11 datasets found
  1. Share of social grant recipients in South Africa 2023, by province

    • statista.com
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of social grant recipients in South Africa 2023, by province [Dataset]. https://www.statista.com/statistics/1116081/share-of-population-receiving-social-grants-in-south-africa-by-province/
    Explore at:
    Dataset updated
    Nov 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    South Africa
    Description

    As of 2023, approximately 40 percent of individuals, and 50 percent of households in South Africa benefited from social grants. Households that received at least one social grant were highest in the Eastern Cape province amounting to almost a 65 percent share. Additionally, individuals in the same province received the largest portion of grants in the country, at nearly 53 percent.

  2. Social grant recipients in South Africa 2019, by population group

    • statista.com
    Updated Dec 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Social grant recipients in South Africa 2019, by population group [Dataset]. https://www.statista.com/statistics/1116080/population-receiving-social-grants-in-south-africa-by-population-group/
    Explore at:
    Dataset updated
    Dec 17, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    South Africa
    Description

    As of 2019, approximately 18 million South Africans vulnerable to poverty or in need of state support received social grants, relief assistance or social relief paid by the government. The largest group that received social grants were Black and Coloured South Africans.

  3. Number of people living in extreme poverty in South Africa 2016-2030

    • statista.com
    Updated Oct 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Number of people living in extreme poverty in South Africa 2016-2030 [Dataset]. https://www.statista.com/statistics/1263290/number-of-people-living-in-extreme-poverty-in-south-africa/
    Explore at:
    Dataset updated
    Oct 23, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Africa, South Africa
    Description

    As of 2024, around **** million people in South Africa are living in extreme poverty, with the poverty threshold at **** U.S. dollars daily. This means that ******* more people were pushed into poverty compared to 2023. Moreover, the headcount was forecast to increase in the coming years. By 2030, over **** million South Africans will live on a maximum of **** U.S. dollars per day. Who is considered poor domestically? Poverty is measured using several matrices. For example, local authorities tend to rely on the national poverty line, assessed based on consumer price indices (CPI) of a basket of goods of food and non-food components. In 2023, the domestic poverty line in South Africa stood at ***** South African rand per month (around ***** U.S. dollars per month). According to a survey, social inequality and poverty worried a significant share of the South African respondents. As of September 2024, some ** percent of the respondents reported that they were worried about the state of poverty and unequal income distribution in the country.   Eastern Cape residents received more grants South Africa’s labor market has struggled to absorb the country’s population. In 2023, almost a third of the economically active population was unemployed. Local authorities employ relief assistance and social grants in an attempt to reduce poverty and assist poor individuals. In 2023, almost ** percent of South African households received state support, with the majority share benefiting in the Eastern Cape.

  4. w

    Post Apartheid Labour Market Series 1993-2019 - South Africa

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    • +1more
    Updated May 26, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrew Kerr (2020). Post Apartheid Labour Market Series 1993-2019 - South Africa [Dataset]. https://microdata.worldbank.org/index.php/catalog/901
    Explore at:
    Dataset updated
    May 26, 2020
    Dataset provided by
    Andrew Kerr
    Martin Wittenberg
    David Lam
    Time period covered
    1993 - 2019
    Area covered
    South Africa
    Description

    Abstract

    The Post-Apartheid Labour Market Series (PALMS) version 3.3 is a stacked cross sectional dataset created by DataFirst at the University of Cape Town. The data consists of microdata from 69 household surveys conducted by Statistics South Africa between 1994 and 2019, as well as the 1993 Project for Statistics on Living Standards and Development conducted by SALDRU at UCT. The Statistics South Africa surveys include the October Household Surveys from 1994 to 1999, the bi-annual Labour Force Surveys from 2000-2007, including the smaller LFS pilot survey from February 2000, and the Quarterly Labour Force Surveys from 2008-2019. The data is at individual level, but household level variables may be created using the household id variable uqnr. No attempt has been made to link individuals or households across waves, although there was a panel element to the earlier rounds of the LFS, as well as the QLFS.

