The Harmonized World Soil Database version 2.0 (HWSD v2.0) is a unique global soil inventory providing information on the morphological, chemical and physical properties of soils at approximately 1 km resolution. Its main objective is to serve as a basis for prospective studies on agro-ecological zoning, food security and climate change.
The Harmonized World Soil Database (HWSD) was established in 2008 by the International Institute for Applied Systems Analysis (IIASA) and FAO, and in partnership with International Soil Reference and Information Centre (ISRIC), the European Soil Bureau Network (ESBN) and the Institute for Soil Sciences Chinese Academy of Sciences (CAS). The data entry and harmonization within a Geographic Information System (GIS) was carried out at IIASA, with verification of the database undertaken by all partners. HWSD was then updated in 2013 (HWSD v1.2) and in 2023 (HWSD v2.0).
This updated version (HWSD v2.0) is built on the previous versions of HWSD with several improvements on (i) the data source that now includes several national soil databases, (ii) an enhanced number of soil attributes available for seven soil depth layers, instead of two in HWSD v1.2, and (iii) a common soil reference for all soil units (FAO1990 and the World Reference Base for Soil Resources). This contributes to a further harmonization of the database.
The GIS raster image file is linked to the soil attribute database. The HWSD v2.0 soil attribute database provides information on the soil unit composition for each of the near 30 000 soil association mapping units. The HWSD v2.0 Viewer, provided with the database, creates this link automatically and provides direct access to the soil attribute data and the soil association information.
Note: A tutorial for accessing HWSD ver. 2.0 using R (prepared by David Rossiter, June 2023) has been added as an 'associated resource' (NOTE: Needs the SQLite version of HWSD v2 as provided below).
https://www.gnu.org/licenses/fdl-1.3.en.htmlhttps://www.gnu.org/licenses/fdl-1.3.en.html
soilDB is one of the Algorithms for Quantitative Pedology (AQP) suite of R packages, and comprises a collection of functions for reading data from USDA-NCSS (National Cooperative Soil Survey) soil databases including SoilWeb, Series Extent Explorer, and Soil Data Explorer. This package provides methods for extracting soils information from local PedonPC and AK Site databases (MS Access format), local NASIS databases (MS SQL Server), and the SDA webservice. Currently USDA-NCSS data sources are supported, however, there are plans to develop interfaces to outside systems such as the Global Soil Mapping project. Resources in this dataset:Resource Title: Website pointer to soilDB: Soil Database Interface. File Name: Web Page, url: https://cran.r-project.org/web/packages/soilDB/index.html
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The National Soil Database has produced a national database of soil geochemistry including point and spatial distribution maps of major nutrients, major elements, essential trace elements, trace elements of special interest and minor elements. In addition, this study has generated a National Soil Archive, comprising bulk soil samples and a nucleic acids archive each of which represent a valuable resource for future soils research in Ireland. The geographical coherence of the geochemical results was considered to be predominantly underpinned by underlying parent material and glacial geology. Other factors such as soil type, land use, anthropogenic effects and climatic effects were also evident. The coherence between elements, as displayed by multivariate analyses, was evident in this study. Examples included strong relationships between Co, Fe, As, Mn and Cu. This study applied large-scale microbiological analysis of soils for the first time in Ireland and in doing so also investigated microbial community structure in a range of soil types in order to determine the relationship between soil microbiology and chemistry. The results of the microbiological analyses were consistent with geochemical analyses and demonstrated that bacterial community populations appeared to be predominantly determined by soil parent material and soil type.
The dataset consists of three raster GeoTIFF files describing the following soil properties in the US: available water capacity, field capacity, and soil porosity. The input data were obtained from the gridded National Soil Survey Geographic (gNATSGO) Database and the Gridded Soil Survey Geographic (gSSURGO) Database with Soil Data Development tools provided by the Natural Resources Conservation Service. The soil characteristics derived from the databases were Available Water Capacity (AWC), Water Content (one-third bar) (WC), and Bulk Density (one-third bar) (BD) aggregated as weighted average values in the upper 1 m of soil. AWC and WC layers were converted to mm/m to express respectively available water capacity and field capacity in 1 m of soil, and BD layer was used to produce soil porosity raster assuming that the average particle density of soils is equal to 2.65 g/cm3. For each soil property, soil maps with CONUS, Alaska, and Hawaii geographic coverages were derived from separate databases and combined into one file. To replace no data values within a raster, we used data values statistically derived from neighboring cell values. The final product is provided in a GeoTIFF format and therefore can be easily integrated into raster-based models requiring estimates of soil characteristics in the US.
