Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/38528/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38528/terms
These datasets contain measures of socioeconomic and demographic characteristics by U.S. census tract for the years 1990-2022 and ZIP code tabulation area (ZCTA) for the years 2008-2022. Example measures include population density; population distribution by race, ethnicity, age, and income; income inequality by race and ethnicity; and proportion of population living below the poverty level, receiving public assistance, and female-headed or single parent families with kids. The datasets also contain a set of theoretically derived measures capturing neighborhood socioeconomic disadvantage and affluence, as well as a neighborhood index of Hispanic, foreign born, and limited English.
Facebook
TwitterThis data set includes socioeconomic factors within the Town of Dumfries such as people in the labor force, people without health insurance, etc. This information comes from the most recent U.S. Census provided by the United States Census Bureau. Data will be updated accordingly with the schedule of the U.S Census. https://data.census.gov/cedsci/profile?g=1600000US5123760
Facebook
TwitterSelected demographic, social, economic, and housing estimates data by community district/PUMA (Public Use Micro Data Sample Area). Three year estimates of population data from the Census Bureau's American Community Survey
Facebook
TwitterThis data package has the purpose to offer data for socio-economic indicators and to cover as much as possible the entire this indicator category with regard to the indicator type and to the geographic level. The major sources of the data are the U.S. Census Bureau and the U.S. Bureau for Labor Statistics. Another used sources of data are the U.S. Department of Housing and Urban Development and the U.S. Department of Housing and the U.S. Department Of Agriculture (Economic Research Service).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains measures of socioeconomic and demographic characteristics by US census tract for the years 2008-2017. Example measures include population density; population distribution by race, ethnicity, age, and income; and proportion of population living below the poverty level, receiving public assistance, and female-headed families. The dataset also contains a set of index variables to represent neighborhood disadvantage and affluence.A curated version of this data is available through ICPSR at http://dx.doi.org/10.3886/ICPSR38528.v1.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Title: Comprehensive Socio-Economic and Environmental Dataset of Bangladesh 1980-2023
Description:
This dataset provides an extensive overview of Bangladesh's socio-economic, demographic, and environmental indicators over time. It encompasses a wide array of features, including literacy rates, population statistics, economic growth metrics, trade balances, environmental indicators, healthcare spending, and poverty rates. The dataset aims to facilitate research and analysis on Bangladesh's development trends, policy impacts, and sustainability challenges.
Key Features:
- Population and Demographics: Includes total population, growth rates, population density, birth/death rates, infant mortality rates, fertility rates, urban and rural population distributions, and migration statistics.
- Economic Indicators: GDP, GNP, GNI, trade balances, export and import metrics, inflation rates, unemployment rates, labor force participation, and foreign direct investment.
- Poverty and Social Metrics: National, rural, and urban poverty rates, literacy rates, healthcare spending, and maternal mortality rates.
- Environmental Metrics: Tree cover loss, carbon emissions, renewable energy usage, deforestation causes, and greenhouse gas emissions.
- Infrastructure and Development: Access to electricity and clean water, arable land, private vehicles, and tourism spending.
- Crime and Defense: Crime rates, homicide rates, and military spending.
- Education: Education spending as a percentage of GDP and youth unemployment rates.
Intended Use:
This dataset is designed for data analysis, trend forecasting, and machine learning applications. It is suitable for researchers, policymakers, and analysts studying socio-economic development, environmental sustainability, and public policy in Bangladesh.
Source and Methodology:
The dataset aggregates publicly available statistics from reliable sources, including government reports, international organizations, and research publications. It has been curated and processed to ensure consistency and usability.
Potential Applications:
- Analyzing the impact of socio-economic policies on literacy and poverty rates.
- Forecasting demographic and economic growth trends.
- Exploring the relationship between environmental changes and economic activities.
- Studying the effects of urbanization and migration on rural-urban dynamics.
License:
CC BY-SA 4.0
Keywords:
Bangladesh, Socio-Economic Indicators, Environmental Metrics, Development Trends, Poverty Rates, Literacy Rates, GDP, Carbon Emissions, Renewable Energy, Migration.
