100+ datasets found
  1. Data from: Youtube social network

    • kaggle.com
    zip
    Updated Sep 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lorenzo De Tomasi (2019). Youtube social network [Dataset]. https://www.kaggle.com/datasets/lodetomasi1995/youtube-social-network
    Explore at:
    zip(10604317 bytes)Available download formats
    Dataset updated
    Sep 1, 2019
    Authors
    Lorenzo De Tomasi
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    YouTube
    Description

    Youtube social network and ground-truth communities Dataset information Youtube is a video-sharing web site that includes a social network. In the Youtube social network, users form friendship each other and users can create groups which other users can join. We consider such user-defined groups as ground-truth communities. This data is provided by Alan Mislove et al.

    We regard each connected component in a group as a separate ground-truth community. We remove the ground-truth communities which have less than 3 nodes. We also provide the top 5,000 communities with highest quality which are described in our paper. As for the network, we provide the largest connected component.

    more info : https://snap.stanford.edu/data/com-Youtube.html

  2. m

    Graph-Based Social Media Data on Mental Health Topics

    • data.mendeley.com
    Updated Nov 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samuel Ady Sanjaya (2024). Graph-Based Social Media Data on Mental Health Topics [Dataset]. http://doi.org/10.17632/z45txpdp7f.2
    Explore at:
    Dataset updated
    Nov 4, 2024
    Authors
    Samuel Ady Sanjaya
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is structured as a graph, where nodes represent users and edges capture their interactions, including tweets, retweets, replies, and mentions. Each node provides detailed user attributes, such as unique ID, follower and following counts, and verification status, offering insights into each user's identity, role, and influence in the mental health discourse. The edges illustrate user interactions, highlighting engagement patterns and types of content that drive responses, such as tweet impressions. This interconnected structure enables sentiment analysis and public reaction studies, allowing researchers to explore engagement trends and identify the mental health topics that resonate most with users.

    The dataset consists of three files: 1. Edges Data: Contains graph data essential for social network analysis, including fields for UserID (Source), UserID (Destination), Post/Tweet ID, and Date of Relationship. This file enables analysis of user connections without including tweet content, maintaining compliance with Twitter/X’s data-sharing policies. 2. Nodes Data: Offers user-specific details relevant to network analysis, including UserID, Account Creation Date, Follower and Following counts, Verified Status, and Date Joined Twitter. This file allows researchers to examine user behavior (e.g., identifying influential users or spam-like accounts) without direct reference to tweet content. 3. Twitter/X Content Data: This file contains only the raw tweet text as a single-column dataset, without associated user identifiers or metadata. By isolating the text, we ensure alignment with anonymization standards observed in similar published datasets, safeguarding user privacy in compliance with Twitter/X's data guidelines. This content is crucial for addressing the research focus on mental health discourse in social media. (References to prior Data in Brief publications involving Twitter/X data informed the dataset's structure.)

  3. Instagram accounts with the most followers worldwide 2024

    • statista.com
    • davegsmith.com
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon (2025). Instagram accounts with the most followers worldwide 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    Cristiano Ronaldo has one of the most popular Instagram accounts as of April 2024.

                  The Portuguese footballer is the most-followed person on the photo sharing app platform with 628 million followers. Instagram's own account was ranked first with roughly 672 million followers.
    
                  How popular is Instagram?
    
                  Instagram is a photo-sharing social networking service that enables users to take pictures and edit them with filters. The platform allows users to post and share their images online and directly with their friends and followers on the social network. The cross-platform app reached one billion monthly active users in mid-2018. In 2020, there were over 114 million Instagram users in the United States and experts project this figure to surpass 127 million users in 2023.
    
                  Who uses Instagram?
    
                  Instagram audiences are predominantly young – recent data states that almost 60 percent of U.S. Instagram users are aged 34 years or younger. Fall 2020 data reveals that Instagram is also one of the most popular social media for teens and one of the social networks with the biggest reach among teens in the United States.
    
