2 datasets found
  1. i

    Africa Health Research Institute INDEPTH Core Dataset 2000 - 2015 Residents...

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deenan Pillay (2019). Africa Health Research Institute INDEPTH Core Dataset 2000 - 2015 Residents only (Release 2017) - South Africa [Dataset]. https://datacatalog.ihsn.org/catalog/5548
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    Frank Tanser
    Kobus Herbst
    Deenan Pillay
    Time period covered
    2000 - 2015
    Area covered
    South Africa
    Description

    Abstract

    The health and demography of the South African population has been undergoing substantial changes as a result of the rapidly progressing HIV epidemic. Researchers at the University of KwaZulu-Natal and the South African Medical Research Council established The Africa Health Research Studies in 1997 funded by a core grant from The Wellcome Trust, UK. Given the urgent need for high quality longitudinal data with which to monitor these changes, and with which to evaluate interventions to mitigate impact, a demographic surveillance system (DSS) was established in a rural South African population facing a rapid and severe HIV epidemic. The DSS, referred to as the Africa Health Research Institute Demographic Information System (ACDIS), started in 2000.

    ACDIS was established to ‘describe the demographic, social and health impact of the HIV epidemic in a population going through the health transition’ and to monitor the impact of intervention strategies on the epidemic. South Africa’s political and economic history has resulted in highly mobile urban and rural populations, coupled with complex, fluid households. In order to successfully monitor the epidemic, it was necessary to collect longitudinal demographic data (e.g. mortality, fertility, migration) on the population and to mirror this complex social reality within the design of the demographic information system. To this end, three primary subjects are observed longitudinally in ACDIS: physical structures (e.g. homesteads, clinics and schools), households and individuals. The information about these subjects, and all related information, is stored in a single MSSQL Server database, in a truly longitudinal way—i.e. not as a series of cross-sections.

    The surveillance area is located near the market town of Mtubatuba in the Umkanyakude district of KwaZulu-Natal. The area is 438 square kilometers in size and includes a population of approximately 85 000 people who are members of approximately 11 000 households. The population is almost exclusively Zulu-speaking. The area is typical of many rural areas of South Africa in that while predominantly rural, it contains an urban township and informal peri-urban settlements. The area is characterized by large variations in population densities (20–3000 people/km2). In the rural areas, homesteads are scattered rather than grouped. Most households are multi-generational and range with an average size of 7.9 (SD:4.7) members. Despite being a predominantly rural area, the principle source of income for most households is waged employment and state pensions rather than agriculture. In 2006, approximately 77% of households in the surveillance area had access to piped water and toilet facilities.

    To fulfil the eligibility criteria for the ACDIS cohort, individuals must be a member of a household within the surveillance area but not necessarily resident within it. Crucially, this means that ACDIS collects information on resident and non-resident members of households and makes a distinction between membership (self-defined on the basis of links to other household members) and residency (residing at a physical structure within the surveillance area at a particular point in time). Individuals can be members of more than one household at any point in time (e.g. polygamously married men whose wives maintain separate households). As of June 2006, there were 85 855 people under surveillance of whom 33% were not resident within the surveillance area. Obtaining information on non-resident members is vital for a number of reasons. Most importantly, understanding patterns of HIV transmission within rural areas requires knowledge about patterns of circulation and about sexual contacts between residents and their non-resident partners. To be consistent with similar datasets from other INDEPTH Member centres, this data set contains data from resident members only.

    During data collection, households are visited by fieldworkers and information supplied by a single key informant. All births, deaths and migrations of household members are recorded. If household members have moved internally within the surveillance area, such moves are reconciled and the internal migrant retains the original identfier associated with him/her.

    Geographic coverage

    Demographic surveillance area situated in the south-east portion of the uMkhanyakude district of KwaZulu-Natal province near the town of Mtubatuba. It is bounded on the west by the Umfolozi-Hluhluwe nature reserve, on the South by the Umfolozi river, on the East by the N2 highway (except form portions where the Kwamsane township strandles the highway) and in the North by the Inyalazi river for portions of the boundary. The area is 438 square kilometers.

