Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The National Soil Database has produced a national database of soil geochemistry including point and spatial distribution maps of major nutrients, major elements, essential trace elements, trace elements of special interest and minor elements. In addition, this study has generated a National Soil Archive, comprising bulk soil samples and a nucleic acids archive each of which represent a valuable resource for future soils research in Ireland. The geographical coherence of the geochemical results was considered to be predominantly underpinned by underlying parent material and glacial geology. Other factors such as soil type, land use, anthropogenic effects and climatic effects were also evident. The coherence between elements, as displayed by multivariate analyses, was evident in this study. Examples included strong relationships between Co, Fe, As, Mn and Cu. This study applied large-scale microbiological analysis of soils for the first time in Ireland and in doing so also investigated microbial community structure in a range of soil types in order to determine the relationship between soil microbiology and chemistry. The results of the microbiological analyses were consistent with geochemical analyses and demonstrated that bacterial community populations appeared to be predominantly determined by soil parent material and soil type.
The National Cooperative Soil Survey - Soil Characterization Database (NCSS-SCD) contains laboratory data for more than 65,000 locations (i.e. xy coordinates) throughout the United States and its Territories, and about 2,100 locations from other countries. It is a compilation of data from the Kellogg Soil Survey Laboratory (KSSL) and several cooperating laboratories. The data steward and distributor is the National Soil Survey Center (NSSC). Information contained within the database includes physical, chemical, biological, mineralogical, morphological, and mid infrared reflectance (MIR) soil measurements, as well a collection of calculated values. The intended use of the data is to support interpretations related to soil use and management. Data Usage Access to the data is provided via the following user interfaces: 1. Interactive Web Map 2. Lab Data Mart (LDM) for querying data and generating reports 3. Soil Data Access (SDA) web services for querying data 5. Direct download of the entire database in several formats Data at each location includes measurements at multiple depths (e.g. soil horizons). However, not all analyses have been conducted for each location and depth. Typically, a suite of measurements was collected based upon assumed or known conditions regarding the soil being analyzed. For example, soils of arid environments are routinely analyzed for salts and carbonates as part of the standard analysis suite. Standard morphological soil descriptions are available for about 60,000 of these locations. Mid-infrared (MIR) spectroscopy is available for about 7,000 locations. Soil fertility measurements, such as those made by Agricultural Experiment Stations, were not made. Most of the data were obtained over the last 40 years, with about 4,000 locations before 1960, 25,000 from 1960-1990, 27,000 from 1990-2010, and 13,000 from 2010 to 2021. Generally, the number of measurements recorded per location has increased over time. Typically, the data were collected to represent a soil series or map unit component concept. They may also have been sampled to determine the range of variation within a given landscape. Although strict quality-control measures are applied, the NSSC does not warrant that the data are error free. Also, in some cases the measurements are not within the applicability range of the laboratory methods. For example, dispersion of clay is incomplete in some soils by the standard method used for determining particle-size distribution. Soils producing incomplete dispersion include those that are derived from volcanic materials or that have a high content of iron oxides, gypsum, carbonates, or other cementing materials. Also note that determination of clay minerals by x-ray diffraction is relative. Measurements of very high or very low quantities by any method are not very precise. Other measurements have other limitations in some kinds of soils. Such data are retained in the database for research purposes. Also, some of the data for were obtained from cooperating laboratories within the NCSS. The accuracy of the location coordinates has not been quantified but can be inferred from the precision of their decimal degrees and the presence of a map datum. Some older records may correspond to a county centroid. When the map datum is missing it can be assumed that data prior to 1990 was recorded using NAD27 and with WGS84 after 1995. For detailed information about methods used in the KSSL and other laboratories refer to "Soil Survey Investigation Report No. 42". For information on the application of laboratory data, refer to "Soil Survey Investigation Report No. 45". If you are unfamiliar with any terms or methods feel free to consult your NRCS State Soil Scientist. Terms of Use This dataset is not designed for use as a primary regulatory tool in permitting or citing decisions but may be used as a reference source. This is public information and may be interpreted by organizations, agencies, units of government, or others based on needs; however, they are responsible for the appropriate application. Federal, State, or local regulatory bodies are not to reassign to the Natural Resources Conservation Service or the National Cooperative Soil Survey any authority for the decisions that they make. The Natural Resources Conservation Service will not perform any evaluations of these data for purposes related solely to State or local regulatory programs.