Facebook
TwitterSocio-Economic Index of 7 variables overlayed to compare with the physical blight index- Education, Median Household Income, Renter Occupied, Single Parent Households, Population Density, Poverty Rate, and Unemployment Rate. This map was used to help question what socio-economic factors correlate with the observance of blighted areas in order to better create strategic decisions on how to best prevent blight.By using this dataset you acknowledge the following:Kansas Open Records Act StatementThe Kansas Open Records Act provides in K.S.A. 45-230 that "no person shall knowingly sell, give or receive, for the purpose of selling or offering for sale, any property or service to persons listed therein, any list of names and addresses contained in, or derived from public records..." Violation of this law may subject the violator to a civil penalty of $500.00 for each violation. Violators will be reported for prosecution.By accessing this site, the user makes the following certification pursuant to K.S.A. 45-220(c)(2): "The requester does not intend to, and will not: (A) Use any list of names or addresses contained in or derived from the records or information for the purpose of selling or offering for sale any property or service to any person listed or to any person who resides at any address listed; or (B) sell, give or otherwise make available to any person any list of names or addresses contained in or derived from the records or information for the purpose of allowing that person to sell or offer for sale any property or service to any person listed or to any person who resides at any address listed."
Facebook
TwitterCensus, demographic, economic, and other Justice40 data
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/34/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/34/terms
This study contains selected demographic, social, economic, public policy, and political comparative data for Switzerland, Canada, France, and Mexico for the decades of 1900-1960. Each dataset presents comparable data at the province or district level for each decade in the period. Various derived measures, such as percentages, ratios, and indices, constitute the bulk of these datasets. Data for Switzerland contain information for all cantons for each decennial year from 1900 to 1960. Variables describe population characteristics, such as the age of men and women, county and commune of origin, ratio of foreigners to Swiss, percentage of the population from other countries such as Germany, Austria and Lichtenstein, Italy, and France, the percentage of the population that were Protestants, Catholics, and Jews, births, deaths, infant mortality rates, persons per household, population density, the percentage of urban and agricultural population, marital status, marriages, divorces, professions, factory workers, and primary, secondary, and university students. Economic variables provide information on the number of corporations, factory workers, economic status, cultivated land, taxation and tax revenues, canton revenues and expenditures, federal subsidies, bankruptcies, bank account deposits, and taxable assets. Additional variables provide political information, such as national referenda returns, party votes cast in National Council elections, and seats in the cantonal legislature held by political groups such as the Peasants, Socialists, Democrats, Catholics, Radicals, and others. Data for Canada provide information for all provinces for the decades 1900-1960 on population characteristics, such as national origin, the net internal migration per 1,000 of native population, population density per square mile, the percentage of owner-occupied dwellings, the percentage of urban population, the percentage of change in population from preceding censuses, the percentage of illiterate population aged 5 years and older, and the median years of schooling. Economic variables provide information on per capita personal income, total provincial revenue and expenditure per capita, the percentage of the labor force employed in manufacturing and in agriculture, the average number of employees per manufacturing establishment, assessed value of real property per capita, the average number of acres per farm, highway and rural road mileage, transportation and communication, the number of telephones per 100 population, and the number of motor vehicles registered per 1,000 population. Additional variables on elections and votes are supplied as well. Data for France provide information for all departements for all legislative elections since 1936, the two presidential elections of 1965 and 1969, and several referenda held in the period since 1958. Social and economic data are provided for the years 1946, 1954, and 1962, while various policy data are presented for the period 1959-1962. Variables provide information on population characteristics, such as the percentages of population by age group, foreign-born, bachelors aged 20 to 59, divorced men aged 25 and older, elementary school students in private schools, elementary school students per million population from 1966 to 1967, the number of persons in household in 1962, infant mortality rates per million births, and the number of priests per 10,000 population in 1946. Economic variables focus on the Gross National Product (GNP), the revenue per capita per household, personal income per capita, income tax, the percentage of active population in industry, construction and public works, transportation, hotels, public administration, and other jobs, the percentage of skilled and unskilled industrial workers, the number of doctors per 10,000 population, the number of agricultural cooperatives in 1946, the average hectares per farm, the percentage of farms cultivated by the owner, tenants, and sharecroppers, the number of workhorses, cows, and oxen per 100 hectares of farmland in 1946, and the percentages of automobiles per 1,000 population, radios per 100 homes, and cinema seats per 1,000 population. Data are also provided on the percentage of Communists (PCF), Socialists, Radical Socialists, Conservatives, Gaullists, Moderates, Poujadists, Independents, Turnouts, and other political groups and p
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Economically active and non-active residents of households and those aged 16-64 who are economically active by National Statistics Socio-Economic classification as defined by own occupation. To provide 2001 Census based information about the National Statistics Socio-Economic (NS-SEC) Group of the population within each area as defined by own occupation. Legacy unique identifier: P00032
Facebook
TwitterThe Annual Social and Economic Supplement or March CPS supplement is the primary source of detailed information on income and work experience in the United States. Numerous publications based on this survey are issued each year by the Bureaus of Labor Statistics and Census. A public-use microdata file is available for private researchers, who also produce many academic and policy-related documents based on these data. The Annual Social and Economic Supplement is used to generate the annual Population Profile of the United States, reports on geographical mobility and educational attainment, and detailed analysis of money income and poverty status. The labor force and work experience data from this survey are used to profile the U.S. labor market and to make employment projections. To allow for the same type of in-depth analysis of hispanics, additional hispanic sample units are added to the basic CPS sample in March each year. Additional weighting is also performed so that estimates can be made for households and families, in addition to persons.
