68 datasets found
  1. Population density in California 1960-2018

    • statista.com
    Updated Jul 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Population density in California 1960-2018 [Dataset]. https://www.statista.com/statistics/304672/california-population-density/
    Explore at:
    Dataset updated
    Jul 22, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States, California
    Description

    This graph shows the population density in the federal state of California from 1960 to 2018. In 2018, the population density of California stood at 253.9 residents per square mile of land area.

  2. MCNA - Population Points with T/D Standards

    • catalog.data.gov
    • data.ca.gov
    • +8more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Health Care Services (2024). MCNA - Population Points with T/D Standards [Dataset]. https://catalog.data.gov/dataset/mcna-population-points-with-t-d-standards-4e5f9
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Department of Health Care Serviceshttp://www.dhcs.ca.gov/
    Description

    Updated 10/6/2022: In the Time/Distance analysis process, points that were found to have been included initially, but with no significant or year-round population were removed. The layer of removed points is also available for viewing. MCNA - Removed Population PointsThe Network Adequacy Standards Representative Population Points feature layer contains 97,694 points spread across California that were created from USPS postal delivery route data and US Census data. Each population point also contains the variables for Time and Distance Standards for the County that the point is within. These standards differ by County due to the County "type" which is based on the population density of the county. There are 5 county categories within California: Rural (<50 people/sq mile), Small (51-200 people/sq mile), Medium (201-599 people/sq mile), and Dense (>600 people/sq mile). The Time and Distance data is divided out by Provider Type, Adult and Pediatric separately, so that the Time or Distance analysis can be performed with greater detail. HospitalsOB/GYN SpecialtyAdult Cardiology/Interventional CardiologyAdult DermatologyAdult EndocrinologyAdult ENT/OtolaryngologyAdult GastroenterologyAdult General SurgeryAdult HematologyAdult HIV/AIDS/Infectious DiseaseAdult Mental Health Outpatient ServicesAdult NephrologyAdult NeurologyAdult OncologyAdult OphthalmologyAdult Orthopedic SurgeryAdult PCPAdult Physical Medicine and RehabilitationAdult PsychiatryAdult PulmonologyPediatric Cardiology/Interventional CardiologyPediatric DermatologyPediatric EndocrinologyPediatric ENT/OtolaryngologyPediatric GastroenterologyPediatric General SurgeryPediatric HematologyPediatric HIV/AIDS/Infectious DiseasePediatric Mental Health Outpatient ServicesPediatric NephrologyPediatric NeurologyPediatric OncologyPediatric OphthalmologyPediatric Orthopedic SurgeryPediatric PCPPediatric Physical Medicine and RehabilitationPediatric PsychiatryPediatric Pulmonology

  3. M

    California Population 1900-2024

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). California Population 1900-2024 [Dataset]. https://www.macrotrends.net/states/california/population
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California
    Description

    Chart and table of population level and growth rate for the state of California from 1900 to 2024.

  4. a

    OCACS 2021 Census Tract Population Density

    • data-ocpw.opendata.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Sep 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OC Public Works (2023). OCACS 2021 Census Tract Population Density [Dataset]. https://data-ocpw.opendata.arcgis.com/datasets/ocacs-2021-census-tract-population-density
    Explore at:
    Dataset updated
    Sep 5, 2023
    Dataset authored and provided by
    OC Public Works
    Area covered
    Description

    US Census American Community Survey (ACS) 2021, 5-year estimates of the key demographic characteristics of Census Tracts geographic level in Orange County, California. The data contains 105 fields for the variable groups D01: Sex and age (universe: total population, table X1, 49 fields); D02: Median age by sex and race (universe: total population, table X1, 12 fields); D03: Race (universe: total population, table X2, 8 fields); D04: Race alone or in combination with one or more other races (universe: total population, table X2, 7 fields); D05: Hispanic or Latino and race (universe: total population, table X3, 21 fields), and; D06: Citizen voting age population (universe: citizen, 18 and over, table X5, 8 fields). The US Census geodemographic data are based on the 2021 TigerLines across multiple geographies. The spatial geographies were merged with ACS data tables. See full documentation at the OCACS project GitHub page (https://github.com/ktalexan/OCACS-Geodemographics).

  5. K

    California 2050 Projected Urban Growth

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Oct 13, 2003
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California (2003). California 2050 Projected Urban Growth [Dataset]. https://koordinates.com/layer/671-california-2050-projected-urban-growth/
    Explore at:
    dwg, geopackage / sqlite, geodatabase, kml, pdf, shapefile, mapinfo tab, mapinfo mif, csvAvailable download formats
    Dataset updated
    Oct 13, 2003
    Dataset authored and provided by
    State of California
    License

    https://koordinates.com/license/attribution-3-0/https://koordinates.com/license/attribution-3-0/

    Area covered
    Description

    50 year Projected Urban Growth scenarios. Base year is 2000. Projected year in this dataset is 2050.