Soil information, from the global to the local scale, has often been the one missing biophysical information layer, the absence of which has added to the uncertainties of predicting potentials and constraints for food and fiber production. The lack of reliable and harmonized soil data has considerably hampered land degradation assessments, environmental impact studies and adapted sustainable land management interventions.
Recognizing the urgent need for improved soil information worldwide, particularly in the context of the Climate Change Convention and the Kyoto Protocol for soil carbon measurements and the immediate requirement for the FAO/IIASA Global Agro-ecological Assessment study (GAEZ v3.0), the Food and Agriculture Organization of the United Nations (FAO) and the International Institute for Applied Systems Analysis (IIASA) took the initiativeof combining the recently collected vast volumes of regional and national updates of soil information with the information already contained within the 1:5,000,000 scale FAOUNESCO Digital Soil Map of the World, into a new comprehensive Harmonized World Soil Database (HWSD).
This database was achieved in partnership with: • ISRIC-World Soil Information together with FAO, which were responsible for the development of regional soil and terrain databases and the WISE soil profile database; • the European Soil Bureau Network, which had recently completed a major update of soil information for Europe and northern Eurasia, and • the Institute of Soil Science, Chinese Academy of Sciences which provided the recent 1:1,000,000 scale Soil Map of China.
Soil Landscapes of the United States (SOLUS)metadataDescriptionSoil Landscapes of the United States, or SOLUS, is a national map product developed by the National Cooperative Soil Survey that is focused on providing a consistent set of spatially continuous soil property maps to support large scope soil investigations and land use decisions. SOLUS maps use a digital soil mapping framework that combines multiple sources of soil survey data with environmental covariate data and machine learning. Digital soil mapping is the production of georeferenced soil databases based on the quantitative relationships between soil measurements made in the field or laboratory and environmental data. Numerical models use the quantitative relationships to predict the spatial distribution of either discrete soil classes, such as map units, or continuous soil properties, such as clay content. SOLUS maps use continuous property mapping, which predicts soil physical or chemical properties in horizontal and vertical dimensions. The soil properties are represented across a continuous range of values. Raster datasets of select soil properties can be predicted at specified depths or depth intervals. Continuous soil property maps such as SOLUS provide critical natural resource information to support environmental researchers and modelers, conservationists, and others making land management decisions. SOLUS will be updated annually with improved data and methodology. SOLUS100The first version of SOLUS, called SOLUS100, is 100 m spatial resolution. Each 100 m raster cell represents a 100 m by 100 m square on the ground with soil property values estimated at seven depths: 0, 5, 15, 30, 60, 100, and 150 cm. The next version will be 30 m spatial resolution and called SOLUS30. SOLUS100 predicts 20 soil properties (listed below with units) at seven depths for the continental United States for a total of 512 maps.Very fine sand (%)Fine sand (%)Medium sand (%)Coarse sand (%)Very coarse sand (%)Total sand (%)Silt (%)Clay (%)pHSoil organic carbon (%)Calcium carbonate equivalent (%)Gypsum content (% by weight)Electrical conductivity (mmhos/cm)Sodium adsorption ratioCation exchange capacity (meq/100g)Effective cation exchange capacity (meq/100g)Oven dry bulk density (g/cm3)Depth to bedrock (cm)Depth to restriction (cm)Rock fragment volume (%)Property Prediction and Uncertainty LayersEach property-depth prediction is accompanied by estimates of uncertainty expressed as prediction interval low and high and relative prediction interval (RPI). Prediction interval low and high define the range within which future predictions may occur. The relative prediction interval ranges from 0 to 1 and is a relative measure of uncertainty with high values being more uncertain. It is computed as the ratio of the 95% prediction interval width to the training set 95% quantile width (97.5% quantile value – 2.5% quantile value). Values closer to 0 indicate lower uncertainty and values closer to 1 indicate higher uncertainty. Values greater than 1 indicate that the prediction at that location is outside the range of the training data used for that property at that depth. The Soil and Plant Science Division delivers each property-depth combination through Google Cloud Platform as four raster data layers: the property prediction, the prediction interval low and high, and the RPI. Property prediction and uncertainty layers follow the naming convention: propertyname_depth_cm_p (predicted property