This dataset consists of general soil association units. It was developed by the National Cooperative Soil Survey and supersedes the State Soil Geographic (STATSGO) dataset published in 1994. It consists of a broad based inventory of soils and non-soil areas that occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped of 1:250,000 in the continental U.S., Hawaii, Puerto, and the Virgin Islands and 1:1,000,000 in Alaska. The dataset was created by generalizing more detailed soil survey maps. Where more detailed soil survey maps were not available, data on geology, topography, vegetation, and climate were assembled, together with Land Remote Sensing Satellite (LANDSAT) images. Soils of like areas were studied, and the probable classification and extent of the soils were determined. Map unit composition was determined by transecting or sampling areas on the more detailed maps and expanding the data statistically to characterize the entire map unit. This dataset consists of georeferenced vector digital data and tabular digital data. The map data were collected in 1- by 2-degree topographic quadrangle units and merged into a seamless national dataset. The soil map units are linked to attributes in the National Soil Information system relational database, which gives the proportionate extent of the component soils and their properties. These data provide information about soil features on or near the surface of the Earth. Data were collected as part of the National Cooperative Soil Survey. These data are intended for geographic display and analysis at the state, regional, and national level. The data should be displayed and analyzed at scales appropriate for 1:250,000-scale data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Indian Regions Soil Image Database (IRSID) : A dataset for classification of Indian soil typesThe database “Indian Regions Soil Image Database (IRSID)”, represent the Indian soil types. The dataset provides information on the soil for each image. This helps in the development and evaluation of an image analysis algorithm for the classification of soil type. The dataset consists of original color images of the sand, clay, sandy loam, loam, and loam sandy soil types. The images of the soil samples are collected from two different regions in Andhra Pradesh state, India. As the samples collected region is situated near the Godavari basin, most of the soil samples collected are either sand or clay. The samples that are collected in Madanapalle, Andhra Pradesh, India are sandy loam and loam soils. The total number of soil samples collected is 16 numbers. The soil images are captured by using an android mobile camera with 48 megapixels ISOCELL GM2 sensor with an f/2.0 aperture lens. The ISOCELL imager providesa broader, clearer viewing experience to mobile device users. Smart Wide Dynamic Range (WDR) technology of ISOCELL can capture the details more accurately in both bright and dark areas, even in high contrast lighting conditions. The collected test samples were tested in the soil mechanics lab by using sieve analysis and hydrometer test to find out the percentage of sand, silt, and clay in each soil sample. By plotting these percentage values on the USDA soil texture triangle, soil texture type can be identified. The test data of each sample is provided in .csv file.
This hosted feature layer has been published in RI State Plane Feet NAD 83.This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the Rhode Island Soil Survey Program in partnership with the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped.
Soil is a key natural resource that provides the foundation of basic ecosystem services. Soil determines the types of farms and forests that can grow on a landscape. Soil filters water. Soil helps regulate the Earth's climate by storing large amounts of carbon. Activities that degrade soils reduce the value of the ecosystem services that soil provides. For example, since 1850 35% of human caused green house gas emissions are linked to land use change. The Soil Science Society of America is a good source of of additional information.Dataset SummaryThis layer provides access to a 30 arc-second (roughly 1 km) cell-sized raster with attributes describing the basic properties of soil derived from the Harmonized World Soil Database v 1.2. The values in this layer are for the dominant soil in each mapping unit (sequence field = 1).Attributes in this layer include:Soil Phase 1 and Soil Phase 2 - Phases identify characteristics of soils important for land use or management. Soils may have up to 2 phases with phase 1 being more important than phase 2.Other Properties - provides additional information important for agriculture.Additionally, 3 class description fields were added by Esri based on the document Harmonized World Soil Database Version 1.2 for use in web map pop-ups:Soil Phase 1 DescriptionSoil Phase 2 DescriptionOther Properties DescriptionThe layer is symbolized with the Soil Unit Name field.The document Harmonized World Soil Database Version 1.2 provides more detail on the soil properties attributes contained in this layer.Other attributes contained in this layer include:Soil Mapping Unit Name - the name of the spatially dominant major soil groupSoil Mapping Unit Symbol - a two letter code for labeling the spatially dominant major soil group in thematic mapsData Source - the HWSD is an aggregation of datasets. The data sources are the European Soil Database (ESDB), the 1:1 million soil map of China (CHINA), the Soil and Terrain Database Program (SOTWIS), and the Digital Soil Map of the World (DSMW).Percentage of Mapping Unit covered by dominant componentMore information on the Harmonized World Soil Database is available here.Other layers created from the Harmonized World Soil Database are available on ArcGIS Online:World Soils Harmonized World Soil Database - Bulk DensityWorld Soils Harmonized World Soil Database – ChemistryWorld Soils Harmonized World Soil Database - Exchange CapacityWorld Soils Harmonized World Soil Database – HydricWorld Soils Harmonized World Soil Database – TextureThe authors of this data set request that projects using these data include the following citation:FAO/IIASA/ISRIC/ISSCAS/JRC, 2012. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. The source data for this layer are available here.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started follow these links:Living Atlas Discussion GroupSoil Data Discussion GroupThe Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Soil Type is a dataset for classification tasks - it contains Soil annotations for 158 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