    By 2020, most forecasters agree, California will be home to between 43 and 46 million residents-up from 35 million today. Beyond 2020 the size of California's population is less certain. Depending on the composition of the population, and future fertility and migration rates, California's 2050 population could be as little as 50 million or as much as 70 million. One hundred years from now, if present trends continue, California could conceivably have as many as 90 million residents. Where these future residents will live and work is unclear. For most of the 20th Century, two-thirds of Californians have lived south of the Tehachapi Mountains and west of the San Jacinto Mountains-in that part of the state commonly referred to as Southern California. Yet most of coastal Southern California is already highly urbanized, and there is relatively little vacant land available for new development. More recently, slow-growth policies in Northern California and declining developable land supplies in Southern California are squeezing ever more of the state's population growth into the San Joaquin Valley. How future Californians will occupy the landscape is also unclear. Over the last fifty years, the state's population has grown increasingly urban. Today, nearly 95 percent of Californians live in metropolitan areas, mostly at densities less than ten persons per acre. Recent growth patterns have strongly favored locations near freeways, most of which where built in the 1950s and 1960s. With few new freeways on the planning horizon, how will California's future growth organize itself in space? By national standards, California's large urban areas are already reasonably dense, and economic theory suggests that densities should increase further as California's urban regions continue to grow. In practice, densities have been rising in some urban counties, but falling in others.

    These are important issues as California plans its long-term future. Will California have enough land of the appropriate types and in the right locations to accommodate its projected population growth? Will future population growth consume ever-greater amounts of irreplaceable resource lands and habitat? Will jobs continue decentralizing, pushing out the boundaries of metropolitan areas? Will development densities be sufficient to support mass transit, or will future Californians be stuck in perpetual gridlock? Will urban and resort and recreational growth in the Sierra Nevada and Trinity Mountain regions lead to the over-fragmentation of precious natural habitat? How much water will be needed by California's future industries, farms, and residents, and where will that water be stored? Where should future highway, transit, and high-speed rail facilities and rights-of-way be located? Most of all, how much will all this growth cost, both economically, and in terms of changes in California's quality of life? Clearly, the more precise our current understanding of how and where California is likely to grow, the sooner and more inexpensively appropriate lands can be acquired for purposes of conservation, recreation, and future facility siting. Similarly, the more clearly future urbanization patterns can be anticipated, the greater our collective ability to undertake sound city, metropolitan, rural, and bioregional planning.

    Consider two scenarios for the year 2100. In the first, California's population would grow to 80 million persons and would occupy the landscape at an average density of eight persons per acre, the current statewide urban average. Under this scenario, and assuming that 10% percent of California's future population growth would occur through infill-that is, on existing urban land-California's expanding urban population would consume an additional 5.06 million acres of currently undeveloped land. As an alternative, assume the share of infill development were increased to 30%, and that new population were accommodated at a density of about 12 persons per acre-which is the current average density of the City of Los Angeles. Under this second scenario, California's urban population would consume an additional 2.6 million acres of currently undeveloped land. While both scenarios accommodate the same amount of population growth and generate large increments of additional urban development-indeed, some might say even the second scenario allows far too much growth and development-the second scenario is far kinder to California's unique natural landscape.

    This report presents the results of a series of baseline population and urban growth projections for California's 38 urban counties through the year 2100. Presented in map and table form, these projections are based on extrapolations of current population trends and recent urban development trends. The next section, titled Approach, outlines the methodology and data used to develop the various projections. The following section, Baseline Scenario, reviews the projections themselves. A final section, entitled Baseline Impacts, quantitatively assesses the impacts of the baseline projections on wetland, hillside, farmland and habitat loss.

  6. d

    California Population Density 2010.

    • datadiscoverystudio.org
    Updated Jun 27, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2018). California Population Density 2010. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/e1ac0923ca63430d8d0630e42dd80ae1/html
    Explore at:
    Dataset updated
    Jun 27, 2018
    Authors
    U.S. Census Bureau
    Area covered
    Description

    Link to landing page referenced by identifier. Service Protocol: Link to landing page referenced by identifier. Link Function: information-- dc:identifier.

  7. a

    Population Density (2000)

    • esri-california-office.hub.arcgis.com
    Updated Aug 31, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Nature Conservancy (2016). Population Density (2000) [Dataset]. https://esri-california-office.hub.arcgis.com/datasets/TNC::population-density-2000-1
    Explore at:
    Dataset updated
    Aug 31, 2016
    Dataset authored and provided by
    The Nature Conservancy
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Description

    Human population density in 2000, by terrestrial ecoregion.