    Geographic coverage

    National coverage

    Analysis unit

    Households and individuals

    Universe

    The target population is all households. Coverage of workers' hostels, convents/monasteries, as well as institutions such as old age homes, hospitals, prisons and military barracks varied across the surveys. Data users will need to consult the individual OHS, LFS and QLFS datasets for information on the universe for each survey.

    Kind of data

    Sample survey data [ssd]

    Mode of data collection

    Face-to-face [f2f]

  5. Community Survey 2007 - South Africa

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated May 28, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics South Africa (2019). Community Survey 2007 - South Africa [Dataset]. https://microdata.worldbank.org/index.php/catalog/918
    Explore at:
    Dataset updated
    May 28, 2019
    Dataset authored and provided by
    Statistics South Africahttp://www.statssa.gov.za/
    Time period covered
    2007
    Area covered
    South Africa
    Description

    Abstract

    The Community Survey (CS) is a nationally representative, large-scale household survey which was conducted from February to March 2007. The Community Survey is designed to provide information on the trends and levels of demographic and socio-economic data, such as population size and distribution; the extent of poor households; access to facilities and services, and the levels of employment/unemployment at national, provincial and municipality level. The data can be used to assist government and the private sector in the planning, evaluation and monitoring of programmes and policies. The information collected can also be used to assess the impact of socio-economic policies and provide an indication as to how far the country has gone in its strides to eradicate poverty.

    Censuses 1996 and 2001 are the only all-inclusive censuses that Statistics South Africa has thus far conducted under the new democratic dispensation. Demographic and socio-economic data were collected and the results have enabled government and all other users of this information to make informed decisions. When cabinet took a decision that Stats SA should not conduct a census in 2006, it created a gap in information or data between Census 2001 and the next Census scheduled to be carried out in 2011. A decision was therefore taken to carry out the Community Survey in 2007.

    The main objectives of the survey were: · To provide estimates at lower geographical levels than existing household surveys; · To build human, management and logistical capacities for Census 2011; and · To provide inputs into the preparation of the mid-year population projections.

    The wider project strategic theme is to provide relevant statistical information that meets user needs and aspirations. Some of the main topics that are covered by the survey include demography, migration, disability and social grants, educational levels, employment and economic activities.

    Geographic coverage

    The survey covered the whole of South Africa, including all nine provinces as well as the four settlement types - urban-formal, urban-informal, rural-formal (commercial farms) and rural-informal (tribal areas).

    Analysis unit

    Households

    Universe

    The Community Survey covered all de jure household members (usual residents) in South Africa. The survey excluded collective living quarters (institutions) and some households in EAs classified as recreational areas or institutions. However, an approximation of the out-of-scope population was made from the 2001 Census and added to the final estimates of the CS 2007 results.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample Design

    The sampling procedure that was adopted for the CS was a two-stage stratified random sampling process. Stage one involved the selection of enumeration areas, and stage tow was the selection of dwelling units.

    Since the data are required for each local municipality, each municipality was considered as an explicit stratum. The stratification is done for those municipalities classified as category B municipalities (local municipalities) and category A municipalities (metropolitan areas) as proclaimed at the time of Census 2001. However, the newly proclaimed boundaries as well as any other higher level of geography such as province or district municipality, were considered as any other domain variable based on their link to the smallest geographic unit - the enumeration area.

    The Frame

    The Census 2001 enumeration areas were used because they give a full geographic coverage of the country without any overlap. Although changes in settlement type, growth or movement of people have occurred, the enumeration areas assisted in getting a spatial comparison over time. Out of 80 787 enumeration areas countrywide, 79 466 were considered in the frame. A total of 1 321 enumeration areas were excluded (919 covering institutions and 402 recreational areas).

    On the second level, the listing exercise yielded the dwelling frame which facilitated the selection of dwellings to be visited. The dwelling unit is a structure or part of a structure or group of structures occupied or meant to be occupied by one or more households. Some of these structures may be vacant and/or under construction, but can be lived in at the time of the survey. A dwelling unit may also be within collective living quarters where applicable (examples of each are a house, a group of huts, a flat, hostels, etc.).

