100+ datasets found
  1. Social media users in the United States 2020-2029

    • statista.com
    Updated Dec 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Social media users in the United States 2020-2029 [Dataset]. https://www.statista.com/statistics/278409/number-of-social-network-users-in-the-united-states/
    Explore at:
    Dataset updated
    Dec 12, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The number of social media users in the United States was forecast to continuously increase between 2024 and 2029 by in total 26 million users (+8.55 percent). After the ninth consecutive increasing year, the social media user base is estimated to reach 330.07 million users and therefore a new peak in 2029. Notably, the number of social media users of was continuously increasing over the past years.The shown figures regarding social media users have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  2. Social media users in Ireland 2020-2029

    • statista.com
    Updated Dec 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Social media users in Ireland 2020-2029 [Dataset]. https://www.statista.com/statistics/568962/predicted-number-of-social-network-users-in-ireland/
    Explore at:
    Dataset updated
    Dec 12, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Ireland
    Description

    The number of social media users in Ireland was forecast to continuously increase between 2024 and 2029 by in total 0.6 million users (+12.85 percent). After the seventh consecutive increasing year, the social media user base is estimated to reach 5.24 million users and therefore a new peak in 2029. The shown figures regarding social media users have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  3. U.S. children social media platforms usage 2020-2021

    • statista.com
    Updated Oct 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). U.S. children social media platforms usage 2020-2021 [Dataset]. https://www.statista.com/statistics/1339351/us-social-media-children-usage/
    Explore at:
    Dataset updated
    Oct 18, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    According to a survey of parents conducted in March 2020 and April 2021 in the United States, the share of children interacting with social media increased. TikTok usage among children aged 11 or younger increased to interest 21 percent of respondents in 2021, while Snapchat usage increased from nine percent to 10 percent in the examined period. In 2021, the staggering number of 46 million accounts were removed from social video platform TikTok under the suspicion of being operated by users younger than 13 years of age.

  4. DeepCube: Post-processing and annotated datasets of social media data

    • zenodo.org
    • data.niaid.nih.gov
    Updated Mar 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexandros Mokas; Eleni Kamateri; Giannis Tsampoulatidis; Alexandros Mokas; Eleni Kamateri; Giannis Tsampoulatidis (2024). DeepCube: Post-processing and annotated datasets of social media data [Dataset]. http://doi.org/10.5281/zenodo.10731637
    Explore at:
    Dataset updated
    Mar 15, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Alexandros Mokas; Eleni Kamateri; Giannis Tsampoulatidis; Alexandros Mokas; Eleni Kamateri; Giannis Tsampoulatidis
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Researcher(s): Alexandros Mokas, Eleni Kamateri

    Supervisor: Ioannis Tsampoulatidis

    This repository contains 3 social media datasets:

    2 Post-processing datasets: These datasets contain post-processing data extracted from the analysis of social media posts collected for two different use cases during the first two years of the Deepcube project. More specifically, these include:

    • The UC2 dataset containing the post-processing analysis of the Twitter data collected for the DeepCube use case (UC2) dealing with the climate induced migration in Africa. This dataset contains in total 5,695,253 social media posts collected from the Twitter platform, based on the initial version of search criteria relevant to UC2 defined by Universitat De Valencia, focused on the regions of Ethiopia and Somalia and started from 26 June, 2021 till March, 2023.
    • The UC5 dataset containing the post-processing analysis of the Twitter and Instagram data collected for the DeepCube use case (UC5) related to the sustainable and environmentally-friendly tourism. This dataset contains in total 58,143 social media posts collected from the Twitter and Instagram platform (12,881 collected from Twitter and 45,262 collected from Instagram), based on the initial version of search criteria relevant to UC5 defined by MURMURATION SAS, focused on the regions of Brasil and started from 26 June, 2021 till March, 2023.

    1 Annotated dataset: An additional anottated dataset was created that contains post-processing data along with annotations of Twitter posts collected for UC2 for the years 2010-2022. More specifically, it includes:

    • The UC2 dataset contain the post-processing of the Twitter data collected for the DeepCube use case (UC2) dealing with the climate induced migration in Africa. This dataset contains in total 1721 annotated (412 relevant and 1309 irrelevant) by social media posts collected from the Twitter platform, focused on the region of Somalia and started from 1 January, 2010 till 31 December, 2022.

