Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations. Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals. Data from thegSSURGO databasewas used to create this layer. To download ready-to-use project packages of useful soil data derived from the SSURGO dataset, please visit the USA SSURGO Downloader app. Dataset Summary Phenomenon Mapped:Soils of the United States and associated territoriesGeographic Extent:The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaCoordinate System:Web Mercator Auxiliary SphereVisible Scale:1:144,000 to 1:1,000Source:USDA Natural Resources Conservation Service Update Frequency:AnnualPublication Date:December 2024 What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS Online Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:144,000 or larger but avector tile layercreated from the same data can be used at smaller scales to produce awebmapthat displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter forFarmland Class= "All areas are prime farmland" to create a map of only prime farmland.Add labels and set their propertiesCustomize the pop-upArcGIS Pro Add this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of theLiving Atlas of the Worldthat provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics. Data DictionaryAttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them. Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units. Area SymbolSpatial VersionMap Unit Symbol Map Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field. Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability Rating Legend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field. Project Scale Survey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields. Survey Area VersionTabular Version Map Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field. Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - Presence Rating for Manure and Food Processing Waste - Weighted Average Component Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected. Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent Key Component Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r). Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence -
When rain falls over land, a portion of it runs off into stream channels and storm water systems while the remainder infiltrates into the soil or returns to the atmosphere directly through evaporation.Physical properties of soil affect the rate that water is absorbed and the amount of runoff produced by a storm. Hydrologic soil group provides an index of the rate that water infiltrates a soil and is an input to rainfall-runoff models that are used to predict potential stream flow.For more information on using hydrologic soil group in hydrologic modeling see the publication Urban Hydrology for Small Watersheds (Natural Resources Conservation Service, United States Department of Agriculture, Technical Release–55).Dataset SummaryPhenomenon Mapped: Soil hydrologic groupUnits: ClassesCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa)Mosaic Projection: Web Mercator Auxiliary SphereExtent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaSource: Natural Resources Conservation ServicePublication Date: December 2021ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/Data from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).This layer is derived from the 30m (contiguous U.S.) and 10m rasters (all other regions) produced by the Natural Resources Conservation Service (NRCS). The value for hydrologic group is derived from the gSSURGO map unit aggregated attribute table field Hydrologic Group - Dominant Conditions (hydgrpdcd).The seven classes of hydrologic soil group followed by definitions:Group A - Group A soils consist of deep, well drained sands or gravelly sands with high infiltration and low runoff rates.Group B - Group B soils consist of deep well drained soils with a moderately fine to moderately coarse texture and a moderate rate of infiltration and runoff.Group C - Group C consists of soils with a layer that impedes the downward movement of water or fine textured soils and a slow rate of infiltration.Group D - Group D consists of soils with a very slow infiltration rate and high runoff potential. This group is composed of clays that have a high shrink-swell potential, soils with a high water table, soils that have a clay pan or clay layer at or near the surface, and soils that are shallow over nearly impervious material.Group A/D - Group A/D soils naturally have a very slow infiltration rate due to a high water table but will have high infiltration and low runoff rates if drained.Group B/D - Group B/D soils naturally have a very slow infiltration rate due to a high water table but will have a moderate rate of infiltration and runoff if drained.Group C/D - Group C/D soils naturally have a very slow infiltration rate due to a high water table but will have a slow rate of infiltration if drained.What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "soil hydrologic group" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "soil hydrologic group" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
