100+ datasets found
  1. National Neighborhood Data Archive (NaNDA): Socioeconomic Status and...

    • icpsr.umich.edu
    • archive.icpsr.umich.edu
    ascii, delimited, r +3
    Updated Jan 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Clarke, Philippa; Melendez, Robert; Noppert, Grace; Chenoweth, Megan; Gypin, Lindsay (2025). National Neighborhood Data Archive (NaNDA): Socioeconomic Status and Demographic Characteristics of Census Tracts and ZIP Code Tabulation Areas, United States, 1990-2022 [Dataset]. http://doi.org/10.3886/ICPSR38528.v5
    Explore at:
    stata, delimited, sas, spss, r, asciiAvailable download formats
    Dataset updated
    Jan 22, 2025
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Clarke, Philippa; Melendez, Robert; Noppert, Grace; Chenoweth, Megan; Gypin, Lindsay
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/38528/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38528/terms

    Time period covered
    1990 - 2022
    Area covered
    United States
    Description

    These datasets contain measures of socioeconomic and demographic characteristics by U.S. census tract for the years 1990-2022 and ZIP code tabulation area (ZCTA) for the years 2008-2022. Example measures include population density; population distribution by race, ethnicity, age, and income; income inequality by race and ethnicity; and proportion of population living below the poverty level, receiving public assistance, and female-headed or single parent families with kids. The datasets also contain a set of theoretically derived measures capturing neighborhood socioeconomic disadvantage and affluence, as well as a neighborhood index of Hispanic, foreign born, and limited English. The disadvantage variable was incorrectly calculated for the following datasets: DS7 Socioeconomic Status and Demographic Characteristics of Census Tracts (2020 Census), United States, 2018-2022 Data DS8 Socioeconomic Status and Demographic Characteristics of ZIP Code Tabulation Areas (2020 Census), United States, 2018-2022 Data Please refrain from downloading these datasets. The updated datasets are forthcoming and will be made available soon. Users needing these datasets can reach out to nanda-admin@umich.edu.

  2. o

    National Neighborhood Data Archive (NaNDA): Socioeconomic Status and...

    • openicpsr.org
    Updated Jul 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Philippa Clarke; Robert Melendez; Lindsay Gypin (2024). National Neighborhood Data Archive (NaNDA): Socioeconomic Status and Demographic Characteristics of Census Tracts, 1990-2010 [Dataset]. http://doi.org/10.3886/E207962V1
    Explore at:
    Dataset updated
    Jul 15, 2024
    Dataset provided by
    University of Michigan. Institute for Social Research
    Authors
    Philippa Clarke; Robert Melendez; Lindsay Gypin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1990 - 2010
    Area covered
    United States
    Description

    This dataset contains measures of socioeconomic and demographic characteristics by US census tract 1990-2010. Example measures include population density; population distribution by race, ethnicity, age, and income; and proportion of population living below the poverty level, receiving public assistance, and female-headed families. The dataset also contains a set of index variables to represent neighborhood disadvantage and affluence.

  3. T

    Socioeconomic Demographics

    • data.dumfriesva.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Jan 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census (2022). Socioeconomic Demographics [Dataset]. https://data.dumfriesva.gov/Government/Socioeconomic-Demographics/cgre-23vp
    Explore at:
    csv, application/rssxml, application/rdfxml, xml, json, tsvAvailable download formats
    Dataset updated
    Jan 12, 2022
    Dataset authored and provided by
    U.S. Census
    Description

    This data set includes socioeconomic factors within the Town of Dumfries such as people in the labor force, people without health insurance, etc. This information comes from the most recent U.S. Census provided by the United States Census Bureau. Data will be updated accordingly with the schedule of the U.S Census. https://data.census.gov/cedsci/profile?g=1600000US5123760

  4. d

    Demographic, Social, Economic, and Housing Profiles by Community...

    • catalog.data.gov
    • data.cityofnewyork.us
    • +2more
    Updated Nov 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). Demographic, Social, Economic, and Housing Profiles by Community District/PUMA [Dataset]. https://catalog.data.gov/dataset/demographic-social-economic-and-housing-profiles-by-community-district-puma
    Explore at:
    Dataset updated
    Nov 1, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    Selected demographic, social, economic, and housing estimates data by community district/PUMA (Public Use Micro Data Sample Area). Three year estimates of population data from the Census Bureau's American Community Survey

  5. US Socioeconomic Indicators Data Package

    • johnsnowlabs.com
    csv
    Updated Jan 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Snow Labs (2021). US Socioeconomic Indicators Data Package [Dataset]. https://www.johnsnowlabs.com/marketplace/us-socioeconomic-indicators-data-package/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 20, 2021
    Dataset authored and provided by
    John Snow Labs
    Description

    This data package has the purpose to offer data for socio-economic indicators and to cover as much as possible the entire this indicator category with regard to the indicator type and to the geographic level. The major sources of the data are the U.S. Census Bureau and the U.S. Bureau for Labor Statistics. Another used sources of data are the U.S. Department of Housing and Urban Development and the U.S. Department of Housing and the U.S. Department Of Agriculture (Economic Research Service).