Facebook
TwitterHousehold demographic and socio-economic characteristics.
Facebook
TwitterBy Data Exercises [source]
This dataset contains a wealth of health-related information and socio-economic data aggregated from multiple sources such as the American Community Survey, clinicaltrials.gov, and cancer.gov, covering a variety of US counties. Your task is to use this collection of data to build an Ordinary Least Squares (OLS) regression model that predicts the target death rate in each county. The model should incorporate variables related to population size, health insurance coverage, educational attainment levels, median incomes and poverty rates. Additionally you will need to assess linearity between your model parameters; measure serial independence among errors; test for heteroskedasticity; evaluate normality in the residual distribution; identify any outliers or missing values and determine how categories variables are handled; compare models through implementation with k=10 cross validation within linear regressions as well as assessing multicollinearity among model parameters. Examine your results by utilizing statistical agreements such as R-squared values and Root Mean Square Error (RMSE) while also interpreting implications uncovered by your analysis based on health outcomes compared to correlates among demographics surrounding those effected most closely by land structure along geographic boundaries throughout the United States
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides data on health outcomes, demographics, and socio-economic factors for various US counties from 2010-2016. It can be used to uncover trends in health outcomes and socioeconomic factors across different counties in the US over a six year period.
The dataset contains a variety of information including statefips (a two digit code that identifies the state), countyfips (a three digit code that identifies the county), avg household size, avg annual count of cancer cases, average deaths per year, target death rate, median household income, population estimate for 2015, poverty percent study per capita binned income as well as demographic information such as median age of male and female population percent married households adults with no high school diploma adults with high school diploma percentage with some college education bachelor's degree holders among adults over 25 years old employed persons 16 and over unemployed persons 16 and over private coverage available private coverage available alone temporary private coverage available public coverage available public coverage available alone percentages of white black Asian other race married households and birth rate.
Using this dataset you can build a multivariate ordinary least squares regression model to predict “target_deathrate”. You will also need to implement k-fold (k=10) cross validation to best select your model parameters. Model diagnostics should be performed in order to assess linearity serial independence heteroskedasticity normality multicollinearity etc., while outliers missing values or categorical variables will also have an effect your model selection process. Finally it is important to interpret the resulting models within their context based upon all given factors associated with it such as outliers missing values demographic changes etc., before arriving at a meaningful conclusion which may explain trends in health outcomes and socioeconomic factors found within this dataset
- Analysis of factors influencing target deathrates in different US counties.
- Prediction of the effects of varying poverty levels on health outcomes in different US counties.
- In-depth analysis of how various socio-economic factors (e.g., median income, educational attainment, etc.) contribute to overall public health outcomes in US counties
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. -...
Facebook
TwitterSocio-economic and demographic profile of study population.
Facebook
TwitterThe 2022 Socio-Demographic and Economic Survey is a nationally representative household survey designed to provide information on population, migration, education, labour and employment, fertility, disability, household, and housing characteristics. The key objectives of the survey are:
-to generate essential key indicators as inputs in the preparation of national plans and programs for the well-being of the population -to monitor the progress of development programs as stipulated in the Sustainable Development Goals (SDGs), Medium Term Development Plans, Vision 2050 and other national policies/plans and priorities.
National coverage. 43 strata and 22 provinces were covered.
Household and Individual.
Sample survey data [ssd]
-Used a stratified, two-stage cluster sampling method, with a third stage in very large sample census units (CU, enumeration areas selected within the sample CUs).
-Produced 43 strata, 22 provinces by urban/rural (National Capital District has only urban areas).
-Allocation was done proportionately according to size (in terms of the number of households).
-Thus, 335 CUs / clusters were selected in the first- stage while a fixed number of 15 households per cluster were selected at the second stage resulting to a total sample size of 5,025 households.
Coverage: 95.8% (14 out of 335 clusters not accessed) due to security issues (tribal fights/lawlessness), and election related misconceptions.