values)propertyname_depth_cm_rpi (relative prediction interval)propertyname_depth_cm_l (prediction interval low)propertyname_depth_cm_h (prediction interval high)SOLUS100 map of clay content predicted at the 0 cm depth for the continental U.S.AccessSOLUS100 maps are available for download or use within scripting or GIS software environments: SOLUS100 Cloud Storage BucketDetails on background, methodology, accuracy, uncertainty, and other results and discussion of SOLUS100 maps are available at SOLUS100 Ag Data Commons Repository and in the following publication:Nauman, T. W., Kienast-Brown, S., Roecker, S. M., Brungard, C., White, D., Philippe, J., & Thompson, J. A. (2024). Soil landscapes of the United States (SOLUS): developing predictive soil property maps of the conterminous United States using hybrid training sets. Soil Science Society of America Journal, 1–20. https://acsess.onlinelibrary.wiley.com/doi/10.1002/saj2.20769Data CitationsSoil Survey Staff. Soil Landscapes of the United States. United States Department of Agriculture, Natural Resources Conservation Service. Available online at storage.googleapis.com/solus100pub/index.html. Month, day, year accessed (year of official release).Citation ExampleThe following example is for the 2024 SOLUS maps. Such citations should appear in the reference section of your document.Soil Survey Staff. Soil Landscapes of the United States. United States Department of Agriculture, Natural Resources Conservation Service. Available online at storage.googleapis.com/solus100pub/index.html. May 22, 2024 (2024 official release).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The gridded National Soil Survey Geographic Database (gNATSGO) is a USDA-NRCS (Natural Resources Conservation Service) Soil & Plant Science Division (SPSD) composite ESRI file geodatabase that provides complete coverage of the best available soils information for all areas of the United States and Island Territories. It was created by combining data from the Soil Survey Geographic Database (SSURGO), State Soil Geographic Database (STATSGO2), and Raster Soil Survey Databases (RSS) into a single seamless ESRI file geodatabase. The gNATSGO database contains a 10-meter raster of the soil map units and 70 related tables of soil properties and interpretations. It is designed to work with the SPSD gSSURGO ArcTools. Users can create full coverage thematic maps and grids of soil properties and interpretations for large geographic areas, such as the extent of a State or the conterminous United States. SSURGO is the SPSD flagship soils database that has over 100 years of field-validated detailed soil mapping data. SSURGO contains soils information for more than 90 percent of the United States and island territories, but unmapped land remains. The current completion status of SSURGO mapping is displayed (PDF). STATSGO2 is a general soil map that has soils data for all of the United States and island territories, but the data is not as detailed as the SSURGO data. The Raster Soil Surveys (RSSs) are the next generation soil survey databases developed using advanced digital soil mapping methods. The first version of gNATSGO was created in 2019. It is composed primarily of SSURGO data, but STATSGO2 data was used to fill in the gaps. Three RSSs have been published as of 2019. These were merged into the gNATSGO after combining the SSURGO and STATSGO2 data. The extent of RSS is expected to increase in the coming years. Resources in this dataset:Resource Title: Website Pointer for Gridded National Soil Survey Geographic Database (gNATSGO). File Name: Web Page, url: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcseprd1464625 The gNATSGO website provides an Overview slide presentation, Download links for gNATSGO databases (CONUS or States), ArcTools, Metadata, Technical Information, and Recommended Data Citations.
This dataset is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This dataset consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties. SSURGO depicts information about the kinds and distribution of soils on the landscape. The soil map and data used in the SSURGO product were prepared by soil scientists as part of the National Cooperative Soil Survey.
The HWSD is a 30 arc-second raster database with over 16000 different soil mapping units that combines existing regional and national updates of soil information worldwide (SOTER, ESD, Soil Map of China, WISE) with the information contained within the 1:5 000 000 scale FAO-UNESCO Soil Map of the World (FAO, 19711981).
The raster database consists of 21600 rows and 43200 columns, which are linked to harmonized soil property data. The use of a standardized structure allows for the linkage of the attribute data with the raster map to display or query the composition in terms of soil units and the characterization of selected soil parameters (organic Carbon, pH, water storage capacity, soil depth, cation exchange capacity of the soil and the clay fraction, total exchangeable nutrients, lime and gypsum contents, sodium exchange percentage, salinity, textural class and granulometry).