    We summarized human population density by ecoregion using the Gridded Population of the World database and projections for 2015 (CIESIN et al. 2005). The mean for each ecoregion was extracted using a zonal statistics algorithm.

    These data were derived by The Nature Conservancy, and were displayed in a map published in The Atlas of Global Conservation (Hoekstra et al., University of California Press, 2010). More information at http://nature.org/atlas.

    Data derived from:

    Center for International Earth Science Information Network (CIESIN), Columbia University; and Centro Internacional de Agricultura Tropical (CIAT). 2005. Gridded Population of the World Version 3 (GPWv3). Socioeconomic Data and Applications Center (SEDAC), Columbia University Palisades, New York. Available at http://sedac.ciesin.columbia.edu/gpw. Digital media.

    United Nations Population Division (UNPD). 2007. Global population, largest urban agglomerations and cities of largest change. World Urbanization Prospects: The 2007 Revision Population Database. Available at http://esa.un.org/unup/index.asp.

    For more about The Atlas of Global Conservation check out the web map (which includes links to download spatial data and view metadata) at http://maps.tnc.org/globalmaps.html. You can also read more detail about the Atlas at http://www.nature.org/science-in-action/leading-with-science/conservation-atlas.xml, or buy the book at http://www.ucpress.edu/book.php?isbn=9780520262560

  8. d

    Population Density in the Western United States (Individuals / ha)

    • dataone.org
    Updated Oct 29, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Steve Hanser, USGS-FRESC, Snake River Field Station (2016). Population Density in the Western United States (Individuals / ha) [Dataset]. https://dataone.org/datasets/04f758d8-9caa-40ab-af6e-bb72b1b7a007
    Explore at:
    Dataset updated
    Oct 29, 2016
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Steve Hanser, USGS-FRESC, Snake River Field Station
    Area covered
    Variables measured
    Value, ObjectID
    Description

    This map of human habitation was developed, following a modification of Schumacher et al. (2000), by incorporating 2000 U.S Census Data and land ownership. The 2000 U.S. Census Block data and ownership map of the western United States were used to correct the population density for uninhabited public lands. All census blocks in the western United States were merged into one shapefile which was then clipped to contain only those areas found on private or indian reservation lands because human habitation on federal land is negligible. The area (ha) for each corrected polygon was calculated and the 2000 census block data table was joined to the shapefile. In a new field, population density (individuals/ha) corrected for public land in census blocks was calculated . SHAPEGRID in ARC/INFO was used to convert population density values to grid with 90m resolution.

  9. 2020 Cartographic Boundary File (KML), Current Census Tract for California,...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Dec 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Customer Engagement Branch (Point of Contact) (2023). 2020 Cartographic Boundary File (KML), Current Census Tract for California, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2020-cartographic-boundary-file-kml-current-census-tract-for-california-1-500000
    Explore at:
    Dataset updated
    Dec 14, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The 2020 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  10. Medical Service Study Areas

    • healthdata.gov
    • data.ca.gov
    • +3more
    application/rdfxml +5
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    chhs.data.ca.gov (2025). Medical Service Study Areas [Dataset]. https://healthdata.gov/State/Medical-Service-Study-Areas/nvx2-hzzm
    Explore at:
    csv, application/rdfxml, application/rssxml, xml, json, tsvAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    chhs.data.ca.gov
    Description
    This is the current Medical Service Study Area. California Medical Service Study Areas are created by the California Department of Health Care Access and Information (HCAI).

    Check the Data Dictionary for field descriptions.


    Checkout the California Healthcare Atlas for more Medical Service Study Area information.

    This is an update to the MSSA geometries and demographics to reflect the new 2020 Census tract data. The Medical Service Study Area (MSSA) polygon layer represents the best fit mapping of all new 2020 California census tract boundaries to the original 2010 census tract boundaries used in the construction of the original 2010 MSSA file. Each of the state's new 9,129 census tracts was assigned to one of the previously established medical service study areas (excluding tracts with no land area), as identified in this data layer. The MSSA Census tract data is aggregated by HCAI, to create this MSSA data layer. This represents the final re-mapping of 2020 Census tracts to the original 2010 MSSA geometries. The 2010 MSSA were based on U.S. Census 2010 data and public meetings held throughout California.