                  Celebrity influencers on Instagram
                  Many celebrities and athletes are brand spokespeople and generate additional income with social media advertising and sponsored content. Unsurprisingly, Ronaldo ranked first again, as the average media value of one of his Instagram posts was 985,441 U.S. dollars.
    
  4. P

    Data from: MuMiN Dataset

    • paperswithcode.com
    • opendatalab.com
    Updated Feb 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dan Saattrup Nielsen; Ryan McConville (2022). MuMiN Dataset [Dataset]. https://paperswithcode.com/dataset/mumin
    Explore at:
    Dataset updated
    Feb 22, 2022
    Authors
    Dan Saattrup Nielsen; Ryan McConville
    Description

    MuMiN is a misinformation graph dataset containing rich social media data (tweets, replies, users, images, articles, hashtags), spanning 21 million tweets belonging to 26 thousand Twitter threads, each of which have been semantically linked to 13 thousand fact-checked claims across dozens of topics, events and domains, in 41 different languages, spanning more than a decade.

    MuMiN fills a gap in the existing misinformation datasets in multiple ways:

    By having a large amount of social media information which have been semantically linked to fact-checked claims on an individual basis. By featuring 41 languages, enabling evaluation of multilingual misinformation detection models. By featuring both tweets, articles, images, social connections and hashtags, enabling multimodal approaches to misinformation detection.

    MuMiN features two node classification tasks, related to the veracity of a claim:

    Claim classification: Determine the veracity of a claim, given its social network context. Tweet classification: Determine the likelihood that a social media post to be fact-checked is discussing a misleading claim, given its social network context.

    To use the dataset, see the "Getting Started" guide and tutorial at the MuMiN website.

  5. Instagram: distribution of global audiences 2024, by age and gender

    • statista.com
    • davegsmith.com
    Updated Jun 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon (2025). Instagram: distribution of global audiences 2024, by age and gender [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    As of April 2024, around 16.5 percent of global active Instagram users were men between the ages of 18 and 24 years. More than half of the global Instagram population worldwide was aged 34 years or younger.

                  Teens and social media
    
                  As one of the biggest social networks worldwide, Instagram is especially popular with teenagers. As of fall 2020, the photo-sharing app ranked third in terms of preferred social network among teenagers in the United States, second to Snapchat and TikTok. Instagram was one of the most influential advertising channels among female Gen Z users when making purchasing decisions. Teens report feeling more confident, popular, and better about themselves when using social media, and less lonely, depressed and anxious.
                  Social media can have negative effects on teens, which is also much more pronounced on those with low emotional well-being. It was found that 35 percent of teenagers with low social-emotional well-being reported to have experienced cyber bullying when using social media, while in comparison only five percent of teenagers with high social-emotional well-being stated the same. As such, social media can have a big impact on already fragile states of mind.
    
  6. Instagram: most used hashtags 2024

    • statista.com
    • davegsmith.com
    Updated Jun 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Instagram: most used hashtags 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    As of January 2024, #love was the most used hashtag on Instagram, being included in over two billion posts on the social media platform. #Instagood and #instagram were used over one billion times as of early 2024.

  7. Web Graphs

    • kaggle.com
    zip
    Updated Nov 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Subhajit Sahu (2021). Web Graphs [Dataset]. https://www.kaggle.com/wolfram77/graphs-web
    Explore at:
    zip(52848952 bytes)Available download formats
    Dataset updated
    Nov 11, 2021
    Authors
    Subhajit Sahu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dynamic face-to-face interaction networks represent the interactions that happen during discussions between a group of participants playing the Resistance game. This dataset contains networks extracted from 62 games. Each game is played by 5-8 participants and lasts between 45--60 minutes. We extract dynamically evolving networks from the free-form discussions using the ICAF algorithm. The extracted networks are used to characterize and detect group deceptive behavior using the DeceptionRank algorithm.