  6. f

    Specification of socioeconomic and demographic variables.

    • datasetcatalog.nlm.nih.gov
    Updated Jun 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    de Souza Kihara, Fernanda Miye; Mascarello, Keila Cristina; Maciel, Ethel Leonor Noia; Arcêncio, Ricardo Alexandre; de Faria Marcos Terena, Nahari; Sales, Carolina Maia Martins; Berra, Thaís Zamboni; Rocha, Matheus Piumbini; de Araújo Alecrim, Tatiana Ferraz (2021). Specification of socioeconomic and demographic variables. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000840768
    Explore at:
    Dataset updated
    Jun 9, 2021
    Authors
    de Souza Kihara, Fernanda Miye; Mascarello, Keila Cristina; Maciel, Ethel Leonor Noia; Arcêncio, Ricardo Alexandre; de Faria Marcos Terena, Nahari; Sales, Carolina Maia Martins; Berra, Thaís Zamboni; Rocha, Matheus Piumbini; de Araújo Alecrim, Tatiana Ferraz
    Description

    Specification of socioeconomic and demographic variables.

  7. c

    Data from: Socioeconomic and Demographic Characteristics of Synthetic Drug...

    • s.cnmilf.com
    • icpsr.umich.edu
    • +1more
    Updated Mar 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Socioeconomic and Demographic Characteristics of Synthetic Drug Users in San Diego and Washington, DC, 1990 [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/socioeconomic-and-demographic-characteristics-of-synthetic-drug-users-in-san-diego-and-was-542b6
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    National Institute of Justice
    Area covered
    San Diego, Washington
    Description

    This data collection offers information on socioeconomic and demographic characteristics of synthetic drug users, characteristics of synthetic drug use such as frequency and method of intake, and factors that prompt drug users to begin to use synthetic drugs or to switch from agricultural drugs to synthetic drugs. Synthetic drugs investigated in the collection include PCP, ice, ecstasy, and speed, while nonsynthetic drugs include alcohol, marijuana, heroin, cocaine, and crack. Patterns of use for all of these drugs are explored. Questions about specific drugs include whether the respondent had ever used the drug, age first used, number of days in the past 30 days the drug was used, whether the drug was used more than two times per week, method of drug intake, and the drug used most often by the respondent and by the respondent's friends. Additional variables include reasons for preferring synthetic or nonsynthetic drugs, reasons the respondent would discontinue use or switch to another drug, availability and cost of certain drugs, and extent of involvement in selling, money handling, and protection. Finally, demographic variables such as sex, ethnicity, age, highest grade completed, employment activity in the past month, geographical _location, and subject source (criminal justice system or drug treatment center) are included in the file. The unit of analysis is the individual drug user.

  8. a

    2018 ACS Demographic & Socio-Economic Data Of USA At County Level

    • one-health-data-hub-osu-geog.hub.arcgis.com
    Updated May 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    snakka_OSU_GEOG (2024). 2018 ACS Demographic & Socio-Economic Data Of USA At County Level [Dataset]. https://one-health-data-hub-osu-geog.hub.arcgis.com/items/9ee2d32702c049958f18044297f60665
    Explore at:
    Dataset updated
    May 22, 2024
    Dataset authored and provided by
    snakka_OSU_GEOG
    Area covered
    Description