    <a href="https://hcai.ca.gov/">https://hcai.ca.gov/</a>

    Source of update: American Community Survey 5-year 2006-2010 data for poverty. For source tables refer to InfoUSA update procedural documentation. The 2010 MSSA Detail layer was developed to update fields affected by population change. The American Community Survey 5-year 2006-2010 population data pertaining to total, in households, race, ethnicity, age, and poverty was used in the update. The 2010 MSSA Census Tract Detail map layer was developed to support geographic information systems (GIS) applications, representing 2010 census tract geography that is the foundation of 2010 medical service study area (MSSA) boundaries. ***This version is the finalized MSSA reconfiguration boundaries based on the US Census Bureau 2010 Census. In 1976 Garamendi Rural Health Services Act, required the development of a geographic framework for determining which parts of the state were rural and which were urban, and for determining which parts of counties and cities had adequate health care resources and which were "medically underserved". Thus, sub-city and sub-county geographic units called "medical service study areas [MSSAs]" were developed, using combinations of census-defined geographic units, established following General Rules promulgated by a statutory commission. After each subsequent census the MSSAs were revised. In the scheduled revisions that followed the 1990 census, community meetings of stakeholders (including county officials, and representatives of hospitals and community health centers) were held in larger metropolitan areas. The meetings were designed to develop consensus as how to draw the sub-city units so as to best display health care disparities. The importance of involving stakeholders was heightened in 1992 when the United States Department of Health and Human Services' Health and Resources Administration entered a formal agreement to recognize the state-determined MSSAs as "rational service areas" for federal recognition of "health professional shortage areas" and "medically underserved areas". After the 2000 census, two innovations transformed the process, and set the stage for GIS to emerge as a major factor in health care resource planning in California. First, the Office of Statewide Health Planning and Development [OSHPD], which organizes the community stakeholder meetings and provides the staff to administer the MSSAs, entered into an Enterprise GIS contract. Second, OSHPD authorized at least one community meeting to be held in each of the 58 counties, a significant number of which were wholly rural or frontier counties. For populous Los Angeles County, 11 community meetings were held. As a result, health resource data in California are collected and organized by 541 geographic units. The boundaries of these units were established by community healthcare experts, with the objective of maximizing their usefulness for needs assessment purposes. The most dramatic consequence was introducing a data simultaneously displayed in a GIS format. A two-person team, incorporating healthcare policy and GIS expertise, conducted the series of meetings, and supervised the development of the 2000-census configuration of the MSSAs.

    MSSA Configuration Guidelines (General Rules):- Each MSSA is composed of one or more complete census tracts.- As a general rule, MSSAs are deemed to be "rational service areas [RSAs]" for purposes of designating health professional shortage areas [HPSAs], medically underserved areas [MUAs] or medically underserved populations [MUPs].- MSSAs will not cross county lines.- To the extent practicable, all census-defined places within the MSSA are within 30 minutes travel time to the largest population center within the MSSA, except in those circumstances where meeting this criterion would require splitting a census tract.- To the extent practicable, areas that, standing alone, would meet both the definition of an MSSA and a Rural MSSA, should not be a part of an Urban MSSA.- Any Urban MSSA whose population exceeds 200,000 shall be divided into two or more Urban MSSA Subdivisions.- Urban MSSA Subdivisions should be within a population range of 75,000 to 125,000, but may not be smaller than five square miles in area. If removing any census tract on the perimeter of the Urban MSSA Subdivision would cause the area to fall below five square miles in area, then the population of the Urban MSSA may exceed 125,000. - To the extent practicable, Urban MSSA Subdivisions should reflect recognized community and neighborhood boundaries and take into account such demographic information as income level and ethnicity. Rural Definitions: A rural MSSA is an MSSA adopted by the Commission, which has a population density of less than 250 persons per square mile, and which has no census defined place within the area with a population in excess of 50,000. Only the population that is located within the MSSA is counted in determining the population of the census defined place. A frontier MSSA is a rural MSSA adopted by the Commission which has a population density of less than 11 persons per square mile. Any MSSA which is not a rural or frontier MSSA is an urban MSSA. Last updated December 6th 2024.
  11. s

    Urbanized Areas, California, 1990

    • searchworks.stanford.edu
    zip
    Updated Oct 6, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Urbanized Areas, California, 1990 [Dataset]. https://searchworks.stanford.edu/view/fj777tw5682
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 6, 2016
    Area covered
    California
    Description

    This polygon shapefile contains the urbanized areas of California. These data were derived from the TIGER/2000 Urbanized Areas (UA) dataset of the 1990 Census. The Census Bureau defines UAs as an area consisting of a central place(s) and adjacent urban fringe that together have a minimum residential population of at least 50,000 people and generally an overall population density of at least 1,000 people per square mile of land area. The Census Bureau uses published criteria to determine the qualification and boundaries of UAs.The U.S. Census Bureau classifies as urban all territory, population, and housing units located within urbanized areas (UAs). It delineates UA boundaries to encompass densely settled territory, which generally consists of: A cluster of one or more block groups or census blocks each of which has a population density of at least 1,000 people per square mile at the time and, Surrounding block groups and census blocks each of which has a population density of at least 500 people per square mile at the time and, Less densely settled blocks that form enclaves or indentations, or are used to connect discontiguous areas with qualifying densities. This layer is part of the Bay Area Metropolitan Transportation Commission (MTC) GIS Maps and Data collection.