These Soil Mapping Data Packages include 1. a Soil Map dataset which includes the equivalents to Soil Project Boundaries, Soil Survey Spatial View mapping polygons with attributes from the Soil Name and Layer Files, plus + A Soil Site dataset which includes soil pit site information and detailed soil pit descriptions and any associated lab analyses, and + The Soil Data Dictionary which documents the fields and allowable codes within the data. The Soil Map geodatabase contains the 'best available' data ranging from 1:20,000 scale to 1:250,000 scale with overlapping data removed. The choice of the datasets that remain is based on connectivity to the soil attributes (soil name and layer files), map scale and survey date. (Note: the BC Soil Landscapes of Canada (BCSLC) 1:1,000,000 data has not been included in the Soil_Map or SIFT, but is available from: CANSIS. (A complete soils data package with overlapping soil survey mapping and BCSLC is available on request. Note that the soil survey data with attributes can also be viewed interactively in the [Soil Information Finder Tool](The Soil Map dataset is also available for interactive map viewing or as KMZs from the Soil Information Finder Tool website.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The dataset consists of three raster GeoTIFF files describing the following soil properties in the US: available water capacity, field capacity, and soil porosity. The input data were obtained from the gridded National Soil Survey Geographic (gNATSGO) Database and the Gridded Soil Survey Geographic (gSSURGO) Database with Soil Data Development tools provided by the Natural Resources Conservation Service. The soil characteristics derived from the databases were Available Water Capacity (AWC), Water Content (one-third bar) (WC), and Bulk Density (one-third bar) (BD) aggregated as weighted average values in the upper 1 m of soil. AWC and WC layers were converted to mm/m to express respectively available water capacity and field capacity in 1 m of soil, and BD layer was used to produce soil porosity raster assuming that the average particle density of soils is equal to 2.65 g/cm3. For each soil property, soil maps with CONUS, Alaska, and Hawaii geographic coverages were derived from separa ...
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
The Harmonized World Soil Database version 2.0 (HWSD v2.0) is a unique global soil inventory providing information on the morphological, chemical and physical properties of soils at approximately 1 km resolution. Its main objective is to serve as a basis for prospective studies on agro-ecological zoning, food security and climate change. The Harmonized World Soil Database (HWSD) was established in 2008 by the International Institute for Applied Systems Analysis (IIASA) and FAO, and in partnership with International Soil Reference and Information Centre (ISRIC), the European Soil Bureau Network (ESBN) and the Institute for Soil Sciences Chinese Academy of Sciences (CAS). The data entry and harmonization within a Geographic Information System (GIS) was carried out at IIASA, with verification of the database undertaken by all partners. HWSD was then updated in 2013 (HWSD v1.2) and in 2023 (HWSD v2.0). This updated version (HWSD v2.0) is built on the previous versions of HWSD with several improvements on (i) the data source that now includes several national soil databases, (ii) an enhanced number of soil attributes available for seven soil depth layers, instead of two in HWSD v1.2, and (iii) a common soil reference for all soil units (FAO1990 and the World Reference Base for Soil Resources). This contributes to a further harmonization of the database. The GIS raster image file is linked to the soil attribute database. The HWSD v2.0 soil attribute database provides information on the soil unit composition for each of the near 30 000 soil association mapping units. The HWSD v2.0 Viewer, provided with the database, creates this link automatically and provides direct access to the soil attribute data and the soil association information. Note: A tutorial for accessing HWSD ver. 2.0 using R (prepared by David Rossiter, June 2023) has been added as an 'associated resource' (NOTE: Needs the SQLite version of HWSD v2 as provided below).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
A soil survey is an inventory of soils and their spatial distribution over a landscape. Soil survey reports contain two parts. The first part is a soil map or series of maps at a particular scale with coding for each soil. Soil survey reports also include a supporting document that contains background information such as how the soil survey was conducted, and an explanation of interpretive criteria and a summary of the area occupied by various soil types. The detailed soil surveys identify more of the variation in soil types across smaller landscapes, as compared to Generalized (1:100 000, i.e. provincial overview) and Reconnaissance or General (1:125 000, or 1/2 inch to 1 mile.) soil surveys. Detailed soil survey information is much more accurate and reliable for making decisions at the farm-level. Soil surveys have been published for most of the agricultural areas, and many surrounding areas, across Canada. Data from these surveys comprise the most detailed soil inventory information in the National Soil Database (NSDB). Version 3 was created by Agriculture and Agri-Food Canada in the 2010's by amalgamating version 2 data. It introduced some minor refinements to the version 2 data structure to provide closer alignment with the Soil Landscapes of Canada data structure.