    Data SourcesAmerican Community Survey (ACS):Conducted by: U.S. Census BureauDescription: The ACS is an ongoing survey that provides detailed demographic and socio-economic data on the population and housing characteristics of the United States.Content: The survey collects information on various topics such as income, education, employment, health insurance coverage, and housing costs and conditions.Frequency: The ACS offers more frequent and up-to-date information compared to the decennial census, with annual estimates produced based on a rolling sample of households.Purpose: ACS data is essential for policymakers, researchers, and communities to make informed decisions and address the evolving needs of the population.CDC/ATSDR Social Vulnerability Index (SVI):Created by: ATSDR’s Geospatial Research, Analysis & Services Program (GRASP)Utilized by: CDCDescription: The SVI is designed to identify and map communities that are most likely to need support before, during, and after hazardous events.Content: SVI ranks U.S. Census tracts based on 15 social factors, including unemployment, minority status, and disability, and groups them into four related themes. Each tract receives rankings for each Census variable and for each theme, as well as an overall ranking, indicating its relative vulnerability.Purpose: SVI data provides insights into the social vulnerability of communities at both the tract and county levels, helping public health officials and emergency response planners allocate resources effectively.Utilization and IntegrationBy integrating data from both the ACS and the SVI, this dataset enables an in-depth analysis and understanding of various socio-economic and demographic indicators at the census tract level. This integrated data is valuable for research, policymaking, and community planning purposes, allowing for a comprehensive understanding of social and economic dynamics across different geographical areas in the United States.ApplicationsPolicy Development: Helps policymakers develop targeted interventions to address the needs of vulnerable populations.Resource Allocation: Assists emergency response planners in allocating resources more effectively based on community vulnerability.Research: Provides a robust foundation for academic and applied research in socio-economic and demographic studies.Community Planning: Aids in the planning and development of community programs and initiatives aimed at improving living conditions and reducing vulnerabilities.Note: Due to limitations in the ArcGIS Pro environment, the data variable names may be truncated. Refer to the provided table for a clear understanding of the variables.CSV Variable NameShapefile Variable NameDescriptionStateNameStateNameName of the stateStateFipsStateFipsState-level FIPS codeState nameStateNameName of the stateCountyNameCountyNameName of the countyCensusFipsCensusFipsCounty-level FIPS codeState abbreviationStateFipsState abbreviationCountyFipsCountyFipsCounty-level FIPS codeCensusFipsCensusFipsCounty-level FIPS codeCounty nameCountyNameName of the countyAREA_SQMIAREA_SQMITract area in square milesE_TOTPOPE_TOTPOPPopulation estimates, 2013-2017 ACSEP_POVEP_POVPercentage of persons below poverty estimateEP_UNEMPEP_UNEMPUnemployment Rate estimateEP_HBURDEP_HBURDHousing cost burdened occupied housing units with annual income less than $75,000EP_UNINSUREP_UNINSURUninsured in the total civilian noninstitutionalized population estimate, 2013-2017 ACSEP_PCIEP_PCIPer capita income estimate, 2013-2017 ACSEP_DISABLEP_DISABLPercentage of civilian noninstitutionalized population with a disability estimate, 2013-2017 ACSEP_SNGPNTEP_SNGPNTPercentage of single parent households with children under 18 estimate, 2013-2017 ACSEP_MINRTYEP_MINRTYPercentage minority (all persons except white, non-Hispanic) estimate, 2013-2017 ACSEP_LIMENGEP_LIMENGPercentage of persons (age 5+) who speak English "less than well" estimate, 2013-2017 ACSEP_MUNITEP_MUNITPercentage of housing in structures with 10 or more units estimateEP_MOBILEEP_MOBILEPercentage of mobile homes estimateEP_CROWDEP_CROWDPercentage of occupied housing units with more people than rooms estimateEP_NOVEHEP_NOVEHPercentage of households with no vehicle available estimateEP_GROUPQEP_GROUPQPercentage of persons in group quarters estimate, 2013-2017 ACSBelow_5_yrBelow_5_yrUnder 5 years: Percentage of Total populationBelow_18_yrBelow_18_yrUnder 18 years: Percentage of Total population18-39_yr18_39_yr18-39 years: Percentage of Total population40-64_yr40_64_yr40-64 years: Percentage of Total populationAbove_65_yrAbove_65_yrAbove 65 years: Percentage of Total populationPop_malePop_malePercentage of total population malePop_femalePop_femalePercentage of total population femaleWhitewhitePercentage population of white aloneBlackblackPercentage population of black or African American aloneAmerican_indianamerican_iPercentage population of American Indian and Alaska native aloneAsianasianPercentage population of Asian aloneHawaiian_pacific_islanderhawaiian_pPercentage population of Native Hawaiian and Other Pacific Islander aloneSome_othersome_otherPercentage population of some other race aloneMedian_tot_householdsmedian_totMedian household income in the past 12 months (in 2019 inflation-adjusted dollars) by household size – total householdsLess_than_high_schoolLess_than_Percentage of Educational attainment for the population less than 9th grades and 9th to 12th grade, no diploma estimateHigh_schoolHigh_schooPercentage of Educational attainment for the population of High school graduate (includes equivalency)Some_collegeSome_collePercentage of Educational attainment for the population of Some college, no degreeAssociates_degreeAssociatesPercentage of Educational attainment for the population of associate degreeBachelor’s_degreeBachelor_sPercentage of Educational attainment for the population of Bachelor’s degreeMaster’s_degreeMaster_s_dPercentage of Educational attainment for the population of Graduate or professional degreecomp_devicescomp_devicPercentage of Household having one or more types of computing devicesInternetInternetPercentage of Household with an Internet subscriptionBroadbandBroadbandPercentage of Household having Broadband of any typeSatelite_internetSatelite_iPercentage of Household having Satellite Internet serviceNo_internetNo_internePercentage of Household having No Internet accessNo_computerNo_computePercentage of Household having No computer