    The networks are weighted, directed and temporal. Each node represents a participant. At each 1/3 second, a directed edge from node u to v is weighted by the probability of participant u looking at participant v or the laptop. Additionally, we also provide a binary version where an edge from u to v indicates participant u looks at participant v (or the laptop).

    Stanford Network Analysis Platform (SNAP) is a general purpose, high performance system for analysis and manipulation of large networks. Graphs consists of nodes and directed/undirected/multiple edges between the graph nodes. Networks are graphs with data on nodes and/or edges of the network.

    The core SNAP library is written in C++ and optimized for maximum performance and compact graph representation. It easily scales to massive networks with hundreds of millions of nodes, and billions of edges. It efficiently manipulates large graphs, calculates structural properties, generates regular and random graphs, and supports attributes on nodes and edges. Besides scalability to large graphs, an additional strength of SNAP is that nodes, edges and attributes in a graph or a network can be changed dynamically during the computation.

    SNAP was originally developed by Jure Leskovec in the course of his PhD studies. The first release was made available in Nov, 2009. SNAP uses a general purpose STL (Standard Template Library)-like library GLib developed at Jozef Stefan Institute. SNAP and GLib are being actively developed and used in numerous academic and industrial projects.

    http://snap.stanford.edu/data/index.html#face2face

  8. s

    Moviegalaxies – Social Networks in Movies

    • marketplace.sshopencloud.eu
    • dataverse.harvard.edu
    • +1more
    Updated Feb 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Moviegalaxies – Social Networks in Movies [Dataset]. http://doi.org/10.7910/DVN/T4HBA3
    Explore at:
    Dataset updated
    Feb 11, 2022
    Description

    This repository contains network graphs and network metadata from Moviegalaxies, a website providing network graph data from about 773 films (1915–2012). The data includes individual network graph data in Graph Exchange XML Format and descriptive statistics on measures such as clustering coefficient, degree, density, diameter, modularity, average path length, the total number of edges, and the total number of nodes.

  9. Data from: TikTok dataset - Current affairs on TikTok. Virality and...

    • zenodo.org
    • research.science.eus
    • +1more
    Updated Aug 28, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Simón Peña-Fernández; Simón Peña-Fernández; Ainara Larrondo-Ureta; Ainara Larrondo-Ureta; Jordi Morales-i-Gras; Jordi Morales-i-Gras (2022). TikTok dataset - Current affairs on TikTok. Virality and entertainment for digital natives [Dataset]. http://doi.org/10.5281/zenodo.7024885
    Explore at:
    Dataset updated
    Aug 28, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Simón Peña-Fernández; Simón Peña-Fernández; Ainara Larrondo-Ureta; Ainara Larrondo-Ureta; Jordi Morales-i-Gras; Jordi Morales-i-Gras
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Tiktok network graph with 5,638 nodes and 318,986 unique links, representing up to 790,599 weighted links between labels, using Gephi network analysis software.

    Source of:

    Peña-Fernández, Simón, Larrondo-Ureta, Ainara, & Morales-i-Gras, Jordi. (2022). Current affairs on TikTok. Virality and entertainment for digital natives. Profesional De La Información, 31(1), 1–12. https://doi.org/10.5281/zenodo.5962655

    Abstract:

    Since its appearance in 2018, TikTok has become one of the most popular social media platforms among digital natives because of its algorithm-based engagement strategies, a policy of public accounts, and a simple, colorful, and intuitive content interface. As happened in the past with other platforms such as Facebook, Twitter, and Instagram, various media are currently seeking ways to adapt to TikTok and its particular characteristics to attract a younger audience less accustomed to the consumption of journalistic material. Against this background, the aim of this study is to identify the presence of the media and journalists on TikTok, measure the virality and engagement of the content they generate, describe the communities created around them, and identify the presence of journalistic use of these accounts. For this, 23,174 videos from 143 accounts belonging to media from 25 countries were analyzed. The results indicate that, in general, the presence and impact of the media in this social network are low and that most of their content is oriented towards the creation of user communities based on viral content and entertainment. However, albeit with a lesser presence, one can also identify accounts and messages that adapt their content to the specific characteristics of TikTok. Their virality and engagement figures illustrate that there is indeed a niche for current affairs on this social network.