  12. g

    GRID3 Senegal Social Distancing Layers (Index), Version 1.0

    • data.grid3.org
    • afrigeo.africageoportal.com
    • +2more
    Updated Jul 20, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2021). GRID3 Senegal Social Distancing Layers (Index), Version 1.0 [Dataset]. https://data.grid3.org/maps/WorldPop::-grid3-senegal-social-distancing-layers-index-version-1-0
    Explore at:
    Dataset updated
    Jul 20, 2021
    Dataset authored and provided by
    WorldPop
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Social distancing is a public health measure intended to reduce infectious disease transmission, by maintaining physical distance between individuals or households. In the context of the COVID-19 pandemic, populations in many countries around the world have been advised to maintain social distance (also referred to as physical distance), with distances of 6 feet or 2 metres commonly advised. Feasibility of social distancing is dependent on the availability of space and the number of people, which varies geographically. In locations where social distancing is difficult, a focus on alternative measures to reduce disease transmission may be needed. To help identify locations where social distancing is difficult, we have developed an ease of social distancing index. By index, we mean a composite measure, intended to highlight variations in ease of social distancing in urban settings, calculated based on the space available around buildings and estimated population density. Index values were calculated for small spatial units (vector polygons), typically bounded by roads, rivers or other features. This dataset provides index values for small spatial units within urban areas in Senegal. Measures of population density were calculated from high-resolution gridded population datasets from WorldPop, and the space available around buildings was calculated using building footprint polygons derived from satellite imagery (Ecopia.AI and Maxar Technologies. 2020). These data were produced by the WorldPop Research Group at the University of Southampton. This work was part of the GRID3 project with funding from the Bill and Melinda Gates Foundation and the United Kingdom’s Department for International Development. Project partners included the United Nations Population Fund (UNFPA), Center for International Earth Science Information Network (CIESIN) in the Earth Institute at Columbia University, and the Flowminder Foundation.

  13. a

    GRID3 Eswatini Social Distancing Layers, Version 1.0

    • grid3.africageoportal.com
    • africageoportal.com
    • +1more
    Updated Jul 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2021). GRID3 Eswatini Social Distancing Layers, Version 1.0 [Dataset]. https://grid3.africageoportal.com/maps/0c9be3886b3e4bb8aab8f9bdffee6720
    Explore at:
    Dataset updated
    Jul 20, 2021
    Dataset authored and provided by
    WorldPop
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Social distancing is a public health measure intended to reduce infectious disease transmission, by maintaining physical distance between individuals or households. In the context of the COVID-19 pandemic, populations in many countries around the world have been advised to maintain social distance (also referred to as physical distance), with distances of 6 feet or 2 metres commonly advised. Feasibility of social distancing is dependent on the availability of space and the number of people, which varies geographically. In locations where social distancing is difficult, a focus on alternative measures to reduce disease transmission may be needed. To help identify locations where social distancing is difficult, we have developed an ease of social distancing index. By index, we mean a composite measure, intended to highlight variations in ease of social distancing in urban settings, calculated based on the space available around buildings and estimated population density. Index values were calculated for small spatial units (vector polygons), typically bounded by roads, rivers or other features. This dataset provides index values for small spatial units within urban areas in Eswatini. Measures of population density were calculated from high-resolution gridded population datasets from WorldPop, and the space available around buildings was calculated using building footprint polygons derived from satellite imagery (Ecopia.AI and Maxar Technologies. 2020). These data were produced by the WorldPop Research Group at the University of Southampton. This work was part of the GRID3 project with funding from the Bill and Melinda Gates Foundation and the United Kingdom’s Department for International Development. Project partners included the United Nations Population Fund (UNFPA), Center for International Earth Science Information Network (CIESIN) in the Earth Institute at Columbia University, and the Flowminder Foundation.

  14. K

    City of Fresno, California City Limits

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Sep 12, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Fresno, California (2018). City of Fresno, California City Limits [Dataset]. https://koordinates.com/layer/96890-city-of-fresno-california-city-limits/
    Explore at:
    shapefile, mapinfo tab, geodatabase, dwg, geopackage / sqlite, mapinfo mif, kml, pdf, csvAvailable download formats
    Dataset updated
    Sep 12, 2018
    Dataset provided by
    City of Fresno
    Authors
    City of Fresno, California
    Area covered
    Description

    Vector polygon map data of city limits from Fresno, California containing 1 feature.