    For every social media post retrieved from Twitter and Instagram, a preprocessing step was performed. This involved a three-step analysis of each post using the appropriate web service. First, the location of the post was automatically extracted from the text using a location extraction service. Second, the images included in the post were analyzed using a concept extraction service, which identified and provided the top ten concepts that best described the image. These concepts included items such as "person," "building," "drought," "sun," and so on. Finally, the sentiment expressed in the post's text was determined by using a sentiment analysis service. The sentiment was classified as either positive, negative, or neutral.

    After the social media posts were preprocessed, they were visualized using the Social Media Web Application. This intuitive, user-friendly online application was designed for both expert and non-expert users and offers a web-based user interface for filtering and visualizing the collected social media data. The application provides various filtering options, an interactive map, a timeline, and a collection of graphs to help users analyze the data. Moreover, this application provides users with the option to download aggregated data for specific periods by applying filters and clicking the "Download Posts" button. This feature allows users to easily extract and analyze social media data outside of the web application, providing greater flexibility and control over data analysis.

    The dataset is provided by INFALIA.

    INFALIA, being a spin-off of the CERTH institute and a partner of a research EU project, releases this dataset containing Tweets IDs and post pre-processing data for the sole purpose of enabling the validation of the research conducted within the DeepCube. Moreover, Twitter Content provided in this dataset to third parties remains subject to the Twitter Policy, and those third parties must agree to the Twitter Terms of Service, Privacy Policy, Developer Agreement, and Developer Policy (https://developer.twitter.com/en/developer-terms) before receiving this download.

  5. Data from: A dataset of Covid-related misinformation videos and their spread...

    • zenodo.org
    • data.niaid.nih.gov
    application/gzip
    Updated Feb 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aleksi Knuutila; Aleksi Knuutila (2021). A dataset of Covid-related misinformation videos and their spread on social media [Dataset]. http://doi.org/10.5281/zenodo.4557828
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Feb 24, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Aleksi Knuutila; Aleksi Knuutila
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains metadata about all Covid-related YouTube videos which circulated on public social media, but which YouTube eventually removed because they contained false information. It describes 8,122 videos that were shared between November 2019 and June 2020. The dataset contains unique identifiers for the videos and social media accounts that shared the videos, statistics on social media engagement and metadata such as video titles and view counts where they were recoverable. We publish the data alongside the code used to produce on Github. The dataset has reuse potential for research studying narratives related to the coronavirus, the impact of social media on knowledge about health and the politics of social media platforms.

  6. Average daily time spent on social media worldwide 2012-2024

    • statista.com
    • wwwexpressvpn.online
    • +1more
    Updated Apr 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Average daily time spent on social media worldwide 2012-2024 [Dataset]. https://www.statista.com/statistics/433871/daily-social-media-usage-worldwide/
    Explore at:
    Dataset updated
    Apr 10, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    How much time do people spend on social media? As of 2024, the average daily social media usage of internet users worldwide amounted to 143 minutes per day, down from 151 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of three hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in the U.S. was just two hours and 16 minutes. Global social media usageCurrently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively. People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events friends. Global impact of social mediaSocial media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general. During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased a polarization in politics and heightened everyday distractions.

  7. s

    Social Media Usage By Country

    • searchlogistics.com
    Updated Mar 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Social Media Usage By Country [Dataset]. https://www.searchlogistics.com/learn/statistics/social-media-addiction-statistics/
    Explore at:
    Dataset updated
    Mar 17, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The results might surprise you when looking at internet users that are active on social media in each country.

  8. c

    SpanishTweetsCOVID-19: A Social Media Enriched Covid-19 Twitter Spanish...

    • ri.conicet.gov.ar
    • datosdeinvestigacion.conicet.gov.ar
    • +2more
    Updated May 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tommasel, Antonela (2023). SpanishTweetsCOVID-19: A Social Media Enriched Covid-19 Twitter Spanish Dataset [Dataset]. http://doi.org/10.17632/nv8k69y59d.2
    Explore at:
    Dataset updated
    May 12, 2023
    Authors
    Tommasel, Antonela
    License

    Attribution-NonCommercial-ShareAlike 2.5 (CC BY-NC-SA 2.5)https://creativecommons.org/licenses/by-nc-sa/2.5/
    License information was derived automatically

    Description

    This dataset presents a large-scale collection of millions of Twitter posts related to the coronavirus pandemic in Spanish language. The collection was built by monitoring public posts written in Spanish containing a diverse set of hashtags related to the COVID-19, as well as tweets shared by the official Argentinian government offices, such as ministries and secretaries at different levels. Data was collected between March and August 2020 using the Twitter API.