  10. Instagram: distribution of global audiences 2024, by gender

    • statista.com
    • davegsmith.com
    Updated Jun 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon (2025). Instagram: distribution of global audiences 2024, by gender [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    As of January 2024, Instagram was slightly more popular with men than women, with men accounting for 50.6 percent of the platform’s global users. Additionally, the social media app was most popular amongst younger audiences, with almost 32 percent of users aged between 18 and 24 years.

                  Instagram’s Global Audience
    
                  As of January 2024, Instagram was the fourth most popular social media platform globally, reaching two billion monthly active users (MAU). This number is projected to keep growing with no signs of slowing down, which is not a surprise as the global online social penetration rate across all regions is constantly increasing.
                  As of January 2024, the country with the largest Instagram audience was India with 362.9 million users, followed by the United States with 169.7 million users.
    
                  Who is winning over the generations?
    
                  Even though Instagram’s audience is almost twice the size of TikTok’s on a global scale, TikTok has shown itself to be a fierce competitor, particularly amongst younger audiences. TikTok was the most downloaded mobile app globally in 2022, generating 672 million downloads. As of 2022, Generation Z in the United States spent more time on TikTok than on Instagram monthly.
    
  11. s

    Social Media Usage By Age

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Social Media Usage By Age [Dataset]. https://www.searchlogistics.com/learn/statistics/social-media-addiction-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Gen Z and Millennials are the biggest social media users of all age groups.

  12. s

    Social Media Usage By Country

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Social Media Usage By Country [Dataset]. https://www.searchlogistics.com/learn/statistics/social-media-addiction-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The results might surprise you when looking at internet users that are active on social media in each country.

  13. Z

    NetVotes iKnow Dataset

    • data.niaid.nih.gov
    Updated Oct 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Figueiredo, Rosa (2024). NetVotes iKnow Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6816075
    Explore at:
    Dataset updated
    Oct 1, 2024
    Dataset provided by
    Arınık, Nejat
    Labatut, Vincent
    Figueiredo, Rosa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description. This is the data used in the experiment of the following conference paper:

    N. Arınık, R. Figueiredo, and V. Labatut, “Signed Graph Analysis for the Interpretation of Voting Behavior,” in International Conference on Knowledge Technologies and Data-driven Business - International Workshop on Social Network Analysis and Digital Humanities, Graz, AT, 2017, vol. 2025. ⟨hal-01583133⟩

    Source code. The code source is accessible on GitHub: https://github.com/CompNet/NetVotes

    Citation. If you use the data or source code, please cite the above paper.

    @InProceedings{Arinik2017, author = {Arınık, Nejat and Figueiredo, Rosa and Labatut, Vincent}, title = {Signed Graph Analysis for the Interpretation of Voting Behavior}, booktitle = {International Conference on Knowledge Technologies and Data-driven Business - International Workshop on Social Network Analysis and Digital Humanities}, year = {2017}, volume = {2025}, series = {CEUR Workshop Proceedings}, address = {Graz, AT}, url = {http://ceur-ws.org/Vol-2025/paper_rssna_1.pdf},}

    Details.