  9. Census Data - Selected socioeconomic indicators in Chicago, 2008 – 2012

    • data.cityofchicago.org
    • healthdata.gov
    • +4more
    csv, xlsx, xml
    Updated Sep 12, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2014). Census Data - Selected socioeconomic indicators in Chicago, 2008 – 2012 [Dataset]. https://data.cityofchicago.org/Health-Human-Services/Census-Data-Selected-socioeconomic-indicators-in-C/kn9c-c2s2
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Sep 12, 2014
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    U.S. Census Bureau
    Area covered
    Chicago
    Description

    This dataset contains a selection of six socioeconomic indicators of public health significance and a “hardship index,” by Chicago community area, for the years 2008 – 2012. The indicators are the percent of occupied housing units with more than one person per room (i.e., crowded housing); the percent of households living below the federal poverty level; the percent of persons in the labor force over the age of 16 years that are unemployed; the percent of persons over the age of 25 years without a high school diploma; the percent of the population under 18 or over 64 years of age (i.e., dependency); and per capita income. Indicators for Chicago as a whole are provided in the final row of the table. See the full dataset description for more information at: https://data.cityofchicago.org/api/views/fwb8-6aw5/files/A5KBlegGR2nWI1jgP6pjJl32CTPwPbkl9KU3FxlZk-A?download=true&filename=P:\EPI\OEPHI\MATERIALS\REFERENCES\ECONOMIC_INDICATORS\Dataset_Description_socioeconomic_indicators_2012_FOR_PORTAL_ONLY.pdf

  10. C

    Selected socioeconomic indicators by neighborhood

    • data.cityofchicago.org
    csv, xlsx, xml
    Updated Sep 12, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2014). Selected socioeconomic indicators by neighborhood [Dataset]. https://data.cityofchicago.org/Health-Human-Services/Selected-socioeconomic-indicators-by-neighborhood/i9hv-en6g
    Explore at:
    xml, csv, xlsxAvailable download formats
    Dataset updated
    Sep 12, 2014
    Authors
    U.S. Census Bureau
    Description

    This dataset contains a selection of six socioeconomic indicators of public health significance and a “hardship index,” by Chicago community area, for the years 2007 – 2011. The indicators are the percent of occupied housing units with more than one person per room (i.e., crowded housing); the percent of households living below the federal poverty level; the percent of persons in the labor force over the age of 16 years that are unemployed; the percent of persons over the age of 25 years without a high school diploma; the percent of the population under 18 or over 64 years of age (i.e., dependency); and per capita income. Indicators for Chicago as a whole are provided in the final row of the table. See the full dataset description for more information at https://data.cityofchicago.org/api/assets/8D10B9D1-CCA3-4E7E-92C7-5125E9AB46E9.

  11. d

    Compendium - Socio-economic factors

    • digital.nhs.uk
    xls
    Updated Dec 17, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2009). Compendium - Socio-economic factors [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/compendium-other/current/socio-economic-factors
    Explore at:
    xls(265.7 kB)Available download formats
    Dataset updated
    Dec 17, 2009
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Jan 1, 2001 - Dec 31, 2001
    Area covered
    Wales, England
    Description

    Economically active and non-active residents of households and those aged 16-64 who are economically active by National Statistics Socio-Economic classification as defined by own occupation. To provide 2001 Census based information about the National Statistics Socio-Economic (NS-SEC) Group of the population within each area as defined by own occupation. Legacy unique identifier: P00032

  12. Demographics

    • hub.arcgis.com
    Updated Jun 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Agriculture and Consumer Services (2017). Demographics [Dataset]. https://hub.arcgis.com/maps/FDACS::demographics/about
    Explore at:
    Dataset updated
    Jun 27, 2017
    Dataset authored and provided by
    Florida Department of Agriculture and Consumer Serviceshttps://www.fdacs.gov/
    Area covered
    Description

    The demographic data displayed in this theme of Florida’s Roadmap to Living Healthy are quantitative measures that exhibit the socioeconomic state of Florida’s communities. The data sets comprising this themed map include topics such as population, race, income level, age, education, housing, and lifestyle data for all of Florida’s 67 counties, and other basic demographic characteristics. The Florida Department of Agriculture and Consumer Services has utilized the most current demographic statistical data from trusted sources such as the U.S. Census Bureau, U.S. Department of Housing and Urban Development, U.S. Department of Labor Bureau of Labor Statistics, Florida Department of Children and Families, and Esri to craft this custom visualization. Demographics provide profound perspective to your data analytics and will help you recognize the distinctive characteristics of a population based on its location. This demographic-themed mapping tool will simplify your ability to identify the specific socioeconomic needs of every community in Florida.