    The Community Survey universe at the second-level frame is dependent on whether the different structures are classified as dwelling units (DUs) or not. Structures where people stay/live were listed and classified as dwelling units. However, there are special cases of collective living quarters that were also included in the CS frame. These are religious institutions such as convents or monasteries, and guesthouses where people stay for an extended period (more than a month). Student residences - based on how long people have stayed (more than a month) - and old-age homes not similar to hospitals (where people are living in a communal set-up) were treated the same as hostels, thereby listing either the bed or room. In addition, any other family staying in separate quarters within the premises of an institution (like wardens' quarters, military family quarters, teachers' quarters and medical staff quarters) were considered as part of the CS frame. The inclusion of such group quarters in the frame is based on the living circumstances within these structures. Members are independent of each other with the exception that they sleep under one roof.

    The remaining group quarters were excluded from the CS frame because they are difficult to access and have no stable composition. Excluded dwelling types were prisons, hotels, hospitals, military barracks, etc. This is in addition to the exclusion on first level of the enumeration areas (EAs) classified as institutions (military bases) or recreational areas (national parks).

    The Selection of Enumeration Areas (EAs)

    The EAs within each municipality were ordered by geographic type and EA type. The selection was done by using systematic random sampling. The criteria used were as follows: In municipalities with fewer than 30 EAs, all EAs were automatically selected. In municipalities with 30 or more EAs, the sample selection used a fixed proportion of 19% of all sampled EAs. However, if the selected EAs in a municipality were less than 30 EAs, the sample in the municipality was increased to 30 EAs.

    The Selection of Dwelling Units

    The second level of the frame required a full re-listing of dwelling units. The listing exercise was undertaken before the selection of DUs. The adopted listing methodology ensured that the listing route was determined by the lister. Thisapproach facilitated the serpentine selection of dwelling units. The listing exercise provided a complete list of dwelling units in the selected EAs. Only those structures that were classified as dwelling units were considered for selection, whether vacant or occupied. This exercise yielded a total of 2 511 314 dwelling units.

    The selection of the dwelling units was also based on a fixed proportion of 10% of the total listed dwellings in an EA. A constraint was imposed on small-size EAs where, if the listed dwelling units were less than 10 dwellings, the selection was increased to 10 dwelling units. All households within the selected dwelling units were covered. There was no replacement of refusals, vacant dwellings or non-contacts owing to their impact on the probability of selection.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Consultation on Questionnaire Design Ten stakeholder workshops were held across the country during August and September 2004. Approximately 367 stakeholders, predominantly from national, provincial and local government departments, as well as from research and educational institutions, attended. The workshops aimed to achieve two objectives, namely to better understand the type of information stakeholders need to meet their objectives, and to consider the proposed data items to be included in future household surveys. The output from this process was a set of data items relating to a specific, defined focus area and outcomes that culminated with the data collection instrument (see Annexure B for all the data items).

    Questionnaire Design The design of the CS questionnaire was household-based and intended to collect information on 10 people. It was developed in line with the household-based survey questionnaires conducted by Stats SA. The questions were based on the data items generated out of the consultation process described above. Both the design and questionnaire layout were pre-tested in October 2005 and adjustments were made for the pilot in February 2006. Further adjustments were done after the pilot results had been finalised.

    Cleaning operations

    Editing The automated cleaning was implemented based on an editing rules specification defined with reference to the approved questionnaire. Most of the editing rules were categorised into structural edits looking into the relationship between different record type, the minimum processability rules that removed false positive readings or noise, the logical editing that determine the inconsistency between fields of the same statistical unit, and the inferential editing that search similarities across the domain. The edit specifications document for the structural, population, mortality and housing edits was developed by a team of Stats SA subject-matter specialists, demographers, and programmers. The process was successfully

  6. Characteristics of occupied South African households with and without...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Siluleko Mkhize; Elena Libhaber; Ronel Sewpaul; Priscilla Reddy; Laurel Baldwin-Ragaven (2023). Characteristics of occupied South African households with and without children, and sociodemographic characteristics of household heads. [Dataset]. http://doi.org/10.1371/journal.pone.0278191.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Siluleko Mkhize; Elena Libhaber; Ronel Sewpaul; Priscilla Reddy; Laurel Baldwin-Ragaven
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Africa
    Description

    Characteristics of occupied South African households with and without children, and sociodemographic characteristics of household heads.