    Analysis unit

    Individual

    Universe

    Resident household members of households resident within the demographic surveillance area. Inmigrants are defined by intention to become resident, but actual residence episodes of less than 180 days are censored. Outmigrants are defined by intention to become resident elsewhere, but actual periods of non-residence less than 180 days are censored. Children born to resident women are considered resident by default, irrespective of actual place of birth. The dataset contains the events of all individuals ever resident during the study period (1 Jan 2000 to 31 Dec 2015).

    Kind of data

    Event history data

    Frequency of data collection

    This dataset contains rounds 1 to 37 of demographic surveillance data covering the period from 1 Jan 2000 to 31 December 2015. Two rounds of data collection took place annually except in 2002 when three surveillance rounds were conducted. From 1 Jan 2015 onwards there are three surveillance rounds per annum.

    Sampling procedure

    This dataset is not based on a sample but contains information from the complete demographic surveillance area.

    Reponse units (households) by year: Year Households 2000 11856
    2001 12321
    2002 12981
    2003 12165
    2004 11841
    2005 11312
    2006 12065
    2007 12165
    2008 11790
    2009 12145
    2010 12485
    2011 12455
    2012 12087 2013 11988 2014 11778 2015 11938

    In 2006 the number of response units increased due to the addition of a new village into the demographic surveillance area.

    Sampling deviation

    None

    Mode of data collection

    Proxy Respondent [proxy]

    Research instrument

    Bounded structure registration (BSR) or update (BSU) form: - Used to register characteristics of the BS - Updates characteristics of the BS - Information as at previous round is preprinted

    Household registration (HHR) or update (HHU) form: - Used to register characteristics of the HH - Used to update information about the composition of the household - Information preprinted of composition and all registered households as at previous

    Household Membership Registration (HMR) or update (HMU): - Used to link individuals to households - Used to update information about the household memberships and member status observations - Information preprinted of member status observations as at previous

    Individual registration form (IDR): - Used to uniquely identify each individual - Mainly to ensure members with multiple household memberships are appropriately captured

    Migration notification form (MGN): - Used to record change in the BS of residency of individuals or households _ Migrants are tracked and updated in the database

    Pregnancy history form (PGH) & pregnancy outcome notification form (PON): - Records details of pregnancies and their outcomes - Only if woman is a new member - Only if woman has never completed WHL or WGH

    Death notification form (DTN): - Records all deaths that have recently occurred - Iincludes information about time, place, circumstances and possible cause of death

    Cleaning operations

    On data entry data consistency and plausibility were checked by 455 data validation rules at database level. If data validaton failure was due to a data collection error, the questionnaire was referred back to the field for revisit and correction. If the error was due to data inconsistencies that could not be directly traced to a data collection error, the record was referred to the data quality team under the supervision of the senior database scientist. This could request further field level investigation by a team of trackers or could correct the inconsistency directly at database level.

    No imputations were done on the resulting micro data set, except for:

    a. If an out-migration (OMG) event is followed by a homestead entry event (ENT) and the gap between OMG event and ENT event is greater than 180 days, the ENT event was changed to an in-migration event (IMG). b. If an out-migration (OMG) event is followed by a homestead entry event (ENT) and the gap between OMG event and ENT event is less than 180 days, the OMG event was changed to an homestead exit event (EXT) and the ENT event date changed to the day following the original OMG event. c. If a homestead exit event (EXT) is followed by an in-migration event (IMG) and the gap between the EXT event and the IMG event is greater than 180 days, the EXT event was changed to an out-migration event (OMG). d. If a homestead exit event (EXT) is followed by an in-migration event (IMG) and the gap between the EXT event and the IMG event is less than 180 days, the IMG event was changed to an homestead entry event (ENT) with a date equal to the day following the EXT event. e. If the last recorded event for an individual is homestead exit (EXT) and this event is more than 180 days prior to the end of the surveillance period, then the EXT event is changed to an