  13. Data from: Neighborhood Socioeconomic and demographic changes in Baltimore's...

    • search.datacite.org
    • portal.edirepository.org
    • +1more
    Updated 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dexter H Locke (2019). Neighborhood Socioeconomic and demographic changes in Baltimore's (BES) Neighborhoods: 1930 to 2010 [Dataset]. http://doi.org/10.6073/pasta/346d11d1e409ac395d18f5619b896336
    Explore at:
    Dataset updated
    2019
    Dataset provided by
    DataCitehttps://www.datacite.org/
    Environmental Data Initiative
    Authors
    Dexter H Locke
    Description

    This dataset was created primarily to map and track socioeconomic and demographic variables from the US Census Bureau from year 1940 to year 2010, by decade, within the City of Baltimore's Mayor's Office of Information Technology (MOIT) year 2010 neighborhood boundaries. The socioeconomic and demographic variables include the percent White, percent African American, percent owner occupied homes, percent vacant homes, the percentage of age 25 and older people with a high school education or greater, and the percentage of age 25 and older people with a college education or greater. Percent White and percent African American are also provided for year 1930. Each of the the year 2010 neighborhood boundaries were also attributed with the 1937 Home Owners' Loan Corporation (HOLC) definition of neighborhoods via spatial overlay. HOLC rated neighborhoods as A, B, C, D or Undefined. HOLC categorized the perceived safety and risk of mortgage refinance lending in metropolitan areas using a hierarchical grading scale of A, B, C, and D. A and B areas were considered the safest areas for federal investment due to their newer housing as well as higher earning and racially homogenous households. In contrast, C and D graded areas were viewed to be in a state of inevitable decline, depreciation, and decay, and thus risky for federal investment, due to their older housing stock and racial and ethnic composition. This policy was inherently a racist practice. Places were graded based on who lived there; poor areas with people of color were labeled as lower and less-than. HOLC's 1937 neighborhoods do not cover the entire extent of the year 2010 neighborhood boundaries. The neighborhood boundaries were also augmented to include which of the year 2017 Housing Market Typology (HMT) the 2010 neighborhoods fall within. Finally, the neighborhood boundaries were also augmented to include tree canopy and tree canopy change year 2007 to year 2015.

  14. a

    2019 ACS Demographic & Socio-Economic Data Of Oklahoma At County Level

    • one-health-data-hub-osu-geog.hub.arcgis.com
    Updated Apr 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    snakka_OSU_GEOG (2024). 2019 ACS Demographic & Socio-Economic Data Of Oklahoma At County Level [Dataset]. https://one-health-data-hub-osu-geog.hub.arcgis.com/items/6b5cde44f8474398b5286815b025da3b
    Explore at:
    Dataset updated
    Apr 8, 2024
    Dataset authored and provided by
    snakka_OSU_GEOG
    Area covered
    Description

    we utilized data from two main sources: the United States Census Bureau's American Community Survey (ACS) and the Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry (CDC/ATSDR) Social Vulnerability Index (SVI). American Community Survey (ACS):

    Conducted by the U.S. Census Bureau, the ACS is an ongoing survey that provides detailed demographic and socio-economic data on the population and housing characteristics of the United States. The survey collects information on various topics such as income, education, employment, health insurance coverage, and housing costs and conditions. It offers more frequent and up-to-date information compared to the decennial census, with annual estimates produced based on a rolling sample of households. The ACS data is essential for policymakers, researchers, and communities to make informed decisions and address the evolving needs of the population.

    CDC/ATSDR Social Vulnerability Index (SVI):

    Created by ATSDR’s Geospatial Research, Analysis & Services Program (GRASP) and utilized by the CDC, the SVI is designed to identify and map communities that are most likely to need support before, during, and after hazardous events. SVI ranks U.S. Census tracts based on 15 social factors, including unemployment, minority status, and disability, and groups them into four related themes Each tract receives rankings for each Census variable and for each theme, as well as an overall ranking, indicating its relative vulnerability. SVI data provides insights into the social vulnerability of communities at both the tract and county levels, helping public health officials and emergency response planners allocate resources effectively.