  7. u

    Ageing, Well-being and Development Project 2002-2008 - Brazil, South Africa

    • datafirst.uct.ac.za
    Updated May 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Lloyd-Sherlock (2025). Ageing, Well-being and Development Project 2002-2008 - Brazil, South Africa [Dataset]. http://www.datafirst.uct.ac.za/Dataportal/index.php/catalog/442
    Explore at:
    Dataset updated
    May 30, 2025
    Dataset provided by
    Peter Lloyd-Sherlock
    Armando Barrientos
    Time period covered
    2002 - 2009
    Area covered
    Brazil, South Africa
    Description

    Abstract

    The purpose of the Ageing, Wellbeing and Development Project (Brazza2) was to investigate the impact on poverty and vulnerability within beneficiary households in Brazil and South Africa of grants, social pensions and the like. The survey aimed to help researchers interrogate the extent to which social assistance was enhancing quality of life, and whether income from old-age pensions and other social grants enhanced the material and perceived well-being of social pensioners and members of households.The study also inquired into perceptions of fortune and misfortune, to provide clues to the role of social assistance in boosting poorer households' resilience and their independence from the State.

    Analysis unit

    Households and individuals

    Universe

    South Africa: the survey covered all members of African households in rural Eastern Cape and African and Coloured households in urban Western Cape.

    Kind of data

    Survey data

    Sampling procedure

    South Africa: In South Africa, a company called Development Research Africa were commissioned to conduct the data collection. To conduct the sampling for this, they requested a list of EAs from Stats SA that satisfied the following criteria:

    1. Predominantly black or coloured EAs
    2. Predominantly defined (by Stats SA) as urban (formal or informal) in the Western Cape
    3. Predominantly defined (by Statssa) as tribal or semi urban in the Eastern Cape; and
    4. Did not contain institutions or farming areas (these EAs were excluded)

    These CEAs were sent to DRA in several excel spreadsheets under the following headings for each magisterial district:

    1. Geographical areas by population group of head of household for person weighted (African/Black or Coloured)
    2. Geographical areas by enumeration area type for person weighted (rural: tribal villages, urban: formal or urban: informal)
    3. Geographical areas by age for person weighted (56 years and older)
    4. Geographical areas for household weighted (which provided the total number of households per CEA).

    These data files were collated and then merged into three separate spreadsheets reflecting the respondent categories. All CEAs containing less than eighty households were deleted to further ensure that institutions or farming areas (as well as urban areas in the Eastern Cape) would not become eligible and also to limit the possibility of selecting CEAs with no eligible respondent households. These three databases became the three sample frames used to select the sample.

    All the remaining CEAs were sorted in ascending order. A PSS sampling method was used to select the sample. This means that CEAs with a larger number of households have a greater chance of being selected into the sample. The two CEAs directly below the selected EAs were included as possible substitutions. Once the EA numbers were selected the maps were sourced from Stats SA. Only then could one determine the location of these CEAs. Because of the PPS methodology, EAs from smaller magisterial districts fell short of being selected into the sample whilst larger magisterial districts had more than one EA selected. In the Western Cape, the EAs could relatively easily be found on Cape Town street maps.

    Twenty clusters or EAs were selected per respondent category. The target per category was about 333 interviews. It follows that about 17 interviews (333/20=17) had to be done per CEA. The desired number of households that need to be approached in a cluster or EA was the segment size. The segment size was dependent on the percentage of households that contain at least one person aged 55 years and over and on the response rate assumed. The segment size for each of the CEAs in the sample was calculated individually. For example, if 33 persons aged 55 or older resided in the CEA with 120 households and assuming a 95% response rate, 59 households would have to be approached (17/(15/120)*0.95) in the CEA in order to obtain 17 successful interviews per CEA. One limitation to the study here was that this formula does not take into consideration the possibility of two or more persons in this age category residing in a household.