    City limits GIS (Geographic Information System) data provides valuable information about the boundaries of a city, which is crucial for various planning and decision-making processes. Urban planners and government officials use this data to understand the extent of their jurisdiction and to make informed decisions regarding zoning, land use, and infrastructure development within the city limits.

    By overlaying city limits GIS data with other layers such as population density, land parcels, and environmental features, planners can analyze spatial patterns and identify areas for growth, conservation, or redevelopment. This data also aids in emergency management by defining the areas of responsibility for different emergency services, helping to streamline response efforts during crises..

    This city limits data is available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.

  15. a

    MSSA 2010c1 public

    • maps-cadoc.opendata.arcgis.com
    • data.amerigeoss.org
    • +1more
    Updated Dec 4, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Dept of Public Health Geospatial Resources (2015). MSSA 2010c1 public [Dataset]. https://maps-cadoc.opendata.arcgis.com/maps/CDPHDATA::mssa-2010c1-public
    Explore at:
    Dataset updated
    Dec 4, 2015
    Dataset authored and provided by
    California Dept of Public Health Geospatial Resources
    Area covered
    Description

    Medical Service Study Areas - Census Detail, 2010California Health & Human Services Agency Open Data Portal DescriptionMedical Service Study Areas (MSSAs) are sub-city and sub-county geographical units used to organize and display population, demographic and physician data. MSSAs were developed in 1976 by the California Healthcare Workforce Policy Commission (formerly California Health Manpower Policy Commission) to respond to legislative mandates requiring it to determine "areas of unmet priority need for primary care family physicians" (Song-Brown Act of 1973) and "geographical rural areas where unmet priority need for medical services exist" (Garamendi Rural Health Services Act of 1976).MSSAs are recognized by the U.S. Health Resources and Services Administration, Bureau of Health Professions' Office of Shortage Designation as rational service areas for purposes of designating Health Professional Shortage Areas (HPSAs), and Medically Underserved Areas and Medically Underserved Populations (MUAs/MUPs).The MSSAs incorporate the U.S. Census total population, socioeconomic and demographic data and are updated with each decadal census. Office of Statewide Health Planning and Development provides updated data for each County's MSSAs to the County and Communities, and will schedule meetings for areas of significant population change. Community meetings will be scheduled throughout the State as needed.Adopted by the California Healthcare Workforce Policy Commission on May 15, 2002.Each MSSA is composed of one or more complete census tracts. MSSAs will not cross county lines. All population centers within the MSSA are within 30 minutes travel time to the largest population center.Urban MSSA - Population range 75,000 to 125,000. Reflect recognized community and neighborhood boundaries. Similar demographic and socio-economic characteristics.Rural MSSA - Population density of less than 250 persons per square mile. No population center exceeds 50,000.Frontier MSSA - Population density of less than 11 persons per square mile.

  16. g

    GRID3 Liberia Social Distancing Layers, Version 1.0

    • data.grid3.org
    • grid3.africageoportal.com
    • +3more
    Updated Jul 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2021). GRID3 Liberia Social Distancing Layers, Version 1.0 [Dataset]. https://data.grid3.org/maps/03c20dced0824c47965ce9119a7839d3
    Explore at:
    Dataset updated
    Jul 19, 2021
    Dataset authored and provided by
    WorldPop
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Social distancing is a public health measure intended to reduce infectious disease transmission, by maintaining physical distance between individuals or households. In the context of the COVID-19 pandemic, populations in many countries around the world have been advised to maintain social distance (also referred to as physical distance), with distances of 6 feet or 2 metres commonly advised. Feasibility of social distancing is dependent on the availability of space and the number of people, which varies geographically. In locations where social distancing is difficult, a focus on alternative measures to reduce disease transmission may be needed. To help identify locations where social distancing is difficult, we have developed an ease of social distancing index. By index, we mean a composite measure, intended to highlight variations in ease of social distancing in urban settings, calculated based on the space available around buildings and estimated population density. Index values were calculated for small spatial units (vector polygons), typically bounded by roads, rivers or other features. This dataset provides index values for small spatial units within urban areas in Liberia. Measures of population density were calculated from high-resolution gridded population datasets from WorldPop, and the space available around buildings was calculated using building footprint polygons derived from satellite imagery (Ecopia.AI and Maxar Technologies. 2020). These data were produced by the WorldPop Research Group at the University of Southampton. This work was part of the GRID3 project with funding from the Bill and Melinda Gates Foundation and the United Kingdom’s Department for International Development. Project partners included the United Nations Population Fund (UNFPA), Center for International Earth Science Information Network (CIESIN) in the Earth Institute at Columbia University, and the Flowminder Foundation.