    In our utilization of these sources, we likely integrated data from both the ACS and the SVI to analyze and understand various socio-economic and demographic indicators at the state, county, and possibly tract levels. This integrated data would have been valuable for research, policymaking, and community planning purposes, allowing for a comprehensive understanding of social and economic dynamics across different geographical areas in the United States

    Note: Due to limitations in the ArcGIS Pro environment, the data variable names may be truncated. Refer to the provided table for a clear understanding of the variablesCSV Variable NameShapefile Variable NameDescriptionStateNameStateNameName of the stateStateFipsStateFipsState-level FIPS codeState nameStateNameName of the stateCountyNameCountyNameName of the countyCensusFipsCensusFipsCounty-level FIPS codeState abbreviationStateFipsState abbreviationCountyFipsCountyFipsCounty-level FIPS codeCensusFipsCensusFipsCounty-level FIPS codeCounty nameCountyNameName of the countyAREA_SQMIAREA_SQMITract area in square milesE_TOTPOPE_TOTPOPPopulation estimates, 2014-2018 ACSEP_POVEP_POVPercentage of persons below poverty estimateEP_UNEMPEP_UNEMPUnemployment Rate estimateEP_HBURDEP_HBURDHousing cost burdened occupied housing units with annual income less than $75,000EP_UNINSUREP_UNINSURUninsured in the total civilian noninstitutionalized population estimate, 2014-2018 ACSEP_PCIEP_PCIPer capita income estimate, 2014-2018 ACSEP_DISABLEP_DISABLPercentage of civilian noninstitutionalized population with a disability estimate, 2014-2018 ACSEP_SNGPNTEP_SNGPNTPercentage of single parent households with children under 18 estimate, 2014-2018 ACSEP_MINRTYEP_MINRTYPercentage minority (all persons except white, non-Hispanic) estimate, 2014-2018 ACSEP_LIMENGEP_LIMENGPercentage of persons (age 5+) who speak English "less than well" estimate, 2014-2018 ACSEP_MUNITEP_MUNITPercentage of housing in structures with 10 or more units estimateEP_MOBILEEP_MOBILEPercentage of mobile homes estimateEP_CROWDEP_CROWDPercentage of occupied housing units with more people than rooms estimateEP_NOVEHEP_NOVEHPercentage of households with no vehicle available estimateEP_GROUPQEP_GROUPQPercentage of persons in group quarters estimate, 2014-2018 ACSBelow_5_yrBelow_5_yrUnder 5 years: Percentage of Total populationBelow_18_yrBelow_18_yrUnder 18 years: Percentage of Total population18-39_yr18_39_yr18-39 years: Percentage of Total population40-64_yr40_64_yr40-64 years: Percentage of Total populationAbove_65_yrAbove_65_yrAbove 65 years: Percentage of Total populationPop_malePop_malePercentage of total population malePop_femalePop_femalePercentage of total population femaleWhitewhitePercentage population of white aloneBlackblackPercentage population of black or African American aloneAmerican_indianamerican_iPercentage population of American Indian and Alaska native aloneAsianasianPercentage population of Asian aloneHawaiian_pacific_islanderhawaiian_pPercentage population of Native Hawaiian and Other Pacific Islander aloneSome_othersome_otherPercentage population of some other race aloneMedian_tot_householdsmedian_totMedian household income in the past 12 months (in 2019 inflation-adjusted dollars) by household size – total householdsLess_than_high_schoolLess_than_Percentage of Educational attainment for the population less than 9th grades and 9th to 12th grade, no diploma estimateHigh_schoolHigh_schooPercentage of Educational attainment for the population of High school graduate (includes equivalency)Some_collegeSome_collePercentage of Educational attainment for the population of Some college, no degreeAssociates_degreeAssociatesPercentage of Educational attainment for the population of associate degreeBachelor’s_degreeBachelor_sPercentage of Educational attainment for the population of Bachelor’s degreeMaster’s_degreeMaster_s_dPercentage of Educational attainment for the population of Graduate or professional degreecomp_devicescomp_devicPercentage of Household having one or more types of computing devicesInternetInternetPercentage of Household with an Internet subscriptionBroadbandBroadbandPercentage of Household having Broadband of any typeSatelite_internetSatelite_iPercentage of Household having Satellite Internet serviceNo_internetNo_internePercentage of Household having No Internet accessNo_computerNo_computePercentage of Household having No computer

  15. d

    Maryland Counties Socioeconomic Characteristics (ACS 5-yr Estimates 2022)

    • catalog.data.gov
    • opendata.maryland.gov
    • +1more
    Updated Mar 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    opendata.maryland.gov (2024). Maryland Counties Socioeconomic Characteristics (ACS 5-yr Estimates 2022) [Dataset]. https://catalog.data.gov/dataset/maryland-counties-socioeconomic-characteristics
    Explore at:
    Dataset updated
    Mar 8, 2024
    Dataset provided by
    opendata.maryland.gov
    Area covered
    Maryland
    Description

    Data for population, gender, race, labor force, educational attainment, income, poverty, households and housing units from the American Community Survey 5-yr Estimates, 2018-2022.