    Once the maps were acquired from Stats SA, they were verified and updated by the fieldworker through identifying the EA boundaries and by entering any features or changes to the map. The number of households were then counted and divided into segments with approximately equal number of households. One calculates the number of segments by dividing the segment size (described in the previous paragraph) by the actual number of households found and recorded in the EA. Some EAs may have only one segment (if segment size > total number of households in EA) or may have as many as five or six segments. One segment is then randomly selected. All the households in a particular segment were approached and all target households identified and surveyed. Finally, within the households, the person most knowledgeable about how money is spent in the household was selected as the first respondent. Thereafter all individuals 55 years of age and over were interviewed. The fieldworkers had to make three visits per household where the respondents were not available to maximize the possibility that the interview would be completed with the selected respondent. The project manager monitored the number of completed interviews. In instances where it seemed that the overall target of 333 interviews per respondent category area was unlikely, the fieldworkers had to survey the whole EA.

    The twenty randomly-selected EAs in the rural Eastern Cape were located in the former Transkei and Ciskei 'homelands' in the magisterial districts of Zwelitsha, Keiskammahoek, Engcobo, Idutywa, Kentani, Libode, Lusikisiki, Mqanduli, Ngquleni, Nqamakwe, Port St Johns, Qumbu, Cofimvaba, Tabankulu, Tsomo, Willowvale and Lady Frere. The twenty randomly-selected EAs in the Cape Town metropole targeting urban black households were located in the magisterial districts of Goodwood, Wynberg, Mitchell's Plain (which includes the sprawling township of Khayelitsha) and Kuils River. The twenty randomly-selected EAs targeting urban coloured households were located in the same magisterial districts in Cape Town metropole as those targeting urban black households with the addition of Bellville.

    The 2002 sample design prescribed that all households selected in the last stage, in the EA segment, had to be interviewed. As a result, a larger sample size was achieved in 2002 than the originally planned sample of 1000 interviews. A total of 1111 interviews was realised in 2002: 374 in rural black households, 324 in urban black households and 413 in urban coloured households.

    Approximately 79% of households included in the 2009 survey were the same ones that participated in the earlier 2002 wave. A significantly higher proportion of rural black (94%) households than urban black (72%) and urban coloured (71%) ones were traced. A household that could not be traced was replaced by another older household in the same enumerator area. An estimated 69% of the 4199 household members enumerated in 2002 were traced to 2009. In total, 1286 individuals could not be traced. In this group 18% were reportedly temporarily absent, 55% had moved away permanently, and 27% (or 346 individuals) had died. This paper is based on information supplied by a total of 1059 households in the 2009 survey: 362 rural black households, 299 urban black households, and 398 urban coloured households.

    Brazil: Note that some of the information on sampling for the following section was taken from a document originally written in Portuguese and translated using Google translate. The original document is available with this dataset and is titled: "Benefícios Não-Contributivos e o Combate à Pobreza de Idosos no Brasil"

    The approach taken in Brazil was similar to the one taken in South Africa, as the territorial expansiveness made it difficult to obtain a nationally representative sample of with a relatively small number of households. The alternative was to seek to expand the regional coverage as far as possible within the research budget. Two large regions were selected for field research. The first was the metropolitan area of Rio de Janeiro, in which the population of Rio de Janeiro state is most heavily concentrated. This is one of the most developed states in the country. Four counties were chosen within the metropolitan area. Three neighboring counties, Duke Caxias, Nova Iguaçu and São João de Meriti, were also selected. To represent the elderly population of the poorest regions of the country, a state in the Northeast was selected. Three possibilities were considered: Bahia, Pernambuco and Ceara. These have the the largest populations in the Northeast. The state of Bahia was chosen because of its proximity to Rio de Janeiro (making it more affordable to process the data). Of the major cities of Bahia, Ilheus was chosen as it had a more rural population, which the study aimed to capture.

    The sample target was defined at around a thousand households with at least one person aged 60 or over in the household. Aiming to diversifying the population surveyed, the sample was divided into four groups, each with about one fourth of the sample. Thus, the state of Rio de January was half of the sample, and the rest distributed in the three counties in the Rio de Janeiro metropolitan area. The other half was divided in two, half being in the urban, and the other rural, in the municipality of Ilheus.