    RAW INPUT FILESThe 'itsyourparliament' folder contains all raw input files for further data processing (such as network extraction).The folder structure is as follows:* itsyourparliament/** domains: There are 28 domain files. Each file corresponds to a domain (such as Agriculture, Economy, etc.) and contains corresponding vote identifiers and their "itsyourparliament.eu" links.** meps: There are 870 Member of Parliament (MEP) files. Each file contains the MEP information (such as name, country, address, etc.)** votes: There are 7513 vote files. Each file contains the votes expressed by MEPs# NETWORKS AND CORRESPONDING PARTITIONSThis work studies the voting behavior of French and Italian MEPs on "Agriculture and Rural Development" (AGRI) and "Economic and Monetary Affairs" (ECON) for each separate year of the 7th EP term (2009-10, 2010-11, 2011-12, 2012-13, 2013-14). Note that the interpretation part (section 4) of the published paper is limited to only a few of these instances (2009-10 in ECON and 2012-13 in AGRI).The extracted networks are located in the "networks" folder and the corresponding partitions are in the "partitions" folder. Both folders have the same structure, which is as follows:COUNTRY-NAME|_DOMAIN-NAME|_2009-10|_2010-11|_2011-12|_2012-13|_2013-14## NETWORKSThe networks in this folder are used in the article. All those networks are the ones obtained after the filtering step (as explained in the article). The networks are in 'Graphml' format. These networks are enriched with some MEPs' properties (such as name, political party, etc.) associated with each node.## ALL NETWORKSFor those who are interested in other countries or domains, we make available all possible networks that we can extract from raw data with vs. without filtering step.COUNTRY-NAME|_m3|_negtr=NA_postr=NA: This folder contains all filtered networks. Note that the filtering step is explained in Section 2.1.2 of the article.|_bygroup|_bycountry|_negtr=0_postr=0: This folder contains all original networks (i.e. no filtering step).|_bygroup|_bycountry## PARTITIONSThe partitions are obtained in this way: First, the Ex-CC (exact) method is run and we denote 'k' for the the number of detected cluster in output. This 'k' value is the reference point in order to run the ILS-RCC (heuristic) method by specifying the number of desired cluster in output. Then, ILS-RCC is run with various values ('k', 'k+1', 'k+2'). All those results are integrated into the initial network graphml files and then converted into gephi format so that this will help dive in the results in interactive way.Note that we need to handle the absent MEPs in clustering results. Because, those MEPs correspond to isolated nodes in networks. Each isolated node is considered a single cluster node in Ex-CC results. We simply omit those nodes in order to find the 'k' (number of detected cluster) value before running ILS-RCC. Not also that ILS-RCC does not process isolated nodes such that an isolated node can be part of a cluster.

    ----------------------# COMPARISON RESULTSThe 'material-stats' folder contains all the comparison results obtained for Ex-CC and ILS-CC. The csv files associated with plots are also provided.The folder structure is as follows:* material-stats/** execTimePerf: The plot shows the execution time of Ex-CC and ILS-CC based on randomly generated complete networks of different size.** graphStructureAnalysis: The plots show the weights and links statistics for all instances.** ILS-CC-vs-Ex-CC: The folder contains 4 different comparisons between Ex-CC and ILS-CC: Imbalance difference, number of detected clusters, difference of the number of detected clusters, NMI (Normalized Mutual Information)

    ----------------------Funding: Agorantic FR 3621, FMJH Program Gaspard Monge in optimization and operation research (Project 2015-2842H)

  14. s

    Social Media Worldwide Usage Statistics

    • searchlogistics.com
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Social Media Worldwide Usage Statistics [Dataset]. https://www.searchlogistics.com/learn/statistics/social-media-addiction-statistics/
    Explore at:
    Dataset updated
    Apr 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    56.8% of the world’s total population is active on social media.

  15. Social Networks (SNAP)

    • kaggle.com
    Updated Dec 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Subhajit Sahu (2021). Social Networks (SNAP) [Dataset]. https://www.kaggle.com/datasets/wolfram77/graphs-snap-soc/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 16, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Subhajit Sahu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Social Networks

    NameTypeNodesEdgesDescription
    soc-Epinions1Directed75,879508,837Who-trusts-whom network of Epinions.com
    soc-LiveJournal1Directed4,847,57168,993,773LiveJournal online social network
    soc-PokecDirected1,632,80330,622,564Pokec online social network
    soc-Slashdot0811Directed77,360905,468Slashdot social network from November 2008
    soc-Slashdot0922Directed82,168948,464Slashdot social network from February 2009
    soc-sign-bitcoin-otcWeighted, Signed, Directed, Temporal5,88135,592Bitcoin OTC web of trust network
    soc-sign-bitcoin-alphaWeighted, Signed, Directed, Temporal3,78324,186Bitcoin Alpha web of trust network
  16. Instagram: countries with the highest audience reach 2024