This data set describes select global soil parameters from the Harmonized World Soil Database (HWSD) v1.2, including additional calculated parameters such as area weighted soil organic carbon (kg C per m2), as high resolution NetCDF files. These data were regridded and upscaled from the Harmonized World Soil Database v1.2 The HWSD provides information for addressing emerging problems of land competition for food production, bio-energy demand and threats to biodiversity and can be used as input to model global carbon cycles. The data are presented as a series of 27 NetCDF v3/v4 (*.nc4) files at 0.05-degree spatial resolution, and one NetCDF file regridded to the Community Land Model (CLM) grid cell resolution (0.9 degree x 1.25 degree) for the nominal year of 2000.
This dataset includes hourly in-situ soil moisture measurements from data loggers in predominantly organic soils (very low bulk density) at two locations: 1) along the Sag River in Alaska, U.S., and 2) near Red Earth Creek in Alberta, Canada. The dataset also provides soil moisture probe periods, temperature probe readings, as well as calibration coefficients and soil profile measurements used to create per probe calibrations for derived volumetric moisture content. The Campbell Scientific CR200 data loggers used CS625 water content reflectometers and temperature probe 109. Further details to the derivation of the calibrations are provided in a supplementary document. The purpose of the dataset is to provide field measurements that can be used for calibration/validation for satellite-based soil moisture retrieval algorithms. With some interruptions, the dataset exists from July 2017 to July 2021. The data are provided in comma-separated values (CSV) format.
This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties.
This layer shows soil type, based on the result of a classification established from Kalimantan RePPProT data on 'SL_ORDER' field (1990, 1:250,000 scale) . This data was provided and processed by Daemeter Consulting. Soil categories from RePPProT were then re-classified by the World Resources Institute according to the FAO Digital Soil Map of the World, for use in the Suitability Mapper (2012). The FAO data is available at http://www.fao.org/geonetwork/srv/en/metadata.show?id=14116 . Data separated into categories: Inceptisol; Oxisol; Alfisol; Ultisol; Spodosol; Entisol; Histosol.
Version 3.1 of the ISRIC-WISE database (WISE3) was compiled from a wide range of soil profile data collected by many soil professionals worldwide. All profiles have been harmonized with respect to the original Legend (1974) and Revised Legend (1988) of FAO-Unesco. Thereby, the primary soil data ─ and any secondary data derived from them ─ can be linked using GIS to the spatial units of the digitized Soil Map of the World as well as more recent digital Soil and Terrain (SOTER) databases through the soil legend code.
WISE3 holds selected attribute data for some 10,250 soil profiles, with some 47,800 horizons, from 149 countries. Individual profiles have been sampled, described, and analyzed according to methods and standards in use in the originating countries. There is no uniform set of properties for which all profiles have analytical data, generally because only selected measurements were planned during the original surveys. Methods used for laboratory determinations of specific soil properties vary between laboratories and over time; sometimes, results for the same property cannot be compared directly. WISE3 will inevitably include gaps, being a compilation of legacy soil data derived from traditional soil survey, which can be of a taxonomic, geographic, and soil analytical nature. As a result, the amount of data available for modelling is sometimes much less than expected. Adroit use of the data, however, will permit a wide range of agricultural and environmental applications at a global and continental scale (1:500 000 and broader).