  16. Comparative Socio-Economic, Public Policy, and Political Data,1900-1960

    • icpsr.umich.edu
    ascii, sas, spss
    Updated Jan 12, 2006
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hofferbert, Richard I. (2006). Comparative Socio-Economic, Public Policy, and Political Data,1900-1960 [Dataset]. http://doi.org/10.3886/ICPSR00034.v1
    Explore at:
    spss, sas, asciiAvailable download formats
    Dataset updated
    Jan 12, 2006
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Hofferbert, Richard I.
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/34/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/34/terms

    Area covered
    France, Germany, Mexico, Switzerland, Europe, Canada
    Description

    This study contains selected demographic, social, economic, public policy, and political comparative data for Switzerland, Canada, France, and Mexico for the decades of 1900-1960. Each dataset presents comparable data at the province or district level for each decade in the period. Various derived measures, such as percentages, ratios, and indices, constitute the bulk of these datasets. Data for Switzerland contain information for all cantons for each decennial year from 1900 to 1960. Variables describe population characteristics, such as the age of men and women, county and commune of origin, ratio of foreigners to Swiss, percentage of the population from other countries such as Germany, Austria and Lichtenstein, Italy, and France, the percentage of the population that were Protestants, Catholics, and Jews, births, deaths, infant mortality rates, persons per household, population density, the percentage of urban and agricultural population, marital status, marriages, divorces, professions, factory workers, and primary, secondary, and university students. Economic variables provide information on the number of corporations, factory workers, economic status, cultivated land, taxation and tax revenues, canton revenues and expenditures, federal subsidies, bankruptcies, bank account deposits, and taxable assets. Additional variables provide political information, such as national referenda returns, party votes cast in National Council elections, and seats in the cantonal legislature held by political groups such as the Peasants, Socialists, Democrats, Catholics, Radicals, and others. Data for Canada provide information for all provinces for the decades 1900-1960 on population characteristics, such as national origin, the net internal migration per 1,000 of native population, population density per square mile, the percentage of owner-occupied dwellings, the percentage of urban population, the percentage of change in population from preceding censuses, the percentage of illiterate population aged 5 years and older, and the median years of schooling. Economic variables provide information on per capita personal income, total provincial revenue and expenditure per capita, the percentage of the labor force employed in manufacturing and in agriculture, the average number of employees per manufacturing establishment, assessed value of real property per capita, the average number of acres per farm, highway and rural road mileage, transportation and communication, the number of telephones per 100 population, and the number of motor vehicles registered per 1,000 population. Additional variables on elections and votes are supplied as well. Data for France provide information for all departements for all legislative elections since 1936, the two presidential elections of 1965 and 1969, and several referenda held in the period since 1958. Social and economic data are provided for the years 1946, 1954, and 1962, while various policy data are presented for the period 1959-1962. Variables provide information on population characteristics, such as the percentages of population by age group, foreign-born, bachelors aged 20 to 59, divorced men aged 25 and older, elementary school students in private schools, elementary school students per million population from 1966 to 1967, the number of persons in household in 1962, infant mortality rates per million births, and the number of priests per 10,000 population in 1946. Economic variables focus on the Gross National Product (GNP), the revenue per capita per household, personal income per capita, income tax, the percentage of active population in industry, construction and public works, transportation, hotels, public administration, and other jobs, the percentage of skilled and unskilled industrial workers, the number of doctors per 10,000 population, the number of agricultural cooperatives in 1946, the average hectares per farm, the percentage of farms cultivated by the owner, tenants, and sharecroppers, the number of workhorses, cows, and oxen per 100 hectares of farmland in 1946, and the percentages of automobiles per 1,000 population, radios per 100 homes, and cinema seats per 1,000 population. Data are also provided on the percentage of Communists (PCF), Socialists, Radical Socialists, Conservatives, Gaullists, Moderates, Poujadists, Independents, Turnouts, and other political groups and p

  17. f

    Scio-demographic and socio-economic characteristics of the respondents.