    • statista.com
    • davegsmith.com
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon (2025). Instagram: countries with the highest audience reach 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    As of April 2024, Bahrain was the country with the highest Instagram audience reach with 95.6 percent. Kazakhstan also had a high Instagram audience penetration rate, with 90.8 percent of the population using the social network. In the United Arab Emirates, Turkey, and Brunei, the photo-sharing platform was used by more than 85 percent of each country's population.

  17. YouTube Social Network with Communities (SNAP)

    • kaggle.com
    Updated Dec 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Subhajit Sahu (2021). YouTube Social Network with Communities (SNAP) [Dataset]. https://www.kaggle.com/datasets/wolfram77/graphs-snap-com-youtube/discussion?sort=undefined
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 16, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Subhajit Sahu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    YouTube
    Description

    Youtube social network and ground-truth communities

    https://snap.stanford.edu/data/com-Youtube.html

    Dataset information

    Youtube (http://www.youtube.com/) is a video-sharing web site that includes a social network. In the Youtube social network, users form friendship each other and users can create groups which other users can join. We consider
    such user-defined groups as ground-truth communities. This data is provided by Alan Mislove et al.
    (http://socialnetworks.mpi-sws.org/data-imc2007.html)

    We regard each connected component in a group as a separate ground-truth
    community. We remove the ground-truth communities which have less than 3
    nodes. We also provide the top 5,000 communities with highest quality
    which are described in our paper (http://arxiv.org/abs/1205.6233). As for
    the network, we provide the largest connected component.

    Network statistics
    Nodes 1,134,890
    Edges 2,987,624
    Nodes in largest WCC 1134890 (1.000)
    Edges in largest WCC 2987624 (1.000)
    Nodes in largest SCC 1134890 (1.000)
    Edges in largest SCC 2987624 (1.000)
    Average clustering coefficient 0.0808
    Number of triangles 3056386
    Fraction of closed triangles 0.002081
    Diameter (longest shortest path) 20
    90-percentile effective diameter 6.5
    Community statistics
    Number of communities 8,385
    Average community size 13.50
    Average membership size 0.10

    Source (citation)
    J. Yang and J. Leskovec. Defining and Evaluating Network Communities based on Ground-truth. ICDM, 2012. http://arxiv.org/abs/1205.6233

    Files
    File Description
    com-youtube.ungraph.txt.gz Undirected Youtube network
    com-youtube.all.cmty.txt.gz Youtube communities
    com-youtube.top5000.cmty.txt.gz Youtube communities (Top 5,000)

    Notes on inclusion into the SuiteSparse Matrix Collection, July 2018:

    The graph in the SNAP data set is 1-based, with nodes numbered 1 to
    1,157,827.

    In the SuiteSparse Matrix Collection, Problem.A is the undirected Youtube
    network, a matrix of size n-by-n with n=1,134,890, which is the number of
    unique user id's appearing in any edge.

    Problem.aux.nodeid is a list of the node id's that appear in the SNAP data set. A(i,j)=1 if person nodeid(i) is friends with person nodeid(j). The
    node id's are the same as the SNAP data set (1-based).

    C = Problem.aux.Communities_all is a sparse matrix of size n by 16,386
    which represents the communities in the com-youtube.all.cmty.txt file.
    The kth line in that file defines the kth community, and is the column
    C(:,k), where C(i,k)=1 if person ...