This rating presents the taxonomic classification based on Soil Taxonomy. The system of soil classification used by the National Cooperative Soil Survey has six categories (Soil Survey Staff, 1999 and 2003). Beginning with the broadest, these categories are the order, suborder, great group, subgroup, family, and series. Classification is based on soil properties observed in the field or inferred from those observations or from laboratory measurements. This table shows the classification of the soils in the survey area. The categories are defined in the following paragraphs. ORDER. Twelve soil orders are recognized. The differences among orders reflect the dominant soil-forming processes and the degree of soil formation. Each order is identified by a word ending in sol. An example is Alfisols. SUBORDER. Each order is divided into suborders primarily on the basis of properties that influence soil genesis and are important to plant growth or properties that reflect the most important variables within the orders. The last syllable in the name of a suborder indicates the order. An example is Udalfs (Ud, meaning humid, plus alfs, from Alfisols). GREAT GROUP. Each suborder is divided into great groups on the basis of close similarities in kind, arrangement, and degree of development of pedogenic horizons; soil moisture and temperature regimes; type of saturation; and base status. Each great group is identified by the name of a suborder and by a prefix that indicates a property of the soil. An example is Hapludalfs (Hapl, meaning minimal horizonation, plus udalfs, the suborder of the Alfisols that has a udic moisture regime). SUBGROUP. Each great group has a typic subgroup. Other subgroups are intergrades or extragrades. The typic subgroup is the central concept of the great group; it is not necessarily the most extensive. Intergrades are transitions to other orders, suborders, or great groups. Extragrades have some properties that are not representative of the great group but do not indicate transitions to any other taxonomic class. Each subgroup is identified by one or more adjectives preceding the name of the great group. The adjective Typic identifies the subgroup that typifies the great group. An example is Typic Hapludalfs. FAMILY. Families are established within a subgroup on the basis of physical and chemical properties and other characteristics that affect management. Generally, the properties are those of horizons below plow depth where there is much biological activity. Among the properties and characteristics considered are particle-size class, mineralogy class, cation-exchange activity class, soil temperature regime, soil depth, and reaction class. A family name consists of the name of a subgroup preceded by terms that indicate soil properties. An example is fine-loamy, mixed, active, mesic Typic Hapludalfs. SERIES. The series consists of soils within a family that have horizons similar in color, texture, structure, reaction, consistence, mineral and chemical composition, and arrangement in the profile. References: Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436. Soil Survey Staff. 2006. Keys to soil taxonomy. 10th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. (The soils in a given survey area may have been classified according to earlier editions of this publication.) SSURGO depicts information about the kinds and distribution of soils on the landscape. The soil map and data used in the SSURGO product were prepared by soil scientists as part of the National Cooperative Soil Survey. The most common use of these data is communication of soil conditions to contractors working in the park. Additional uses of these data include analysis by park partners and researchers of the physical and chemical properties of soils, including their effect and influence on the management of natural habitats, ecosystem health, and natural resource inventory. This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a 7.5 minute quadrangle format and include a detailed, field verified inventory of soils and nonsoil areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is required. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the Map Unit Record relational database, which gives the proportionate extent of the component soils and their properties. These data represent a specific interpretation of the SSURGO soils data produced by the NRCS, using the NRCS Soil Data Viewer version 6.0. Building site development interpretations are designed to be used as tools for evaluating soil suitability and identifying soil limitations for various construction purposes. As part of the interpretation process, the rating applies to each soil in its described condition and does not consider present land use. Example interpretations can include corrosion of concrete and steel, shallow excavations, dwellings with and without basements, small commercial buildings, local roads and streets, and lawns and landscaping. This is a hybrid data product produced using NRCS SSURGO soils data. These data should not be considered SSURGO-compliant, as data used in this product is the result of merging data from several separate SSURGO databases. The NRCS does not endorse or support this hybrid product.The corresponding Integration of Resource Management Applications (IRMA) NPS Data Store reference is Great Smoky Mountains National Park Soil Taxonomy.