  2. w

    INDEPTH Study on Global Ageing and Adult Health 2006-2007 - South Africa

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    • +1more
    Updated May 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Professor Stephen Tollman (2023). INDEPTH Study on Global Ageing and Adult Health 2006-2007 - South Africa [Dataset]. https://microdata.worldbank.org/index.php/catalog/5843
    Explore at:
    Dataset updated
    May 19, 2023
    Dataset authored and provided by
    Professor Stephen Tollman
    Time period covered
    2006 - 2007
    Area covered
    South Africa
    Description

    Abstract

    Purpose: The multi-country Study on Global Ageing and Adult Health (SAGE) is run by the World Health Organization's Multi-Country Studies unit in the Innovation, Information, Evidence and Research Cluster. SAGE is part of the unit's Longitudinal Study Programme which is compiling longitudinal data on the health and well-being of adult populations, and the ageing process, through primary data collection and secondary data analysis. INDEPTH SAGE Wave 1 (2006/7) provides data on the health and well-being of adults in: Ghana, India and South Africa.

    Objectives: To obtain reliable, valid and comparable health, health-related and well-being data over a range of key domains for adult and older adult populations in nationally representative samples To examine patterns and dynamics of age-related changes in health and well-being using longitudinal follow-up of a cohort as they age, and to investigate socio-economic consequences of these health changes To supplement and cross-validate self-reported measures of health and the anchoring vignette approach to improving comparability of self-reported measures, through measured performance tests for selected health domains To collect health examination and biomarker data that improves reliability of morbidity and risk factor data and to objectively monitor the effect of interventions

    Additional Objectives: To generate large cohorts of older adult populations and comparison cohorts of younger populations for following-up intermediate outcomes, monitoring trends, examining transitions and life events, and addressing relationships between determinants and health, well-being and health-related outcomes To develop a mechanism to link survey data to demographic surveillance site data To build linkages with other national and multi-country ageing studies To improve the methodologies to enhance the reliability and validity of health outcomes and determinants data To provide a public-access information base to engage all stakeholders, including national policy makers and health systems planners, in planning and decision-making processes about the health and well-being of older adults

    Methods: INDEPTH SAGE's first full round of data collection included persons aged 50 years and older in the health and demographic surveillance sites. All persons aged 50+ years (for example, spouses and siblings) were invited to participate. Standardized SAGE survey instruments were used in all countries consisting of two main parts: 1) household questionnaire; 2) individual questionnaire. The procedures for including country-specific adaptations to the standardized questionnaire and translations into local languages from English follow those developed by and used for the World Health Survey.

    Content - Household questionnaire 0000 Coversheet 0100 Sampling Information 0200 Geocoding and GPS Information 0300 Recontact Information 0350 Contact Record 0400 Household Roster 0450 Kish Tables and Household Consent 0500 Housing 0600 Household and Family Support Networks and Transfers 0700 Assets and Household Income 0800 Household Expenditures 0900 Interviewer Observations

    • Individual questionnaire 1000 Socio-Demographic Characteristics 1500 Work History and Benefits 2000 Health State Descriptions and Vignettes 2500 Anthropometrics, Performance Tests and Biomarkers 3000 Risk Factors and Preventive Health Behaviours 4000 Chronic Conditions and Health Services Coverage 5000 Health Care Utilization 6000 Social Cohesion 7000 Subjective Well-Being and Quality of Life (WHOQoL-8 and Day Reconstruction Method) 8000 Impact of Caregiving 9000 Interviewer Assessment

    Geographic coverage

    Rural subdistrict Mpumalanga Province

    Analysis unit

    household and individuals

    Universe

    Agincourt Health and Demographic Surveillance Site fifty plus population

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Simple random sample of 575 persons 50 years and older with an oversample of women from the 2005 HDSS census.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaires were based on the WHS Model Questionnaire with some modification and many new additions. A household questionnaire was administered to all households eligible for the study. An Individual questionnaire was administered to eligible respondents identified from the household roster. The questionnaires were developed in English and were piloted as part of the SAGE pretest. All documents were translated into Shangaan.