  18. Stack Exchange Graphs (SNAP)

    • kaggle.com
    Updated Dec 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Subhajit Sahu (2021). Stack Exchange Graphs (SNAP) [Dataset]. https://www.kaggle.com/datasets/wolfram77/graphs-snap-sx
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 16, 2021
    Dataset provided by
    Kaggle
    Authors
    Subhajit Sahu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Ask Ubuntu temporal network

    https://snap.stanford.edu/data/sx-askubuntu.html

    Dataset information

    This is a temporal network of interactions on the stack exchange web site
    Ask Ubuntu (http://askubuntu.com/). There are three different types of
    interactions represented by a directed edge (u, v, t):

    user u answered user v's question at time t (in the graph sx-askubuntu-a2q) user u commented on user v's question at time t (in the graph
    sx-askubuntu-c2q) user u commented on user v's answer at time t (in the
    graph sx-askubuntu-c2a)

    The graph sx-askubuntu contains the union of these graphs. These graphs
    were constructed from the Stack Exchange Data Dump. Node ID numbers
    correspond to the 'OwnerUserId' tag in that data dump.

    Dataset statistics (sx-askubuntu)
    Nodes 159,316
    Temporal Edges 964,437
    Edges in static graph 596,933
    Time span 2613 days

    Dataset statistics (sx-askubuntu-a2q)
    Nodes 137,517
    Temporal Edges 280,102
    Edges in static graph 262,106
    Time span 2613 days

    Dataset statistics (sx-askubuntu-c2q)
    Nodes 79,155
    Temporal Edges 327,513
    Edges in static graph 198,852
    Time span 2047 days

    Dataset statistics (sx-askubuntu-c2a)
    Nodes 75,555
    Temporal Edges 356,822
    Edges in static graph 178,210
    Time span 2418 days

    Source (citation)
    Ashwin Paranjape, Austin R. Benson, and Jure Leskovec. "Motifs in Temporal Networks." In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, 2017.

    Files
    File Description
    sx-askubuntu.txt.gz All interactions
    sx-askubuntu-a2q.txt.gz Answers to questions
    sx-askubuntu-c2q.txt.gz Comments to questions
    sx-askubuntu-c2a.txt.gz Comments to answers

    Data format

    SRC DST UNIXTS                             
    

    where edges are separated by a new line and

    SRC: id of the source node (a user)                  
    TGT: id of the target node (a user)                  
    UNIXTS: Unix timestamp (seconds since the epoch)            
                   ...
    
  19. i

    Internet Graphs (IGraphs)

    • ieee-dataport.org
    Updated Feb 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caio Dadauto (2025). Internet Graphs (IGraphs) [Dataset]. https://ieee-dataport.org/documents/internet-graphs-igraphs
    Explore at:
    Dataset updated
    Feb 13, 2025
    Authors
    Caio Dadauto
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    326 graphs

  20. Nearby Social Network Followers Graph

    • kaggle.com
    Updated Mar 15, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brian Hamachek (2021). Nearby Social Network Followers Graph [Dataset]. http://doi.org/10.34740/kaggle/dsv/2026971
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 15, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Brian Hamachek
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Context

    We’ve been operating our social network for 10 years and decided to share some data.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Lorenzo De Tomasi (2019). Youtube social network [Dataset]. https://www.kaggle.com/datasets/lodetomasi1995/youtube-social-network
Organization logo

Data from: Youtube social network

dataset for networks, graphs analysis

Related Article
Explore at:
zip(10604317 bytes)Available download formats
Dataset updated
Sep 1, 2019
Authors
Lorenzo De Tomasi
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Area covered
YouTube
Description

Youtube social network and ground-truth communities Dataset information Youtube is a video-sharing web site that includes a social network. In the Youtube social network, users form friendship each other and users can create groups which other users can join. We consider such user-defined groups as ground-truth communities. This data is provided by Alan Mislove et al.

We regard each connected component in a group as a separate ground-truth community. We remove the ground-truth communities which have less than 3 nodes. We also provide the top 5,000 communities with highest quality which are described in our paper. As for the network, we provide the largest connected component.

more info : https://snap.stanford.edu/data/com-Youtube.html

Search
Clear search
Close search
Google apps
Main menu