  17. z

    Global Socio-Economic Vulnerability Maps

    • zenodo.org
    zip
    Updated Jun 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Miguel Toquica; Christopher Burton; Miguel Toquica; Christopher Burton (2025). Global Socio-Economic Vulnerability Maps [Dataset]. http://doi.org/10.13117/gem-social-vulnerability-map
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 15, 2025
    Dataset provided by
    GEM Foundation
    Authors
    Miguel Toquica; Christopher Burton; Miguel Toquica; Christopher Burton
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    GEM's Global Socio-Economic Vulnerability Maps

    The Global Social Vulnerability Map (viewable here: https://maps.openquake.org/map/sv-global-human-vulnerability) is a composite index that was developed to measure characteristics or qualities of social systems that create the potential for loss or harm. Here, social vulnerability helps to explain why some countries will experience adverse impacts from earthquakes differentially where the linking of social capacities with demographic attributes suggests that communities with higher percentages of age-dependent populations, homeless, disabled, under-educated, and foreign migrants are likely to exhibit higher social vulnerability than communities lacking these characteristics. Other relevant factors that affect the social vulnerability of populations include in-migration from foreign countries, population density, an accounting of slum populations, and international tourist arrivals.

    The Global Economic Vulnerability Map (viewable here: https://maps.openquake.org/map/sv-global-economic-vulnerability) is a composite index that was designed primarily to measure the potential for economic losses from earthquakes due to a country’s macroeconomic exposure. This index is also an appraisal of the ability of countries to respond to shocks to their economic systems. Relevant indicators include the density of exposed economic assets such as commercial and industrial infrastructure. Metrics used to measure the ability of a country to withstand shocks to its economic system include reliance on imports/exports, government debt, and purchasing power. The economic vulnerability category also considers the economic vitality of countries since the economic vitality of a country can be directly related to the vulnerability and resilience of its populations. The latter includes measurements of single-sector economic dependence, income inequality, and employment status.

    The Recovery/Reconstruction Potential Map (viewable here: https://maps.openquake.org/map/sv-global-recovery-and-reconstruction) is closely aligned with the concept of disaster resilience. Enhancing a country’s resilience to earthquakes is to improve its capacity to anticipate threats, to reduce its overall vulnerability, and to allow its communities to recover from adverse impacts from earthquakes when they occur. The measurement of recovery and reconstruction potential includes capturing inherent conditions that allow communities within a country to absorb impacts and cope with a damaging earthquake event, such as the density of the built environment, education levels, and political participation. It also encompasses post-event processes that facilitate a population’s ability to reorganize, change, and learn in response to a damaging earthquake.


    Criteria for indicator selection
    To choose indicators contextually exclusive for use in each map, the starting point was an exhaustive review of the literature on earthquake social vulnerability and resilience. For a variable to be considered appropriate and selected, three equally important criteria were met:

    - variables were justified based on the literature regarding its relevance to one or more of the indices.
    - variables needed to be of consistent quality and freely available from sources such as the United Nations and the World Bank; and
    - variables must be scalable or available at various levels of geography to promote sub-country level analyses.

    This procedure resulted in a ‘wish list’ of approximately 300 variables of which 78 were available and fit for use based on the three criteria.

    Process for indicator selection
    For variables to be allocated to an index, a two-tiered validation procedure was utilized. For the first tier, variables were assigned to each of the respective indices based on how each variable was cited within the literature, i.e., as being part of an index of social vulnerability, economic vulnerability, or recovery/resilience. For the second tier, machine learning and a multivariate ordinal logistic regression modelling procedure was used for external validation. Here, focus was placed on the statistical association between the socio-economic vulnerability indicators and the adverse impacts from historical earthquakes on a country-by country-basis.

    The Global Significant Earthquake Database provided the external validation metrics that were used as dependent variables in the statistical analysis. To include both severe and moderate earthquakes within the dependent variables, adverse impact data was collected from damaging earthquake events that conformed to at least one of five criteria: 1) caused deaths, 2) caused moderate damage (approximately 1 million USD or more), 3) had a magnitude 7.5 or greater 4) had a Modified Mercalli Intensity (MMI) X or greater, or 5) generated a tsunami. This database was chosen because it considers low magnitude earthquakes that were damaging (e.g., MW >=2.5 & MW<=5.5) and contains socio-economic data such as the total number of fatalities, injuries, houses damaged or destroyed, and dollar loss estimates in USD.