Hydric soils are soils that form under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part of the soil. Hydric soils are poorly or very poorly drained and under natural conditions, these soils are either saturated or inundated long enough during the growing season to support the growth and reproduction of wetland vegetation. Hydric soils are part of the legal definition for wetlands in the United States and are used to identify wetland areas that require a permit issued by the Army Corps of Engineers under Section 404 of the Clean Water Act prior to any ground disturbing activities. For more information on hydric soils see the Natural Resources Conservation Service’s publication Field Indicators of Hydric Soils in the United States. Dataset SummaryPhenomenon Mapped: Hydric soilsGeographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands, Republic of Palau, Republic of the Marshall Islands, Federated States of Micronesia, and American Samoa.Projection: Web Mercator Auxiliary SphereData Coordinate System: WKID 5070 USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WKID 3338 WGS 1984 Albers (Alaska), WKID 4326 WGS 1984 Decimal Degrees (Guam, Republic of the Marshall Islands, Northern Mariana Islands, Republic of Palau, Federated States of Micronesia, American Samoa, and Hawaii).Units: PercentCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerSource: Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024 Data from the gNATSGO database was used to create the layer. This layer is derived from the 30m rasters produced by the Natural Resources Conservation Service (NRCS). The value for hydric class is derived from the gSSURGO map unit aggregated attribute table field Hydric Classification - Presence (hydclprs). What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "hydric" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "hydric" in the search box, browse to the layer then click OK. In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro. Online you can filter the layer to show subsets of the data using the filter button and the layer"s built-in raster functions. The ArcGIS Living Atlas of the World provides an easy way to explore many otherbeautiful and authoritative maps on hundreds of topics like this one. Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (SSURGO). The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions in this report, along with the maps, can be used to determine the composition and properties of a unit. A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.The Map Unit Description (Brief, Generated) report displays a generated description of the major soils that occur in a map unit. Descriptions of non-soil (miscellaneous areas) and minor map unit components are not included. This description is generated from the underlying soil attribute data. To see the Non-Technical description of the soil types, click here.
For more information, contact: GIS Manager Information Technology & Innovation (ITI) Montgomery County Planning Department, MNCPPC T: 301-650-5620 U.S. Department of Agriculture USDA Natural Resources Conservation Service p: 1-833-ONE-USDA e: askusda@usda.gov
The European Commission - Joint Research Centre (JRC) provides access to results from a new series of studies on wind erosion at Pan-European scale: Soil erosion by wind in European agricultural soils: A GIS version of the Revised Wind Erosion Equation (RWEQ) was developed in JRC to model at large scale wind erosion. The model is designed to predict the daily soil loss potential by wind erosion at 1km spatial resolution. Land susceptibility to wind erosion: An Index of Land Susceptibility to Wind Erosion (ILSWE) was created by combining spatiotemporal variations of the most influential wind erosion factors (i.e. climatic erosivity, soil erodibility, vegetation cover and landscape roughness). Wind erosion susceptibility of soils: The wind-erodible fraction of soil (EF) is one of the key parameters for estimating the susceptibility of soil to wind erosion. Former studies: Agriculture Field Parameters on NUTS-3 regions Metadata for the 4 datasets: Title: Soil loss by wind erosion in European agricultural soils (Quantitative assessment)Description: GIS-RWEQ is a simplified GIS-based application of the RWEQ model (ARS-USDA). It follows a spatially distributed approach based on a grid structure, running in R and Python scripts. The model scheme is designed to describe the daily soil loss potential at regional or larger scale. A complete description of the methodology and the application in Europe is described in the paper: Borrelli, P., Lugato, E., Montanarella, L., & Panagos, P. (2017). A New Assessment of Soil Loss Due to Wind Erosion in European Agricultural Soils Using a Quantitative Spatially Distributed Modelling Approach. Land Degradation & Development, 28: 335–344, DOI: 10.1002/ldr.2588 Spatial coverage: 28 Member States of the European Union Pixel size: c.a 1Km Projection: ETRS89 Lambert Azimuthal Equal Area Temporal coverage: from January 2001 to December 2010 Title: Land susceptibility to wind erosion Description: Wind erosion is a complex geomorphic process governed by a large number of variables. Field-scale models such as the Wind Erosion Prediction System (WEPS—Wagner, 1996) employ up to some tens of parameters to predict soil loss. A preliminary pan-European assessment of land susceptibility