Preferred citation: Batjes NH 2009. Harmonized soil profile data for applications at global and continental scales: updates to the WISE database. Soil Use and Management 5:124–127, http://dx.doi.org/10.1111/j.1475-2743.2009.00202.x
The HWSD is a 30 arc-second raster database with over 16000 different soil mapping units that combines existing regional and national updates of soil information worldwide (SOTER, ESD, Soil Map of China, WISE) with the information contained within the 1:5 000 000 scale FAO-UNESCO Soil Map of the World (FAO, 19711981).
The raster database consists of 21600 rows and 43200 columns, which are linked to harmonized soil property data. The use of a standardized structure allows for the linkage of the attribute data with the raster map to display or query the composition in terms of soil units and the characterization of selected soil parameters (organic Carbon, pH, water storage capacity, soil depth, cation exchange capacity of the soil and the clay fraction, total exchangeable nutrients, lime and gypsum contents, sodium exchange percentage, salinity, textural class and granulometry).
Acronyms: ESDB - European Soil Database CHINA - China soil map SOTER - Soil and Terrain database SOTWIS - Regional SOTER databases WISE - World Inventory of Soil Emission Potential database DSMW - Digital Soil Map of the World
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sixty one soils (soil types) represent the range of soils found across South Australia’s agricultural lands. Mapping shows the most common soil within each map unit, while more detailed proportion data are supplied for calculating respective areas of each soil type (spatial data statistics).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Hydric soils are defined as those soils that are sufficiently wet in the upper part to develop anaerobic conditions during the growing season. The Hydric Soils section presents the most current information about hydric soils. The lists of hydric soils were created by using National Soil Information System (NASIS) database selection criteria that were developed by the National Technical Committee for Hydric Soils. These criteria are selected soil properties that are documented in Soil Taxonomy (Soil Survey Staff, 1999) and were designed primarily to generate a list of potentially hydric soils from the National Soil Information System (NASIS) database. It updates information that was previously published in Hydric Soils of the United States and coordinates it with information that has been published in the Federal Register. It also includes the most recent set of field indicators of hydric soils. The database selection criteria are selected soil properties that are documented in Soil Taxonomy and were designed primarily to generate a list of potentially hydric soils from soil survey databases. Only criteria 1, 3, and 4 can be used in the field to determine hydric soils; however, proof of anaerobic conditions must also be obtained for criteria 1, 3, and 4 either through data or best professional judgment (from Tech Note 1). The primary purpose of these selection criteria is to generate a list of soil map unit components that are likely to meet the hydric soil definition. Caution must be used when comparing the list of hydric components to soil survey maps. Many of the soils on the list have ranges in water table depths that allow the soil component to range from hydric to nonhydric depending on the location of the soil within the landscape as described in the map unit. Lists of hydric soils along with soil survey maps are good off-site ancillary tools to assist in wetland determinations, but they are not a substitute for observations made during on-site investigations. The list of field indicators of hydric soils — The field indicators are morphological properties known to be associated with soils that meet the definition of a hydric soil. Presence of one or more field indicators suggests that the processes associated with hydric soil formation have taken place on the site being observed. The field indicators are essential for hydric soil identification because once formed, they persist in the soil during both wet and dry seasonal periods. The Hydric Soil Technical Notes — Contain National Technical Committee for Hydric Soils (NTCHS) updates, insights, standards, and clarifications. Users can query the database by State or by Soil Survey Area. Resources in this dataset:Resource Title: Website Pointer to Hydric Soils . File Name: Web Page, url: https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/use/hydric/ Includes description of Criteria, Query by State or Soil Survey Area, national Technical Committee for Hydric Soils. Technical Notes, and Related Links. Report Metadata:
Criteria:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The National Soil Database has produced a national database of soil geochemistry including point and spatial distribution maps of major nutrients, major elements, essential trace elements, trace elements of special interest and minor elements. In addition, this study has generated a National Soil Archive, comprising bulk soil samples and a nucleic acids archive each of which represent a valuable resource for future soils research in Ireland. The geographical coherence of the geochemical results was considered to be predominantly underpinned by underlying parent material and glacial geology. Other factors such as soil type, land use, anthropogenic effects and climatic effects were also evident. The coherence between elements, as displayed by multivariate analyses, was evident in this study. Examples included strong relationships between Co, Fe, As, Mn and Cu. This study applied large-scale microbiological analysis of soils for the first time in Ireland and in doing so also investigated microbial community structure in a range of soil types in order to determine the relationship between soil microbiology and chemistry. The results of the microbiological analyses were consistent with geochemical analyses and demonstrated that bacterial community populations appeared to be predominantly determined by soil parent material and soil type.