    In addition to tweets IDs, the dataset includes information about mentions, retweets, media, URLs, hashtags, replies, users and content-based user relations, allowing the observation of the dynamics of the shared information. Data is presented in different tables that can be analysed separately or combined.

    The dataset aims at serving as source for studying several coronavirus effects in people through social media, including the impact of public policies, the perception of risk and related disease consequences, the adoption of guidelines, the emergence, dynamics and propagation of disinformation and rumours, the formation of communities and other social phenomena, the evolution of health related indicators (such as fear, stress, sleep disorders, or children behaviour changes), among other possibilities. In this sense, the dataset can be useful for multi-disciplinary researchers related to the different fields of data science, social network analysis, social computing, medical informatics, social sciences, among others.

  9. Z

    Data from: On the Role of Images for Analyzing Claims in Social Media

    • data.niaid.nih.gov
    • zenodo.org
    Updated Apr 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ewerth, Ralph (2021). On the Role of Images for Analyzing Claims in Social Media [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4592248
    Explore at:
    Dataset updated
    Apr 23, 2021
    Dataset provided by
    Hakimov, Sherzod
    Müller-Budack, Eric
    Cheema, Gullal S.
    Ewerth, Ralph
    Description

    This is a multimodal dataset used in the paper "On the Role of Images for Analyzing Claims in Social Media", accepted at CLEOPATRA-2021 (2nd International Workshop on Cross-lingual Event-centric Open Analytics), co-located with The Web Conference 2021.

    The four datasets are curated for two different tasks that broadly come under fake news detection. Originally, the datasets were released as part of challenges or papers for text-based NLP tasks and are further extended here with corresponding images.

    1. clef_en and clef_ar are English and Arabic Twitter datasets for claim check-worthiness detection released in CLEF CheckThat! 2020 Barrón-Cedeno et al. [1].
    2. lesa is an English Twitter dataset for claim detection released by Gupta et al.[2]
    3. mediaeval is an English Twitter dataset for conspiracy detection released in MediaEval 2020 Workshop by Pogorelov et al.[3]

    The dataset details like data curation and annotation process can be found in the cited papers.

    Datasets released here with corresponding images are relatively smaller than the original text-based tweets. The data statistics are as follows: 1. clef_en: 281 2. clef_ar: 2571 3. lesa: 1395 4. mediaeval: 1724

    Each folder has two sub-folders and a json file data.json that consists of crawled tweets. Two sub-folders are: 1. images: This Contains crawled images with the same name as tweet-id in data.json. 2. splits: This contains 5-fold splits used for training and evaluation in our paper. Each file in this folder is a csv with two columns

    Code for the paper: https://github.com/cleopatra-itn/image_text_claim_detection

    If you find the dataset and the paper useful, please cite our paper and the corresponding dataset papers[1,2,3] Cheema, Gullal S., et al. "On the Role of Images for Analyzing Claims in Social Media" 2nd International Workshop on Cross-lingual Event-centric Open Analytics (CLEOPATRA) co-located with The Web Conf 2021.

    [1] Barrón-Cedeno, Alberto, et al. "Overview of CheckThat! 2020: Automatic identification and verification of claims in social media." International Conference of the Cross-Language Evaluation Forum for European Languages. Springer, Cham, 2020. [2] Gupta, Shreya, et al. "LESA: Linguistic Encapsulation and Semantic Amalgamation Based Generalised Claim Detection from Online Content." arXiv preprint arXiv:2101.11891 (2021). [3] Pogorelov, Konstantin, et al. "FakeNews: Corona Virus and 5G Conspiracy Task at MediaEval 2020." MediaEval 2020 Workshop. 2020.

  10. s

    Social Media Worldwide Usage Statistics

    • searchlogistics.com
    Updated Mar 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Social Media Worldwide Usage Statistics [Dataset]. https://www.searchlogistics.com/learn/statistics/social-media-addiction-statistics/
    Explore at:
    Dataset updated
    Mar 17, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    56.8% of the world’s total population is active on social media.