    To select of households within each municipality the Brazilian 2000 Census data was used. Sectors with low income and high population of elderly, maximizing the probability of finding elderly not receiving contributory benefits, were chosen. The criteria used were:

    1. At least 100
  8. S

    South Africa ZA: Expenditure: Subsidies and Other Transfers

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, South Africa ZA: Expenditure: Subsidies and Other Transfers [Dataset]. https://www.ceicdata.com/en/south-africa/government-revenue-expenditure-and-finance/za-expenditure-subsidies-and-other-transfers
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2006 - Mar 1, 2017
    Area covered
    South Africa
    Variables measured
    Operating Statement
    Description

    South Africa ZA: Expenditure: Subsidies and Other Transfers data was reported at 906,703.511 ZAR mn in 2017. This records an increase from the previous number of 869,243.840 ZAR mn for 2016. South Africa ZA: Expenditure: Subsidies and Other Transfers data is updated yearly, averaging 143,450.450 ZAR mn from Mar 1986 (Median) to 2017, with 32 observations. The data reached an all-time high of 906,703.511 ZAR mn in 2017 and a record low of 4,125.000 ZAR mn in 1989. South Africa ZA: Expenditure: Subsidies and Other Transfers data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s South Africa – Table ZA.World Bank: Government Revenue, Expenditure and Finance. Subsidies, grants, and other social benefits include all unrequited, nonrepayable transfers on current account to private and public enterprises; grants to foreign governments, international organizations, and other government units; and social security, social assistance benefits, and employer social benefits in cash and in kind.; ; International Monetary Fund, Government Finance Statistics Yearbook and data files.; ;

  9. S

    South Africa ZA: Expenditure: Subsidies and Other Transfers: % of...

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, South Africa ZA: Expenditure: Subsidies and Other Transfers: % of Expenditure [Dataset]. https://www.ceicdata.com/en/south-africa/government-revenue-expenditure-and-finance/za-expenditure-subsidies-and-other-transfers--of-expenditure
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2006 - Mar 1, 2017
    Area covered
    South Africa
    Variables measured
    Operating Statement
    Description

    South Africa ZA: Expenditure: Subsidies and Other Transfers: % of Expenditure data was reported at 60.498 % in 2017. This records an increase from the previous number of 59.726 % for 2016. South Africa ZA: Expenditure: Subsidies and Other Transfers: % of Expenditure data is updated yearly, averaging 54.089 % from Mar 1986 (Median) to 2017, with 32 observations. The data reached an all-time high of 63.297 % in 2012 and a record low of 6.253 % in 1996. South Africa ZA: Expenditure: Subsidies and Other Transfers: % of Expenditure data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s South Africa – Table ZA.World Bank: Government Revenue, Expenditure and Finance. Subsidies, grants, and other social benefits include all unrequited, nonrepayable transfers on current account to private and public enterprises; grants to foreign governments, international organizations, and other government units; and social security, social assistance benefits, and employer social benefits in cash and in kind.; ; International Monetary Fund, Government Finance Statistics Yearbook and data files.; Median;

  10. i

    Ageing, Well-being and Development Project 2002-2008 - Brazil, South Africa

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    • +1more
    Updated Mar 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Lloyd-Sherlock (2021). Ageing, Well-being and Development Project 2002-2008 - Brazil, South Africa [Dataset]. https://datacatalog.ihsn.org/catalog/9570
    Explore at:
    Dataset updated
    Mar 22, 2021
    Dataset provided by
    Peter Lloyd-Sherlock
    Armando Barrientos
    Time period covered
    2002 - 2009
    Area covered
    Brazil, South Africa
    Description

    Abstract

    The purpose of the Ageing, Wellbeing and Development Project (Brazza2) was to investigate the impact on poverty and vulnerability within beneficiary households in Brazil and South Africa of grants, social pensions and the like. The survey aimed to help researchers interrogate the extent to which social assistance was enhancing quality of life, and whether income from old-age pensions and other social grants enhanced the material and perceived well-being of social pensioners and members of households.The study also inquired into perceptions of fortune and misfortune, to provide clues to the role of social assistance in boosting poorer households' resilience and their independence from the State.