to wind erosion calls for a simplified and more practical approach. Therefore, a limited number of key parameters which can express the complex interactions between the variables controlling wind erosion should be considered. The ILSWE is based on the combination of the most influential parameters, i.e. climate (wind, rainfall and evaporation), soil characteristics (sand, silt, clay, CaCO3, organic matter, water-retention capacity and soil moisture) and land use (land use, percent of vegetation cover and landscape roughness). The spatial and temporal variability of factors are appropriately defined through Geographic Information System (GIS) analyses. Harmonised dataset and a unified methodology were employed to suit the pan- European scale and avoid generating misleading findings that could result from heterogeneous input data. The selected soil erosion parameters were conceptually divided into three groups, namely (i) Climate Erosivity, (ii) Soil Erodibility and (iii) Vegetation Cover and Landscape Roughness. Sensitivity to the contributing group of factors was calculated using the fuzzy logic technique, which allows the sensitivity range of each factor in Europe to be unambiguously defined. A complete description of the methodology and the application in Europe is described in the paper: Borrelli, P., Panagos, P., Ballabio, C., Lugato, E., Weynants, M. Montanarella, L (2014). Towards a pan-European assessment of land susceptibility to wind erosion. Land Degradation & Development, In Press. DOI: 10.1002/ldr.2318 Spatial coverage: 28 Member States of the European Union and 8 other European States (three European Union candidate countries (Montenegro, Serbia, the Former Yugoslav Republic of Macedonia), three potential European Union candidate countries (i.e. Albania, Bosnia and Herzegovina, and Kosovo), Norway and Switzerland). Pixel size: 500m Projection: ETRS89 Lambert Azimuthal Equal Area Temporal coverage:1981-2010 Title: Wind erosion susceptibility of European soilsDescription: The wind-erodible fraction of soil (EF) is one of the key parameters for estimating the susceptibility of soil to wind erosion.The predication of the spatial distribution of the EF and a soil surface crust index drew on a series of related but independent covariates, using a digital soil mapping approach. A complete description of the methodology and the application in Europe is described in the paper: Borrelli, P., Ballabio, C., Panagos, P., Montanarella, L. (2014). Wind erosion susceptibility of European soils. Geoderma, 232, 471-478.Spatial coverage: 25 Member States of the European Union where data available (All EU member states except Bulgaria, Romania and Croatia). Pixel size: 500m Projection: ETRS89 Lambert Azimuthal Equal Area Temporal coverage:2014 Agriculture Field Parameters data: The dataset contains averaged Field Size, Field Orientation, Field Length, Average Number of Images, Percentage of Large Fields and Length to Width Ratios for the EU 27 Member states and Switzerland, aggregated to NUTS region. The analysis is based on approximately 400 satellite images from the IMAGE2000 archive. Each image was segmented using a fractal net evolution approach, which is a region merging technique (Baatz and Schape, 2000). - Field Size Area (ha) : The average field size for the reporting unit for wind erosion fields - Field Direction (in degrees) : The average direction of the field – by assuming that usually the longer side of the field is the main working direction-Length to Witdh Ratio: The average Length to Width Ratio on the agricultural fields- Field Length (Km): The average Length on the agricultural fields- Average Number of Images: The average number of images which have been averaged for this reporting unit - Percentage Agricultural Wind Erosion Susceptible fields/ non susceptible field : The percentage of agricultural area which could be clearly indentified with the applied method References - Documentation: Borrelli, P., Lugato, E., Montanarella, L., & Panagos, P. (2017). A New Assessment of Soil Loss Due to Wind Erosion in European Agricultural Soils Using a Quantitative Spatially Distributed Modelling Approach. Land Degradation & Development, 28: 335–344, DOI: 10.1002/ldr.2588, DOI: 10.1002/ldr.2588 Borrelli, P., Panagos, P., Ballabio, C., Lugato, E., Weynants, M. Montanarella, L. 2016. Towards a pan-European assessment of land susceptibility to wind erosion. Land Degradation & Development, 27(4): 1093-1105, DOI: 10.1002/ldr.2318. Borrelli, P., Panagos, P., Montanarella, L. 2015. New Insights into the Geography and Modelling of Wind Erosion in the European Agricultural Land. Application of a Spatially Explicit Indicator of Land Susceptibility to Wind Erosion. Sustainability 2015, 7(7), 8823-8836; doi:10.3390/su7078823 Borrelli, P., Ballabio, C., Panagos, P., Montanarella, L. 2014. Wind erosion susceptibility of European soils. Geoderma, 232, 471-478