  11. CT-FAN-21 corpus: A dataset for Fake News Detection

    • zenodo.org
    Updated Oct 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gautam Kishore Shahi; Julia Maria Struß; Thomas Mandl; Gautam Kishore Shahi; Julia Maria Struß; Thomas Mandl (2022). CT-FAN-21 corpus: A dataset for Fake News Detection [Dataset]. http://doi.org/10.5281/zenodo.4714517
    Explore at:
    Dataset updated
    Oct 23, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Gautam Kishore Shahi; Julia Maria Struß; Thomas Mandl; Gautam Kishore Shahi; Julia Maria Struß; Thomas Mandl
    Description

    Data Access: The data in the research collection provided may only be used for research purposes. Portions of the data are copyrighted and have commercial value as data, so you must be careful to use it only for research purposes. Due to these restrictions, the collection is not open data. Please download the Agreement at Data Sharing Agreement and send the signed form to fakenewstask@gmail.com .

    Citation

    Please cite our work as

    @article{shahi2021overview,
     title={Overview of the CLEF-2021 CheckThat! lab task 3 on fake news detection},
     author={Shahi, Gautam Kishore and Stru{\ss}, Julia Maria and Mandl, Thomas},
     journal={Working Notes of CLEF},
     year={2021}
    }

    Problem Definition: Given the text of a news article, determine whether the main claim made in the article is true, partially true, false, or other (e.g., claims in dispute) and detect the topical domain of the article. This task will run in English.

    Subtask 3A: Multi-class fake news detection of news articles (English) Sub-task A would detect fake news designed as a four-class classification problem. The training data will be released in batches and roughly about 900 articles with the respective label. Given the text of a news article, determine whether the main claim made in the article is true, partially true, false, or other. Our definitions for the categories are as follows:

    • False - The main claim made in an article is untrue.

    • Partially False - The main claim of an article is a mixture of true and false information. The article contains partially true and partially false information but cannot be considered 100% true. It includes all articles in categories like partially false, partially true, mostly true, miscaptioned, misleading etc., as defined by different fact-checking services.

    • True - This rating indicates that the primary elements of the main claim are demonstrably true.

    • Other- An article that cannot be categorised as true, false, or partially false due to lack of evidence about its claims. This category includes articles in dispute and unproven articles.

    Subtask 3B: Topical Domain Classification of News Articles (English) Fact-checkers require background expertise to identify the truthfulness of an article. The categorisation will help to automate the sampling process from a stream of data. Given the text of a news article, determine the topical domain of the article (English). This is a classification problem. The task is to categorise fake news articles into six topical categories like health, election, crime, climate, election, education. This task will be offered for a subset of the data of Subtask 3A.

    Input Data

    The data will be provided in the format of Id, title, text, rating, the domain; the description of the columns is as follows:

    Task 3a

    • ID- Unique identifier of the news article
    • Title- Title of the news article
    • text- Text mentioned inside the news article
    • our rating - class of the news article as false, partially false, true, other

    Task 3b

    • public_id- Unique identifier of the news article
    • Title- Title of the news article
    • text- Text mentioned inside the news article
    • domain - domain of the given news article(applicable only for task B)

    Output data format

    Task 3a

    • public_id- Unique identifier of the news article
    • predicted_rating- predicted class

    Sample File

    public_id, predicted_rating
    1, false
    2, true

    Task 3b

    • public_id- Unique identifier of the news article
    • predicted_domain- predicted domain

    Sample file

    public_id, predicted_domain
    1, health
    2, crime

    Additional data for Training

    To train your model, the participant can use additional data with a similar format; some datasets are available over the web. We don't provide the background truth for those datasets. For testing, we will not use any articles from other datasets. Some of the possible source:

    IMPORTANT!

    1. Fake news article used for task 3b is a subset of task 3a.
    2. We have used the data from 2010 to 2021, and the content of fake news is mixed up with several topics like election, COVID-19 etc.

    Evaluation Metrics

    This task is evaluated as a classification task. We will use the F1-macro measure for the ranking of teams. There is a limit of 5 runs (total and not per day), and only one person from a team is allowed to submit runs.