    Analysis unit

    Households and individuals

    Universe

    South Africa: the survey covered all members of black households in the rural Eastern Cape and black and colored households in urban Western Cape.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    South Africa: In South Africa, a company called Development Research Africa were commissioned to conduct the data collection. To conduct the sampling for this, they requested a list of EAs from Stats SA that satisfied the following criteria:

    1. Predominantly black or colored EAs
    2. Predominantly defined (by Stats SA) as urban (formal or informal) in the Western Cape
    3. Predominantly defined (by Stats SA) as tribal or semi urban in the Eastern Cape; and
    4. Did not contain institutions or farming areas (these EAs were excluded)

    These CEAs were sent to DRA in several excel spreadsheets under the following headings for each magisterial district:

    1. Geographical areas by population group of head of household for person weighted (African/Black or Colored)
    2. Geographical areas by enumeration area type for person weighted (rural: tribal villages, urban: formal or urban: informal)
    3. Geographical areas by age for person weighted (56 years and older)
    4. Geographical areas for household weighted (which provided the total number of households per CEA).

    These data files were collated and then merged into three separate spreadsheets reflecting the respondent categories. All CEAs containing less than eighty households were deleted to further ensure that institutions or farming areas (as well as urban areas in the Eastern Cape) would not become eligible and also to limit the possibility of selecting CEAs with no eligible respondent households. These three databases became the three sample frames used to select the sample.

    All the remaining CEAs were sorted in ascending order. A PSS sampling method was used to select the sample. This means that CEAs with a larger number of households have a greater chance of being selected into the sample. The two CEAs directly below the selected EAs were included as possible substitutions. Once the EA numbers were selected the maps were sourced from Stats SA. Only then could one determine the location of these CEAs. Because of the PPS methodology, EAs from smaller magisterial districts fell short of being selected into the sample whilst larger magisterial districts had more than one EA selected. In the Western Cape, the EAs could relatively easily be found on Cape Town street maps.

    Twenty clusters or EAs were selected per respondent category. The target per category was about 333 interviews. It follows that about 17 interviews (333/20=17) had to be done per CEA. The desired number of households that need to be approached in a cluster or EA was the segment size. The segment size was dependent on the percentage of households that contain at least one person aged 55 years and over and on the response rate assumed. The segment size for each of the CEAs in the sample was calculated individually. For example, if 33 persons aged 55 or older resided in the CEA with 120 households and assuming a 95% response rate, 59 households would have to be approached (17/(15/120)*0.95) in the CEA in order to obtain 17 successful interviews per CEA. One limitation to the study here was that this formula does not take into consideration the possibility of two or more persons in this age category residing in a household.

    Once the maps were acquired from Stats SA, they were verified and updated by the fieldworker through identifying the EA boundaries and by entering any features or changes to the map. The number of households were then counted and divided into segments with approximately equal number of households. One calculates the number of segments by dividing the segment size (described in the previous paragraph) by the actual number of households found and recorded in the EA. Some EAs may have only one segment (if segment size > total number of households in EA) or may have as many as five or six segments. One segment is then randomly selected. All the households in a particular segment were approached and all target households identified and surveyed. Finally, within the households, the person most knowledgeable about how money is spent in the household was selected as the first respondent. Thereafter all individuals 55 years of age and over were interviewed. The fieldworkers had to make three visits per household where the respondents were not available to maximize the possibility that the interview would be completed with the selected respondent. The project manager monitored the number of completed interviews. In instances where it seemed that the overall target of 333 interviews per respondent category area was unlikely, the fieldworkers had to survey the whole EA.

    The twenty randomly-selected EAs in the rural Eastern Cape were located in the former Transkei and Ciskei 'homelands' in the magisterial districts of Zwelitsha, Keiskammahoek, Engcobo, Idutywa, Kentani, Libode, Lusikisiki, Mqanduli, Ngquleni, Nqamakwe, Port St Johns, Qumbu, Cofimvaba, Tabankulu, Tsomo, Willowvale and Lady Frere. The twenty randomly-selected EAs in the Cape Town metropole targeting urban black households were located in the magisterial districts of Goodwood, Wynberg, Mitchell's Plain (which includes the sprawling township of Khayelitsha) and Kuils River. The twenty randomly selected EAs targeting urban coloured households were located in the same magisterial districts in Cape Town metropole as those targeting urban black households with the addition of Bellville.