Acronyms: ESDB - European Soil Database CHINA - China soil map SOTER - Soil and Terrain database SOTWIS - Regional SOTER databases WISE - World Inventory of Soil Emission Potential database DSMW - Digital Soil Map of the World
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The CSIRO National Soil Site database (Natsoil) currently contains descriptions of over 21, 000 soil site investigations. The data includes morphological descriptions, chemical, physical and mineralogical properties and spectral predictions, along with soil specimen management data. The database and The Australian National Soil Archive provide the foundation for the development of a national soil spectral library and also support TERN Landscapes national soil property modelling through a federated collation of available soil databases.
Data is managed within the SQLServer environment, and made available through JSON services below.
The database schema is based on the SITES V2 national standard. See supporting file. Lineage: Current holdings reflect soil data collected since 1948. While the database was originally comprised solely of data related to research projects and field stations that CSIRO managed, it now also includes sites from other national collaborative projects (e.g. The Northern Australia Water resource Assessment NAWRA). Where state and territory agencies and other organisations have submitted specimens to the Australian National Soil Archive (ANSA), the associated site and analytical data is maintained here also. Data curation is an ongoing activity to support research projects and for the ANSA. As new projects contribute their data and specimens, so the database is expanding.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Hydric soils are defined as those soils that are sufficiently wet in the upper part to develop anaerobic conditions during the growing season. The Hydric Soils section presents the most current information about hydric soils. The lists of hydric soils were created by using National Soil Information System (NASIS) database selection criteria that were developed by the National Technical Committee for Hydric Soils. These criteria are selected soil properties that are documented in Soil Taxonomy (Soil Survey Staff, 1999) and were designed primarily to generate a list of potentially hydric soils from the National Soil Information System (NASIS) database. It updates information that was previously published in Hydric Soils of the United States and coordinates it with information that has been published in the Federal Register. It also includes the most recent set of field indicators of hydric soils. The database selection criteria are selected soil properties that are documented in Soil Taxonomy and were designed primarily to generate a list of potentially hydric soils from soil survey databases. Only criteria 1, 3, and 4 can be used in the field to determine hydric soils; however, proof of anaerobic conditions must also be obtained for criteria 1, 3, and 4 either through data or best professional judgment (from Tech Note 1). The primary purpose of these selection criteria is to generate a list of soil map unit components that are likely to meet the hydric soil definition. Caution must be used when comparing the list of hydric components to soil survey maps. Many of the soils on the list have ranges in water table depths that allow the soil component to range from hydric to nonhydric depending on the location of the soil within the landscape as described in the map unit. Lists of hydric soils along with soil survey maps are good off-site ancillary tools to assist in wetland determinations, but they are not a substitute for observations made during on-site investigations. The list of field indicators of hydric soils — The field indicators are morphological properties known to be associated with soils that meet the definition of a hydric soil. Presence of one or more field indicators suggests that the processes associated with hydric soil formation have taken place on the site being observed. The field indicators are essential for hydric soil identification because once formed, they persist in the soil during both wet and dry seasonal periods. The Hydric Soil Technical Notes — Contain National Technical Committee for Hydric Soils (NTCHS) updates, insights, standards, and clarifications. Users can query the database by State or by Soil Survey Area. Resources in this dataset:Resource Title: Website Pointer to Hydric Soils . File Name: Web Page, url: https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/use/hydric/ Includes description of Criteria, Query by State or Soil Survey Area, national Technical Committee for Hydric Soils. Technical Notes, and Related Links. Report Metadata:
Criteria:
This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties.
This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties.
The Africa Soil Profiles Database, Version 1.2, is compiled by ISRIC - World Soil Information (World Data Center for Soils) as a project activity for the Globally integrated- Africa Soil Information Service (AfSIS) project (www.africasoils.net/data/legacyprofile). It replaces version 1.1.