    Submission Link: https://competitions.codalab.org/competitions/31238

    Related Work

    • Shahi GK. AMUSED: An Annotation Framework of Multi-modal Social Media Data. arXiv preprint arXiv:2010.00502. 2020 Oct 1.https://arxiv.org/pdf/2010.00502.pdf
    • G. K. Shahi and D. Nandini, “FakeCovid – a multilingualcross-domain fact check news dataset for covid-19,” inWorkshop Proceedings of the 14th International AAAIConference on Web and Social Media, 2020. http://workshop-proceedings.icwsm.org/abstract?id=2020_14
    • Shahi, G. K., Dirkson, A., & Majchrzak, T. A. (2021). An exploratory study of covid-19 misinformation on twitter. Online Social Networks and Media, 22, 100104. doi: 10.1016/j.osnem.2020.100104
  12. B

    COVID-19 Twitter Dataset

    • borealisdata.ca
    Updated Nov 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anatoliy Gruzd; Philip Mai (2020). COVID-19 Twitter Dataset [Dataset]. http://doi.org/10.5683/SP2/PXF2CU
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 10, 2020
    Dataset provided by
    Borealis
    Authors
    Anatoliy Gruzd; Philip Mai
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The current dataset contains 237M Tweet IDs for Twitter posts that mentioned "COVID" as a keyword or as part of a hashtag (e.g., COVID-19, COVID19) between March and July of 2020. Sampling Method: hourly requests sent to Twitter Search API using Social Feed Manager, an open source software that harvests social media data and related content from Twitter and other platforms. NOTE: 1) In accordance with Twitter API Terms, only Tweet IDs are provided as part of this dataset. 2) To recollect tweets based on the list of Tweet IDs contained in these datasets, you will need to use tweet 'rehydration' programs like Hydrator (https://github.com/DocNow/hydrator) or Python library Twarc (https://github.com/DocNow/twarc). 3) This dataset, like most datasets collected via the Twitter Search API, is a sample of the available tweets on this topic and is not meant to be comprehensive. Some COVID-related tweets might not be included in the dataset either because the tweets were collected using a standardized but intermittent (hourly) sampling protocol or because tweets used hashtags/keywords other than COVID (e.g., Coronavirus or #nCoV). 4) To broaden this sample, consider comparing/merging this dataset with other COVID-19 related public datasets such as: https://github.com/thepanacealab/covid19_twitter https://ieee-dataport.org/open-access/corona-virus-covid-19-tweets-dataset https://github.com/echen102/COVID-19-TweetIDs

  13. t

    COMPUTERS AND INTERNET USE - DP02_DES_T - Dataset - CKAN

    • portal.tad3.org
    Updated Jul 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). COMPUTERS AND INTERNET USE - DP02_DES_T - Dataset - CKAN [Dataset]. https://portal.tad3.org/dataset/computers-and-internet-use--dp02_des_t
    Explore at:
    Dataset updated
    Jul 23, 2023
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    SELECTED SOCIAL CHARACTERISTICS IN THE UNITED STATES COMPUTERS AND INTERNET USE - DP02 Universe - Total households Survey-Program - American Community Survey 5-year estimates Years - 2020, 2021, 2022 The 2008 Broadband Improvement Act mandated the collection of data about computer and internet use. As a result, three questions were added to the 2013 American Community Survey (ACS) to measure these topics. The computer use question asked if anyone in the household owned or used a computer and included four response categories for a desktop or laptop, a smartphone, a tablet or other portable wireless computer, and some other type of computer. Respondents selected a checkbox for “Yes” or “No” for each response category. Respondents could select all categories that applied. Question asked if any member of the household has access to the internet. “Access” refers to whether or not someone in the household uses or can connect to the internet, regardless of whether or not they pay for the service. If a respondent answers “Yes, by paying a cell phone company or Internet service provider”, they are asked to select the type of internet service.

  14. s

    What Are The Most Used Social Media Platforms?

    • searchlogistics.com
    Updated Mar 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). What Are The Most Used Social Media Platforms? [Dataset]. https://www.searchlogistics.com/learn/statistics/social-media-addiction-statistics/
    Explore at:
    Dataset updated
    Mar 17, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Facebook and YouTube are still the most used social media platforms today.

  15. Data from: Internet users

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Apr 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2021). Internet users [Dataset]. https://www.ons.gov.uk/businessindustryandtrade/itandinternetindustry/datasets/internetusers
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Apr 6, 2021
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Internet use in the UK annual estimates by age, sex, disability, ethnic group, economic activity and geographical location, including confidence intervals.