    The 2002 sample design prescribed that all households selected in the last stage, in the EA segment, had to be interviewed. As a result, a larger sample size was achieved in 2002 than the originally planned sample of 1000 interviews. A total of 1111 interviews was realised in 2002: 374 in rural black households, 324 in urban black households and 413 in urban coloured households.

    Approximately 79% of households included in the 2009 survey were the same ones that participated in the earlier 2002 wave. A significantly higher proportion of rural black (94%) households than urban black (72%) and urban colored (71%) ones were traced. A household that could not be traced was replaced by another older household in the same enumerator area. An estimated 69% of the 4199 household members enumerated in 2002 were traced to 2009. In total, 1286 individuals could not be traced. In this group 18% were reportedly temporarily absent, 55% had moved away permanently, and 27% (or 346 individuals) had died. This paper is based on information supplied by a total of 1059 households in the 2009 survey: 362 rural black households, 299 urban black households, and 398 urban colored households.

    Brazil: Note that some of the information on sampling for the following section was taken from a document originally written in Portuguese and translated using Google translate. The original document is available with this dataset and is titled: "Benefícios Não-Contributivos e o Combate à Pobreza de Idosos no Brasil"

    The approach taken in Brazil was similar to the one taken in South Africa, as the territorial expansiveness made it difficult to obtain a nationally representative sample of with a relatively small number of households. The alternative was to seek to expand the regional coverage as far as possible within the research budget. Two large regions were selected for field research. The first was the metropolitan area of Rio de Janeiro, in which the population of Rio de Janeiro state is most heavily concentrated. This is one of the most developed states in the country. Four counties were chosen within the metropolitan area. Three neighboring counties, Duke Caxias, Nova Iguaçu and São João de Meriti, were also selected. To represent the elderly population of the poorest regions of the country, a state in the Northeast was selected. Three possibilities were considered: Bahia, Pernambuco and Ceara. These have the the largest populations in the Northeast. The state of Bahia was chosen because of its proximity to Rio de Janeiro (making it more affordable to process the data). Of the major cities of Bahia, Ilheus was chosen as it had a more rural population, which the study aimed to capture.

    The sample target was defined at around a thousand households with at least one person aged 60 or over in the household. Aiming to diversifying the population surveyed, the sample was divided into four groups, each with about one fourth of the sample. Thus, the state of Rio de January was half of the sample, and the rest distributed in the three counties in the Rio de Janeiro metropolitan area. The other half was divided in two, half being in the urban, and the other rural, in the municipality of Ilheus.

    To select of households within each municipality the Brazilian 2000 Census data was used. Sectors with low income and high population of elderly, maximizing the probability of finding elderly not receiving contributory benefits, were chosen. The criteria used were:

    1. At least
  11. Share of opinions on wealth creation by government in South Africa 2024

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Share of opinions on wealth creation by government in South Africa 2024 [Dataset]. https://www.statista.com/statistics/1500153/opinions-on-wealth-creation-by-government-in-south-africa/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 12, 2024 - Feb 28, 2024
    Area covered
    South Africa
    Description

    In 2024, most respondents in a survey conducted in South Africa cited that the best way for the government to create wealth for people is to make it easier for them to start small businesses, with a share of ** percent. Reducing taxes and increasing social grants followed, with a share of ** percent and ** percent, respectively.

  12. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Share of social grant recipients in South Africa 2023, by province [Dataset]. https://www.statista.com/statistics/1116081/share-of-population-receiving-social-grants-in-south-africa-by-province/
Organization logo

Share of social grant recipients in South Africa 2023, by province

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 28, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2023
Area covered
South Africa
Description

As of 2023, approximately 40 percent of individuals, and 50 percent of households in South Africa benefited from social grants. Households that received at least one social grant were highest in the Eastern Cape province amounting to almost a 65 percent share. Additionally, individuals in the same province received the largest portion of grants in the country, at nearly 53 percent.

Search
Clear search
Close search
Google apps
Main menu