The Africa Soil Profiles Database is a compilation of georeferenced and standardised legacy soil profile data for Sub-Saharan Africa. Version 1.2 (November 2014) identifies 18,532 unique soil profiles inventoried from a wide variety of data sources and includes profile site and layer attribute data. Soil analytical data are available for 15,564 profiles of which 14,197 are georeferenced, including the attributes as specified by GlobalSoilMap.net. Soil attribute values are standardized according to SOTER conventions and are validated according to routine rules. Odd values are flagged. The degree of validation, and associated reliability of the data, varies because reference soil profile data, that are previously and thoroughly validated, are compiled together with non-reference soil profile data of lesser inherent representativeness.
This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties.
ISRIC World Soil Information is compiling legacy soil profile data of Sub Saharan Africa, as a project activity of the AfSIS project (Globally integrated Africa Soil Information Service). http://africasoils.net/services/data/soil-databases/
Africa Soil Profiles database, version. 1.0 (April 2012) identifies less than 15700 unique soil profiles inventoried from a wide variety of data sources. From the less than 14600 profiles that are geo-referenced, soil layer attribute data are available for less than 12500 and soil analytical data for less than 10000 profiles. The database includes, but is not limited, to the soil attributes specified by GlobalSoilMap.net. Soil attribute values are standardized according to e-SOTER conventions and validated according to routine rules. Odd values are flagged. The degree of validation, and associated reliability of the data, varies because reference soil profile data, that are previously and thoroughly validated, are compiled together with non-reference soil profile data of lesser inherent representativeness.
Updated milestone versions of the dataset have been posted online and made available to the project serving as input to the soil property maps generated by AfSIS. The continuously growing dataset will also be made available through the World Soil Information Service upon continuation of the project activity. The version is released here is version 1.0., the latest version is 1.1.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Version 3.1 of the ISRIC-WISE database (WISE3) was compiled from a wide range of soil profile data collected by many soil professionals worldwide. All profiles have been harmonized with respect to the original Legend (1974) and Revised Legend (1988) of FAO-Unesco. Thereby, the primary soil data ─ and any secondary data derived from them ─ can be linked using GIS to the spatial units of the digitized Soil Map of the World as well as more recent digital Soil and Terrain (SOTER) databases through the soil legend code. WISE3 holds selected attribute data for some 10,250 soil profiles, with some 47,800 horizons, from 149 countries. Individual profiles have been sampled, described, and analyzed according to methods and standards in use in the originating countries. There is no uniform set of properties for which all profiles have analytical data, generally because only selected measurements were planned during the original surveys. Methods used for laboratory determinations of specific soil properties vary between laboratories and over time; sometimes, results for the same property cannot be compared directly. WISE3 will inevitably include gaps, being a compilation of legacy soil data derived from traditional soil survey, which can be of a taxonomic, geographic, and soil analytical nature. As a result, the amount of data available for modelling is sometimes much less than expected. Adroit use of the data, however, will permit a wide range of agricultural and environmental applications at a global and continental scale (1:500 000 and broader). Preferred citation: Batjes NH 2009. Harmonized soil profile data for applications at global and continental scales: updates to the WISE database. Soil Use and Management 5:124–127, http://dx.doi.org/10.1111/j.1475-2743.2009.00202.x
This dataset is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information.
This dataset consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties.
Note: This metadata record was created by MnGeo to serve as a generic record for all SSURGO data sets within Minnesota. See the individual county metadata records created by NRCS for county-specific information; these records are included in the data set download files.