    Cleaning operations

    Data editing took place at a number of stages including: (1) office editing and coding (2) during data entry (3) structural checking of the CSPro files (4) range and consistency secondary edits in Stata

    Response rate

    86% of participants accepted to participate, 10% were not found and 4% refused to participate.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Deenan Pillay (2019). Africa Health Research Institute INDEPTH Core Dataset 2000 - 2015 Residents only (Release 2017) - South Africa [Dataset]. https://datacatalog.ihsn.org/catalog/5548

Africa Health Research Institute INDEPTH Core Dataset 2000 - 2015 Residents only (Release 2017) - South Africa

Explore at:
Dataset updated
Mar 29, 2019
Dataset provided by
Frank Tanser
Kobus Herbst
Deenan Pillay
Time period covered
2000 - 2015
Area covered
South Africa
Description

Abstract

The health and demography of the South African population has been undergoing substantial changes as a result of the rapidly progressing HIV epidemic. Researchers at the University of KwaZulu-Natal and the South African Medical Research Council established The Africa Health Research Studies in 1997 funded by a core grant from The Wellcome Trust, UK. Given the urgent need for high quality longitudinal data with which to monitor these changes, and with which to evaluate interventions to mitigate impact, a demographic surveillance system (DSS) was established in a rural South African population facing a rapid and severe HIV epidemic. The DSS, referred to as the Africa Health Research Institute Demographic Information System (ACDIS), started in 2000.

ACDIS was established to ‘describe the demographic, social and health impact of the HIV epidemic in a population going through the health transition’ and to monitor the impact of intervention strategies on the epidemic. South Africa’s political and economic history has resulted in highly mobile urban and rural populations, coupled with complex, fluid households. In order to successfully monitor the epidemic, it was necessary to collect longitudinal demographic data (e.g. mortality, fertility, migration) on the population and to mirror this complex social reality within the design of the demographic information system. To this end, three primary subjects are observed longitudinally in ACDIS: physical structures (e.g. homesteads, clinics and schools), households and individuals. The information about these subjects, and all related information, is stored in a single MSSQL Server database, in a truly longitudinal way—i.e. not as a series of cross-sections.

The surveillance area is located near the market town of Mtubatuba in the Umkanyakude district of KwaZulu-Natal. The area is 438 square kilometers in size and includes a population of approximately 85 000 people who are members of approximately 11 000 households. The population is almost exclusively Zulu-speaking. The area is typical of many rural areas of South Africa in that while predominantly rural, it contains an urban township and informal peri-urban settlements. The area is characterized by large variations in population densities (20–3000 people/km2). In the rural areas, homesteads are scattered rather than grouped. Most households are multi-generational and range with an average size of 7.9 (SD:4.7) members. Despite being a predominantly rural area, the principle source of income for most households is waged employment and state pensions rather than agriculture. In 2006, approximately 77% of households in the surveillance area had access to piped water and toilet facilities.

To fulfil the eligibility criteria for the ACDIS cohort, individuals must be a member of a household within the surveillance area but not necessarily resident within it. Crucially, this means that ACDIS collects information on resident and non-resident members of households and makes a distinction between membership (self-defined on the basis of links to other household members) and residency (residing at a physical structure within the surveillance area at a particular point in time). Individuals can be members of more than one household at any point in time (e.g. polygamously married men whose wives maintain separate households). As of June 2006, there were 85 855 people under surveillance of whom 33% were not resident within the surveillance area. Obtaining information on non-resident members is vital for a number of reasons. Most importantly, understanding patterns of HIV transmission within rural areas requires knowledge about patterns of circulation and about sexual contacts between residents and their non-resident partners. To be consistent with similar datasets from other INDEPTH Member centres, this data set contains data from resident members only.

During data collection, households are visited by fieldworkers and information supplied by a single key informant. All births, deaths and migrations of household members are recorded. If household members have moved internally within the surveillance area, such moves are reconciled and the internal migrant retains the original identfier associated with him/her.

Geographic coverage

Demographic surveillance area situated in the south-east portion of the uMkhanyakude district of KwaZulu-Natal province near the town of Mtubatuba. It is bounded on the west by the Umfolozi-Hluhluwe nature reserve, on the South by the Umfolozi river, on the East by the N2 highway (except form portions where the Kwamsane township strandles the highway) and in the North by the Inyalazi river for portions of the boundary. The area is 438 square kilometers.

