with the UNESCO Institute for Statistics (UIS) to assemble a new dataset with the most comprehensive measures of this foundational skill yet developed, by linking together data from credible cross-national and national assessments of reading. This dataset covers 115 countries, accounting for 81% of children worldwide and 79% of children in low- and middle-income countries. The new data allow us to estimate the reading proficiency of late-primary-age children, and we also provide what are among the first estimates (and the most comprehensive, for low- and middle-income countries) of the historical rate of progress in improving reading proficiency globally (for the 2000-17 period). The results show that 53% of all children in low- and middle-income countries cannot read age-appropriate material by age 10, and that at current rates of improvement, this “learning poverty” rate will have fallen only to 43% by 2030. Indeed, we find that the goal of all children reading by 2030 will be attainable only with historically unprecedented progress. The high rate of “learning poverty” and slow progress in low- and middle-income countries is an early warning that all the ambitious SDG targets in education (and likely of social progress) are at risk. Based on this evidence, we suggest a new medium-term target to guide the World Bank’s work in low- and middle- income countries: cut learning poverty by at least half by 2030. This target, together with improved measurement of learning, can be as an evidence-based tool to accelerate progress to get all children reading by age 10.

    For further details, please refer to https://thedocs.worldbank.org/en/doc/e52f55322528903b27f1b7e61238e416-0200022022/original/Learning-poverty-report-2022-06-21-final-V7-0-conferenceEdition.pdf

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
New Mexico Community Data Collaborative (2022). Income Disparity: Concentrations of Wealth and Poverty in the USA [Dataset]. https://chi-phi-nmcdc.opendata.arcgis.com/maps/1d4bab3a6ed74c17a2d99645ffdc931f

Income Disparity: Concentrations of Wealth and Poverty in the USA

Explore at:
Dataset updated
Apr 27, 2022
Dataset authored and provided by
New Mexico Community Data Collaborative
Area covered
Description

This map shows households within high ($200,000 or more) and low (less than $25,000) annual income ranges. This is shown as a percentage of total households. The data is attached to tract, county, and state centroids and shows:Percent of households making less than $25,000 annuallyPercent of households making $200,000 or more annuallyThe data shown is household income in the past 12 months. These are the American Community Survey (ACS) most current 5-year estimates: Table B19001. The data layer is updated annually, so this map always shows the most current values from the U.S. Census Bureau. To find the layer used in this map and see the full metadata, visit this Living Atlas item.These categories were constructed using an Arcade expression, which groups the lowest census income categories and normalizes them by total households.

Search
Clear search
Close search
Google apps
Main menu