Additional Spatial layers derived from the European Soil Database A number of layers for soil properties have been created based on data from the European Soil Database in combination with data from the Harmonized World Soil Database (HWSD) and Soil-Terrain Database (SOTER). The available layers include: Total available water content, Depth available to roots, Clay content, Silt content, Sand content, Organic carbon, Bulk Density, Coarse fragments. The layers of soil properties of Soil Typological Units (STUs) are only intended to facilitate modelling purposes. The final result of the modelling activity should be aggregated to SMUs or another larger mapping unit. The derived data have mainly the following features (compared to the past - European Soil Database): Represent a soil property from all STUs pertaining to an SMU in a single raster layer was made by mapping the STUs to geographic positions The attribute data are in part based on the STU table of the ESDB and other data sources : Harmonized World Soil Database (HWSD), Soil and Terrain Database (SOTER) The range of parameters is broadened by using Pedo-Transfer Rules (PTRs) to derive estimates of additional parameter Soil Property Topsoil (Filename) Subsoil (Filename) Unit Area of STU allocation STU_EU_ALLOCATE unitless Depth available to roots STU_EU_DEPTH_ROOTS cm Clay content STU_EU_T_CLAY STU_EU_S_CLAY % Sand content STU_EU_T_SAND STU_EU_S_SAND % Silt content STU_EU_T_SILT STU_EU_S_SILT % Organic carbon content STU_EU_T_OC STU_EU_S_OC % Bulk density STU_EU_T_BD STU_EU_S_BD g cm-3 Coarse Fragments STU_EU_T_GRAVEL STU_EU_S_GRAVEL % Total available water content from PTR SMU_EU_T_TAWC SMU_EU_S_TAWC mm Total available water content from PTF STU_EU_T_TAWC STU_EU_S_TAWC mm Access to the data: In order to obtain access to these databases : Fill in the Request form; after which you will receive further instructions how to download the data. References - Porposed Citations Hiederer, R. 2013. Mapping Soil Properties for Europe - Spatial Representation of Soil Database Attributes. Luxembourg: Publications Office of the European Union – 2013 – 47pp. – EUR26082EN Scientific and Technical Research series, ISSN 1831-9424, doi:10.2788/94128 Hiederer, R. 2013. Mapping Soil Typologies - Spatial Decision Support Applied to European Soil Database. Luxembourg: Publications Office of the European Union – 2013 – 147pp. – EUR25932EN Scientific and Technical Research series, ISSN 1831-9424, doi:10.2788/87286 Layer Properties Common properties for the soil property layers are: Format: Idrisi raster format Reference system: ETRS 89 LAEA Rows: 5900 Columns: 4600 Min. X 1500000.0 Max. X 7400000.0 Min. Y 900000.0 Max. Y 5500000.0 Resolution: 1000.0 Reference unit: meter Comments - Notes on to use of soil property layers Comments on to use of soil property layers from spatially allocating soil typological units (STU) of the European Soil Database (ESDB): Spatial layers on key soil properties for the topsoil and subsoil with pan-European coverage are derived from the spatial allocation of STUs. STUs are only allocated to 1km grid cells for those areas where suitable data exist to perform a multi-criteria evaluation and land allocation. In other areas the properties of the dominant STUs are mapped. The area where STUs are allocated is provided as a binary layer. The layers of soil properties of STUs are intended to facilitate modelling requirements by making the complete range of data for a soil mapping unit (SMU) available in a single layer. The procedure used to spatially allocate STU properties to 1km grid cells does not estimate the property of that grid cell, but is the likely distribution of all STUs of a soil mapping unit (SMU) within the spatial and thematic limits of that unit. Users should be aware that the correlation between the soil properties of a grid location with point data from ground surveys may be very low. The final result of the modelling activity should be aggregated to SMUs or another larger mapping unit. It is generally not recommended to aggregate soil properties to larger spatial units by averaging the property values first and then using the average values as input for models. Special note for depth: The depth layer included in the data set is the "depth to obstacles to roots" derived from the ESDB depth classes recorded in the field [ROO.ST_SGDBE]. For organic soils in Sweden the field contains only code 4 (Obstacle to roots between 20 and 40 cm depth). The depth value for this class is set to 30cm. As a consequence, the subsoil layers for organi9c carbon and bulk density only contain mineral soils. The layer is not suitable to calculate soil organic carbon density other than the topsoil. To compute this parameter the required soil properties (depth, organic carbon content, bulk density and gravel content) should be available for the depth of the soil. Special note for peat: The soil texture data contains texture values as provided by the Harmonized World Soil Database (HWSD) V.1.2.1. The HWSD provides texture values also for most typological units classified as peat. In the ESDB pedo-transfer rule (PTR) 22 is used to identify peat. The conditions defining the PTR are purely based on the soil classification name (taxonomy). Data of organic carbon content of the HWSD do not fully correspond to the results of using PTR 22. For example, Histo-Humic Gleysol (Ghh) is classified as peat by PTR 22, but classifying the soil texture and organic carbon content data of the HWSD does not necessarily provide the same class. To identify areas of peat in this data set the peat class (Class 8) in the layer on texture classes should be used, which is consistent with the texture and organic carbon layer data. The classification of peat is done on the basis of the soil clay and organic carbon content as found in the SGDBE of the ESDB. In case a model uses soil texture information separately from peat it is recommended to give priority to the peat areas identified in the data layer of classified soil texture