Analysis unit

Individual

Universe

Resident household members of households resident within the demographic surveillance area. Inmigrants are defined by intention to become resident, but actual residence episodes of less than 180 days are censored. Outmigrants are defined by intention to become resident elsewhere, but actual periods of non-residence less than 180 days are censored. Children born to resident women are considered resident by default, irrespective of actual place of birth. The dataset contains the events of all individuals ever resident during the study period (1 Jan 2000 to 31 Dec 2015).

Kind of data

Event history data

Frequency of data collection

This dataset contains rounds 1 to 37 of demographic surveillance data covering the period from 1 Jan 2000 to 31 December 2015. Two rounds of data collection took place annually except in 2002 when three surveillance rounds were conducted. From 1 Jan 2015 onwards there are three surveillance rounds per annum.

Sampling procedure

This dataset is not based on a sample but contains information from the complete demographic surveillance area.

Reponse units (households) by year: Year Households 2000 11856
2001 12321
2002 12981
2003 12165
2004 11841
2005 11312
2006 12065
2007 12165
2008 11790
2009 12145
2010 12485
2011 12455
2012 12087 2013 11988 2014 11778 2015 11938

In 2006 the number of response units increased due to the addition of a new village into the demographic surveillance area.

Sampling deviation

None

Mode of data collection

Proxy Respondent [proxy]

Research instrument

Bounded structure registration (BSR) or update (BSU) form: - Used to register characteristics of the BS - Updates characteristics of the BS - Information as at previous round is preprinted

Household registration (HHR) or update (HHU) form: - Used to register characteristics of the HH - Used to update information about the composition of the household - Information preprinted of composition and all registered households as at previous

Household Membership Registration (HMR) or update (HMU): - Used to link individuals to households - Used to update information about the household memberships and member status observations - Information preprinted of member status observations as at previous

Individual registration form (IDR): - Used to uniquely identify each individual - Mainly to ensure members with multiple household memberships are appropriately captured

Migration notification form (MGN): - Used to record change in the BS of residency of individuals or households _ Migrants are tracked and updated in the database

Pregnancy history form (PGH) & pregnancy outcome notification form (PON): - Records details of pregnancies and their outcomes - Only if woman is a new member - Only if woman has never completed WHL or WGH

Death notification form (DTN): - Records all deaths that have recently occurred - Iincludes information about time, place, circumstances and possible cause of death

Cleaning operations

On data entry data consistency and plausibility were checked by 455 data validation rules at database level. If data validaton failure was due to a data collection error, the questionnaire was referred back to the field for revisit and correction. If the error was due to data inconsistencies that could not be directly traced to a data collection error, the record was referred to the data quality team under the supervision of the senior database scientist. This could request further field level investigation by a team of trackers or could correct the inconsistency directly at database level.

No imputations were done on the resulting micro data set, except for:

a. If an out-migration (OMG) event is followed by a homestead entry event (ENT) and the gap between OMG event and ENT event is greater than 180 days, the ENT event was changed to an in-migration event (IMG). b. If an out-migration (OMG) event is followed by a homestead entry event (ENT) and the gap between OMG event and ENT event is less than 180 days, the OMG event was changed to an homestead exit event (EXT) and the ENT event date changed to the day following the original OMG event. c. If a homestead exit event (EXT) is followed by an in-migration event (IMG) and the gap between the EXT event and the IMG event is greater than 180 days, the EXT event was changed to an out-migration event (OMG). d. If a homestead exit event (EXT) is followed by an in-migration event (IMG) and the gap between the EXT event and the IMG event is less than 180 days, the IMG event was changed to an homestead entry event (ENT) with a date equal to the day following the EXT event. e. If the last recorded event for an individual is homestead exit (EXT) and this event is more than 180 days prior to the end of the surveillance period, then the EXT event is changed to an

Search
Clear search
Close search
Google apps
Main menu