  16. Social media users in Germany 2020-2029

    • statista.com
    Updated Dec 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Social media users in Germany 2020-2029 [Dataset]. https://www.statista.com/statistics/568943/predicted-number-of-social-network-users-in-germany/
    Explore at:
    Dataset updated
    Dec 12, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Germany
    Description

    The number of social media users in Germany was forecast to continuously increase between 2024 and 2029 by in total 11.5 million users (+24.02 percent). After the ninth consecutive increasing year, the social media user base is estimated to reach 59.34 million users and therefore a new peak in 2029. Notably, the number of social media users of was continuously increasing over the past years.The shown figures regarding social media users have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  17. s

    How Many Social Media Accounts Does The Average Person Have?

    • searchlogistics.com
    Updated Mar 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). How Many Social Media Accounts Does The Average Person Have? [Dataset]. https://www.searchlogistics.com/learn/statistics/social-media-addiction-statistics/
    Explore at:
    Dataset updated
    Mar 17, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The average person has 8-9 social media accounts. This has doubled since 2013, when the average person just had 4-5 accounts.

  18. Z

    Dataset of the study "Bridging cultural studies and learning science: An...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Dec 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stefania Manca (2020). Dataset of the study "Bridging cultural studies and learning science: An investigation of social media use for Holocaust memory and education in the digital age" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3950521
    Explore at:
    Dataset updated
    Dec 3, 2020
    Dataset authored and provided by
    Stefania Manca
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This Zenodo item contains the dataset of the study: Manca, S. (2020). “Bridging cultural studies and learning science: An investigation of social media use for Holocaust memory and education in the digital age".

    Abstract

    Along with advances in communication technology that are making new forms of historical memorialization and education available, social media are researched as valuable tools for supporting forms of digital memory and for engaging students and teachers about historical knowledge and moral education. This study aims to map the current state of Holocaust remembrance and Holocaust education and to identify main topics of research in the two areas. It adopts a mixed-method approach that combines qualitative analysis with bibliometric approaches to review publications that use social media for digital memory and history education about the Holocaust. Results based on 28 publications reveal several research topics and that, despite some common theoretical references, the two subfields mostly rely on separate conceptual backgrounds. While Holocaust remembrance is a well-established research field, there are few studies and a lack of theoretical elaboration about social media use for teaching and learning about the Holocaust.

  19. f

    July 2020 Covid-19 Twitter Streaming Dataset

    • figshare.com
    application/gzip
    Updated Oct 28, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Social Media Lab (2021). July 2020 Covid-19 Twitter Streaming Dataset [Dataset]. http://doi.org/10.6084/m9.figshare.16895674.v1
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Oct 28, 2021
    Dataset provided by
    figshare
    Authors
    Social Media Lab
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The file contains Tweet IDs* for COVID-19 related tweets collected in July, 2020 from Twitter's COVID-19 Streaming Endpoint via a custom script developed by the Social Media Lab (https://socialmedialab.ca/).

    Visit our interactive dashboard at https://stream.covid19misinfo.org/ for a preview and some general stats about this COVID-19 Twitter streaming dataset.

    For more info about Twitter's COVID-19 Streaming Endpoint, visit https://developer.twitter.com/en/docs/labs/covid19-stream/overview

  20. S

    Social Media Addiction Statistics

    • searchlogistics.com
    Updated Mar 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Search Logistics (2025). Social Media Addiction Statistics [Dataset]. https://www.searchlogistics.com/learn/statistics/social-media-addiction-statistics/
    Explore at:
    Dataset updated
    Mar 17, 2025
    Dataset authored and provided by
    Search Logistics
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this post, I'll give you all the social media addiction statistics you need to be aware of to moderate your social media use.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Social media users in the United States 2020-2029 [Dataset]. https://www.statista.com/statistics/278409/number-of-social-network-users-in-the-united-states/
Organization logo

Social media users in the United States 2020-2029

Explore at:
44 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Dec 12, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

The number of social media users in the United States was forecast to continuously increase between 2024 and 2029 by in total 26 million users (+8.55 percent). After the ninth consecutive increasing year, the social media user base is estimated to reach 330.07 million users and therefore a new peak in 2029. Notably, the number of social media users of was continuously increasing over the past years.The shown figures regarding social media users have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

Search
Clear search
Close search
Google apps
Main menu