Computer Assisted Personal Interview [capi]
The questionnaire was generated using the World Bank's software Survey Solutions. It contains a set of 47 questions covering several modules such as Employment, Fertility, Housing, Disability, Education. The questionnaire is provided in English in the External Resources section in this documentation.
-Checking of data submitted from field, identifying unique / valid households and removing invalid or duplicate households, coding of responses, consistency checks -Tabulations - generating tables for data analysis and generation of key indicators
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset includes comprehensive information on elementary schools in Arizona, integrating school data with demographic and socioeconomic data from census tracts. The primary objective is to examine the relationship between school facilities and socioeconomic factors.
This data can be used for various analyses, including studying the impact of socioeconomic status on educational resources.
Objective: The primary objective of this dataset is to examine the link between socioeconomic status, demographics, and the quality of school facilities in Arizona.
Dataset Structure:
The dataset is divided into the following components: 1. Schools.csv: Contains detailed information about each school, including geographical coordinates. 2. Demographics.csv: Contains demographic and socioeconomic data linked to each school’s census tract.
How to Use the Dataset:
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset provides Census 2021 estimates that classify Household Reference Persons aged 16 years and over in England and Wales by NS-SEC of Household Reference Person and by household composition. The estimates are as at Census Day, 21 March 2021.
As Census 2021 was during a unique period of rapid change, take care when using this data for planning purposes. Read more about this quality notice.
Data about household relationships might not always look consistent with legal partnership status. This is because of complexity of living arrangements and the way people interpreted these questions. Take care when using these two variables together. Read more about this quality notice.
Area type
Census 2021 statistics are published for a number of different geographies. These can be large, for example the whole of England, or small, for example an output area (OA), the lowest level of geography for which statistics are produced.
For higher levels of geography, more detailed statistics can be produced. When a lower level of geography is used, such as output areas (which have a minimum of 100 persons), the statistics produced have less detail. This is to protect the confidentiality of people and ensure that individuals or their characteristics cannot be identified.
Lower tier local authorities
Lower tier local authorities provide a range of local services. There are 309 lower tier local authorities in England made up of 181 non-metropolitan districts, 59 unitary authorities, 36 metropolitan districts and 33 London boroughs (including City of London). In Wales there are 22 local authorities made up of 22 unitary authorities.
Coverage
Census 2021 statistics are published for the whole of England and Wales. However, you can choose to filter areas by:
National Statistics Socio-economic Classification (NS-SeC)
The National Statistics Socio-economic Classification (NS-SEC) indicates a person's socio-economic position based on their occupation and other job characteristics.
It is an Office for National Statistics standard classification. NS-SEC categories are assigned based on a person's occupation, whether employed, self-employed, or supervising other employees.
Full-time students are recorded in the "full-time students" category regardless of whether they are economically active.
Household composition
Households according to the relationships between members.
One-family households are classified by:
Other households are classified by:
Facebook
TwitterThis data package has the purpose to offer data for demographic indicators, part of 5-years American Community Census, that could be needed in the analysis made along with health-related data or as stand-alone. The American Community Survey based on 5-years estimates is, according to U.S Census Bureau, the most reliable, because the samples used are the largest and the data collected cover all country areas, regardless of the population number.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Description:
This comprehensive dataset provides a historical overview of India's key statistical indicators across multiple domains. The data has been sourced from https://www.macrotrends.net, which aggregates information from reputable sources like the United Nations (UN), World Bank, and other authoritative organizations.
Contents:
Disclaimer and Terms of Use:
The historical data provided in this dataset is intended solely for informational purposes and is not meant for trading purposes or as financial advice. Neither Macrotrends LLC nor any of our information providers will be liable for any damages relating to your use of the data provided. Users are encouraged to verify the data's accuracy and refer to the original sources for any critical decisions or analyses.
Facebook
TwitterThis statistic looks at which socio-economic demographics retailers target in the United Kingdom in 2016. According to the survey, ** percent of retailers focus on the AB social-economic group (upper middle and middle classes) while only one percent focus on groups DE (working and non-working classes).
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/38528/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38528/terms
These datasets contain measures of socioeconomic and demographic characteristics by U.S. census tract for the years 1990-2022 and ZIP code tabulation area (ZCTA) for the years 2008-2022. Example measures include population density; population distribution by race, ethnicity, age, and income; income inequality by race and ethnicity; and proportion of population living below the poverty level, receiving public assistance, and female-headed or single parent families with kids. The datasets also contain a set of theoretically derived measures capturing neighborhood socioeconomic disadvantage and affluence, as well as a neighborhood index of Hispanic, foreign born, and limited English.