Important Note: This item is in mature support as of April 2024 and will be retired in December 2026. Please use the following layers at replacements: World Soils 250m Percent Sand, World Soils 250m Percent Silt, World Soils 250m Percent Clay. Esri recommends updating your maps and apps to use the new version. Soil is a key natural resource that provides the foundation of basic ecosystem services. Soil determines the types of farms and forests that can grow on a landscape. Soil filters water. Soil helps regulate the Earth's climate by storing large amounts of carbon. Activities that degrade soils reduce the value of the ecosystem services that soil provides. For example, since 1850 35% of human caused green house gas emissions are linked to land use change. The Soil Science Society of America is a good source of of additional information.Soil texture is an important factor determining which kinds of plants can be grown in a particular location. Texture determines a soil's susceptibility to erosion or compaction and how well a soil holds nutrients and water. For example sandy soils tend to be well drained and dry quickly often holding few nutrients while clay soils may hold much more water and many more plant nutrients.Dataset SummaryThis layer provides access to a 30 arc-second (roughly 1 km) cell-sized raster with attributes related to soil texture derived from the Harmonized World Soil Database v 1.2. The values in this layer are for the dominant soil in each mapping unit (sequence field = 1).Fields for topsoil (0-30 cm) and subsoil (30-100 cm) are available for each of these attributes related to soil texture:USDA Texture ClassGravel - % volumeSand - % weightSilt - % weightClay - % weightThe layer is symbolized with the topsoil texture class.The document Harmonized World Soil Database Version 1.2 provides more detail on the soil texture attributes contained in this layer.Other attributes contained in this layer include:Soil Mapping Unit Name - the name of the spatially dominant major soil groupSoil Mapping Unit Symbol - a two letter code for labeling the spatially dominant major soil group in thematic mapsData Source - the HWSD is an aggregation of datasets. The data sources are the European Soil Database (ESDB), the 1:1 million soil map of China (CHINA), the Soil and Terrain Database Program (SOTWIS), and the Digital Soil Map of the World (DSMW).Percentage of Mapping Unit covered by dominant componentMore information on the Harmonized World Soil Database is available here.Other layers created from the Harmonized World Soil Database are available on ArcGIS Online:World Soils Harmonized World Soil Database - Bulk DensityWorld Soils Harmonized World Soil Database – ChemistryWorld Soils Harmonized World Soil Database - Exchange CapacityWorld Soils Harmonized World Soil Database – GeneralWorld Soils Harmonized World Soil Database – HydricThe authors of this data set request that projects using these data include the following citation:FAO/IIASA/ISRIC/ISSCAS/JRC, 2012. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. The source data for this layer are available here.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
The Harmonized World Soil Database version 2.0 (HWSD v2.0) is a unique global soil inventory providing information on the morphological, chemical and physical properties of soils at approximately 1 km resolution. Its main objective is to serve as a basis for prospective studies on agro-ecological zoning, food security and climate change.
The Harmonized World Soil Database (HWSD) was established in 2008 by the International Institute for Applied Systems Analysis (IIASA) and FAO, and in partnership with International Soil Reference and Information Centre (ISRIC), the European Soil Bureau Network (ESBN) and the Institute for Soil Sciences Chinese Academy of Sciences (CAS). The data entry and harmonization within a Geographic Information System (GIS) was carried out at IIASA, with verification of the database undertaken by all partners. HWSD was then updated in 2013 (HWSD v1.2) and in 2023 (HWSD v2.0).
This updated version (HWSD v2.0) is built on the previous versions of HWSD with several improvements on (i) the data source that now includes several national soil databases, (ii) an enhanced number of soil attributes available for seven soil depth layers, instead of two in HWSD v1.2, and (iii) a common soil reference for all soil units (FAO1990 and the World Reference Base for Soil Resources). This contributes to a further harmonization of the database.
The GIS raster image file is linked to the soil attribute database. The HWSD v2.0 soil attribute database provides information on the soil unit composition for each of the near 30 000 soil association mapping units. The HWSD v2.0 Viewer, provided with the database, creates this link automatically and provides direct access to the soil attribute data and the soil association information.
Note: A tutorial for accessing HWSD ver. 2.0 using R (prepared by David Rossiter, June 2023) has been added as an 'associated resource' (NOTE: Needs the SQLite version of HWSD v2 as provided below).