    • plos.figshare.com
    • figshare.com
    xls
    Updated Jun 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nitai Roy; Md. Bony Amin; Maskura Jahan Maliha; Bibhuti Sarker; Md Aktarujjaman; Ekhtear Hossain; Gourango Talukdar (2023). Scio-demographic and socio-economic characteristics of the respondents. [Dataset]. http://doi.org/10.1371/journal.pone.0257634.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 9, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Nitai Roy; Md. Bony Amin; Maskura Jahan Maliha; Bibhuti Sarker; Md Aktarujjaman; Ekhtear Hossain; Gourango Talukdar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Scio-demographic and socio-economic characteristics of the respondents.

  18. f

    Socio-economic and demographic characteristics of the sample.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Sep 28, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin-Prevel, Yves; Allemand, Pauline; Ayassou, Kossiwavi A.; Moursi, Mourad; De Moura, Fabiana F.; Ouedraogo, Henri Gautier; Nikiema, Laetitia (2016). Socio-economic and demographic characteristics of the sample. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001572247
    Explore at:
    Dataset updated
    Sep 28, 2016
    Authors
    Martin-Prevel, Yves; Allemand, Pauline; Ayassou, Kossiwavi A.; Moursi, Mourad; De Moura, Fabiana F.; Ouedraogo, Henri Gautier; Nikiema, Laetitia
    Description

    Socio-economic and demographic characteristics of the sample.

  19. Census Data by Zip Code 2012-2016 Data Package

    • johnsnowlabs.com
    csv
    Updated Jan 20, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Snow Labs (2021). Census Data by Zip Code 2012-2016 Data Package [Dataset]. https://www.johnsnowlabs.com/marketplace/census-data-by-zip-code-2012-2016-data-package/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 20, 2021
    Dataset authored and provided by
    John Snow Labs
    Description

    This data package has the purpose to offer data for demographic indicators, part of 5-years American Community Census, that could be needed in the analysis made along with health-related data or as stand-alone. The American Community Survey based on 5-years estimates is, according to U.S Census Bureau, the most reliable, because the samples used are the largest and the data collected cover all country areas, regardless of the population number.

  20. f

    Socioeconomic and demographic characteristics of study population by area of...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Sep 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tran-Nhu, Linh; Pitcairn, Charlie F. M.; Laverty, Anthony A.; Hone, Thomas V.; Mrejen, Matías; Pescarini, Julia M.; Chan, Jasper J. L. (2022). Socioeconomic and demographic characteristics of study population by area of residence. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000288727
    Explore at:
    Dataset updated
    Sep 8, 2022
    Authors
    Tran-Nhu, Linh; Pitcairn, Charlie F. M.; Laverty, Anthony A.; Hone, Thomas V.; Mrejen, Matías; Pescarini, Julia M.; Chan, Jasper J. L.
    Description

    Socioeconomic and demographic characteristics of study population by area of residence.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Clarke, Philippa; Melendez, Robert; Noppert, Grace; Chenoweth, Megan; Gypin, Lindsay (2025). National Neighborhood Data Archive (NaNDA): Socioeconomic Status and Demographic Characteristics of Census Tracts and ZIP Code Tabulation Areas, United States, 1990-2022 [Dataset]. http://doi.org/10.3886/ICPSR38528.v5
Organization logo

National Neighborhood Data Archive (NaNDA): Socioeconomic Status and Demographic Characteristics of Census Tracts and ZIP Code Tabulation Areas, United States, 1990-2022

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
stata, delimited, sas, spss, r, asciiAvailable download formats
Dataset updated
Jan 22, 2025
Dataset provided by
Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
Authors
Clarke, Philippa; Melendez, Robert; Noppert, Grace; Chenoweth, Megan; Gypin, Lindsay
License

https://www.icpsr.umich.edu/web/ICPSR/studies/38528/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38528/terms

Time period covered
1990 - 2022
Area covered
United States
Description

These datasets contain measures of socioeconomic and demographic characteristics by U.S. census tract for the years 1990-2022 and ZIP code tabulation area (ZCTA) for the years 2008-2022. Example measures include population density; population distribution by race, ethnicity, age, and income; income inequality by race and ethnicity; and proportion of population living below the poverty level, receiving public assistance, and female-headed or single parent families with kids. The datasets also contain a set of theoretically derived measures capturing neighborhood socioeconomic disadvantage and affluence, as well as a neighborhood index of Hispanic, foreign born, and limited English. The disadvantage variable was incorrectly calculated for the following datasets: DS7 Socioeconomic Status and Demographic Characteristics of Census Tracts (2020 Census), United States, 2018-2022 Data DS8 Socioeconomic Status and Demographic Characteristics of ZIP Code Tabulation Areas (2020 Census), United States, 2018-2022 Data Please refrain from downloading these datasets. The updated datasets are forthcoming and will be made available soon. Users needing these datasets can reach out to nanda-admin@umich.edu.

Search
Clear search
Close search
Google apps
Main menu