    Countries not demonstrating at least a minimal earthquake risk, i.e., seismicity <0.05 PGA (Pagani et al. 2018) and <$10,000 USD in predicted average annual losses (Silva et al. 2018) were eliminated from the analyses so as not to include countries with minimal to no earthquake risk. A total study area consists of 136 countries.

  18. California State Responsibility Areas

    • catalog.data.gov
    • data.ca.gov
    • +8more
    Updated Jul 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CAL FIRE (2025). California State Responsibility Areas [Dataset]. https://catalog.data.gov/dataset/california-state-responsibility-areas-7cae5
    Explore at:
    Dataset updated
    Jul 23, 2025
    Dataset provided by
    California Department of Forestry and Fire Protectionhttp://calfire.ca.gov/
    Area covered
    California
    Description

    CAL FIRE has a legal responsibility to provide fire protection on all State Responsibility Area (SRA) lands, which are defined based on land ownership, population density and land use. For example, CAL FIRE does not have responsibility for densely populated areas, incorporated cities, agricultural lands, or lands administered by the federal government. The SRA dataset provides areas of legal responsibility for fire protection, including State Responsibility Areas (SRA), Federal Responsibility Areas (FRA), and Local Responsibility Areas (LRA). SRA designations undergo a thorough 5 year review cycle, as well as annual updates for incorporations/annexations, error fixes, and ownership changes (automatic changes that do not require Board of Forestry approval). This service represents the latest official version, and is updated when new versions are released. As of November 15th, 2024, this represents SRA 25_1. Changes from SRA24_1 include those resulting from acquisitions and disposals of federal lands transmitted through the yearly California Wildfire Coordinating Group (CWCG) Direct Protection Area (DPA) agreement process, from city annexations and de-annexations, from changes in county parcel boundaries, as well as corrections to any data errors discovered during the editing process.

  19. d

    Data from: High-resolution poverty maps in Sub-Saharan Africa

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lee, Kamwoo (2023). High-resolution poverty maps in Sub-Saharan Africa [Dataset]. http://doi.org/10.7910/DVN/5OGWYM
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Lee, Kamwoo
    Description

    The purpose of this dataset is to provide village-level wealth estimates for places where up-to-date information about geographic wealth distribution is needed. This dataset contains information on buildings, roads, points of interest (POIs), night-time luminosity, population density, and estimated wealth index for 1-mi² inhabited places identified by the underlying datasets. The wealth level is an estimated value of the International Wealth Index which is a comparable asset based wealth index covering the complete developing world.

  20. a

    GRID3 Madagascar Social Distancing Layers, Version 1.0

    • grid3.africageoportal.com
    • data.grid3.org
    • +3more
    Updated Jul 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2021). GRID3 Madagascar Social Distancing Layers, Version 1.0 [Dataset]. https://grid3.africageoportal.com/maps/05e936f25cdd4a5db6c312ce0b5eac80
    Explore at:
    Dataset updated
    Jul 19, 2021
    Dataset authored and provided by
    WorldPop
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Social distancing is a public health measure intended to reduce infectious disease transmission, by maintaining physical distance between individuals or households. In the context of the COVID-19 pandemic, populations in many countries around the world have been advised to maintain social distance (also referred to as physical distance), with distances of 6 feet or 2 metres commonly advised. Feasibility of social distancing is dependent on the availability of space and the number of people, which varies geographically. In locations where social distancing is difficult, a focus on alternative measures to reduce disease transmission may be needed. To help identify locations where social distancing is difficult, we have developed an ease of social distancing index. By index, we mean a composite measure, intended to highlight variations in ease of social distancing in urban settings, calculated based on the space available around buildings and estimated population density. Index values were calculated for small spatial units (vector polygons), typically bounded by roads, rivers or other features. This dataset provides index values for small spatial units within urban areas in Madagascar. Measures of population density were calculated from high-resolution gridded population datasets from WorldPop, and the space available around buildings was calculated using building footprint polygons derived from satellite imagery (Ecopia.AI and Maxar Technologies. 2020). These data were produced by the WorldPop Research Group at the University of Southampton. This work was part of the GRID3 project with funding from the Bill and Melinda Gates Foundation and the United Kingdom’s Department for International Development. Project partners included the United Nations Population Fund (UNFPA), Center for International Earth Science Information Network (CIESIN) in the Earth Institute at Columbia University, and the Flowminder Foundation.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Population density in California 1960-2018 [Dataset]. https://www.statista.com/statistics/304672/california-population-density/
Organization logo

Population density in California 1960-2018

Explore at:
Dataset updated
Jul 22, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States, California
Description

This graph shows the population density in the federal state of California from 1960 to 2018. In 2018, the population density of California stood at 253.9 residents per square mile of land area.

Search
Clear search
Close search
Google apps
Main menu