This service is available to all ArcGIS Online users with organizational accounts. For more information on this service, including the terms of use, visit us online at https://goto.arcgisonline.com/landscape11/USA_Soils_Hydric_Class.Hydric soils are soils that form under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part of the soil. Hydric soils are poorly or very poorly drained and under natural conditions, these soils are either saturated or inundated long enough during the growing season to support the growth and reproduction of wetland vegetation. Hydric soils are part of the legal definition for wetlands in the United States and are used to identify wetland areas that require a permit issued by the Army Corps of Engineers under Section 404 of the Clean Water Act prior to any ground disturbing activities. For more information on hydric soils see the Natural Resources Conservation Service’s publication Field Indicators of Hydric Soils in the United States.Dataset SummaryPhenomenon Mapped: Hydric soilsUnits: PercentCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa)Mosaic Projection: Web Mercator Auxiliary SphereExtent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaSource: Natural Resources Conservation ServicePublication Date: July 2020ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/Data from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).This layer is derived from the 30m (contiguous U.S.) and 10m rasters (all other regions) produced by the Natural Resources Conservation Service (NRCS). The value for hydric class is derived from the gSSURGO map unit aggregated attribute table field Hydric Classification - Presence (hydclprs).What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "hydric" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "hydric" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
Define - Use the Area of Interest tab to define your area of interest. You can navigate to an area by zooming in on a map or by selecting from a Quick Navigation choice list. After you find the area, define it as the Area of Interest (AOI) by drawing a box around it using a map tool. You must complete this step before you can go on to the next two stepsView - Click the Soil Map tab to view or print a map of the soils in your area and view a description of the soils, or click the Soil Data Explorer tab to access soil data for your area and determine the suitability of the soils for a particular use. The items you want saved in a report can be added to your shopping cart.Explore - Click the Soil Data Explorer tab to access soil data for your area and determine the suitability of the soils for a particular use. The items you want saved in a report can be added to your shopping cart.Check Out - Use the Shopping Cart tab to get your custom report immediately or download it later.Web Soil Survey Web Soil Survey links with additional documents Other Documents to Reference:Web Soil Survey BrochureWeb Soil Survey Brochure in SpanishGetting Started in Web Soil SurveyUsing Web Soil Survey in 4 Basic StepsHow to Use Web Soil Survey 3.0Guide on downloading SSURGO from Web Soil SurveyWeb Soil Survey Tips and ShortcutsWeb Soil Survey Known Problems and WorkaroundsWeb Soil Survey Frequently Asked QuestionsWeb Soil Survey Help OnlineWeb Soil Survey Accessibility FeaturesDefining an AOI for Web Soil Survey on a Mobile DeviceWeb Soil Survey Adding a Multi-part AOI featureUsing Google Earth Pro to create multiple AOIs for Web Soil SurveyWeb Soil Survey Version Release History DocumentsWeb Soil Survey Guide to Maps, Reports, and TablesWeb Soil Survey - Soil Data Explorer TabUsing Web Soil Survey YouTube Videos
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations. Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals. Data from thegSSURGO databasewas used to create this layer. To download ready-to-use project packages of useful soil data derived from the SSURGO dataset, please visit the USA SSURGO Downloader app. Dataset Summary Phenomenon Mapped:Soils of the United States and associated territoriesGeographic Extent:The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaCoordinate System:Web Mercator Auxiliary SphereVisible Scale:1:144,000 to 1:1,000Source:USDA Natural Resources Conservation Service Update Frequency:AnnualPublication Date:December 2024 What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS Online Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:144,000 or larger but avector tile layercreated from the same data can be used at smaller scales to produce awebmapthat displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter forFarmland Class= "All areas are prime farmland" to create a map of only prime farmland.Add labels and set their propertiesCustomize the pop-upArcGIS Pro Add this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of theLiving Atlas of the Worldthat provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics. Data DictionaryAttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them. Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units. Area SymbolSpatial VersionMap Unit Symbol Map Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field. Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability Rating Legend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field. Project Scale Survey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields. Survey Area VersionTabular Version Map Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field. Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - Presence Rating for Manure and Food Processing Waste - Weighted Average Component Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected. Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent Key Component Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r). Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence -