59 datasets found
  1. d

    NREL GIS Data: Continental United States High Resolution Concentrating Solar...

    • datadiscoverystudio.org
    • data.amerigeoss.org
    • +1more
    zip
    Updated Aug 29, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). NREL GIS Data: Continental United States High Resolution Concentrating Solar Power. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/e400840327d4438c8f34932ae6a2ae84/html
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 29, 2017
    Area covered
    United States
    Description

    description: Abstract: Monthly and annual average solar resource potential for the lower 48 states of the United States of America. Purpose: Provide information on the solar resource potential for the for the lower 48 states of the United States of America. Supplemental Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximatley 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain. Other Citation Details: George, R, and E. Maxwell, 1999: "High-Resolution Maps of Solar Collector Performance Using A Climatological Solar Radiation Model", Proceedings of the 1999 Annual Conference, American Solar Energy Society, Portland, ME. ### License Info This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.; abstract: Abstract: Monthly and annual average solar resource potential for the lower 48 states of the United States of America. Purpose: Provide information on the solar resource potential for the for the lower 48 states of the United States of America. Supplemental Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximatley 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain. Other Citation Details: George, R, and E. Maxwell, 1999: "High-Resolution Maps of Solar Collector Performance Using A Climatological Solar Radiation Model", Proceedings of the 1999 Annual Conference, American Solar Energy Society, Portland, ME. ### License Info This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.

  2. c

    Solar Footprints in California

    • gis.data.ca.gov
    • data.ca.gov
    • +7more
    Updated Jan 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Energy Commission (2023). Solar Footprints in California [Dataset]. https://gis.data.ca.gov/maps/CAEnergy::solar-footprints-in-california
    Explore at:
    Dataset updated
    Jan 6, 2023
    Dataset authored and provided by
    California Energy Commission
    License

    https://www.energy.ca.gov/conditions-of-usehttps://www.energy.ca.gov/conditions-of-use

    Area covered
    Description

    Solar Footprints in CaliforniaThis GIS dataset consists of polygons that represent the footprints of solar powered electric generation facilities and related infrastructure in California called Solar Footprints. The location of solar footprints was identified using other existing solar footprint datasets from various sources along with imagery interpretation. CEC staff reviewed footprints identified with imagery and digitized polygons to match the visual extent of each facility. Previous datasets of existing solar footprints used to locate solar facilities include: GIS Layers: (1) California Solar Footprints, (2) UC Berkeley Solar Points, (3) Kruitwagen et al. 2021, (4) BLM Renewable Project Facilities, (5) Quarterly Fuel and Energy Report (QFER)Imagery Datasets: Esri World Imagery, USGS National Agriculture Imagery Program (NAIP), 2020 SENTINEL 2 Satellite Imagery, 2023Solar facilities with large footprints such as parking lot solar, large rooftop solar, and ground solar were included in the solar footprint dataset. Small scale solar (approximately less than 0.5 acre) and residential footprints were not included. No other data was used in the production of these shapes. Definitions for the solar facilities identified via imagery are subjective and described as follows: Rooftop Solar: Solar arrays located on rooftops of large buildings. Parking lot Solar: Solar panels on parking lots roughly larger than 1 acre, or clusters of solar panels in adjacent parking lots. Ground Solar: Solar panels located on ground roughly larger than 1 acre, or large clusters of smaller scale footprints. Once all footprints identified by the above criteria were digitized for all California counties, the features were visually classified into ground, parking and rooftop categories. The features were also classified into rural and urban types using the 42 U.S. Code § 1490 definition for rural. In addition, the distance to the closest substation and the percentile category of this distance (e.g. 0-25th percentile, 25th-50th percentile) was also calculated. The coverage provided by this data set should not be assumed to be a complete accounting of solar footprints in California. Rather, this dataset represents an attempt to improve upon existing solar feature datasets and to update the inventory of "large" solar footprints via imagery, especially in recent years since previous datasets were published. This procedure produced a total solar project footprint of 150,250 acres. Attempts to classify these footprints and isolate the large utility-scale projects from the smaller rooftop solar projects identified in the data set is difficult. The data was gathered based on imagery, and project information that could link multiple adjacent solar footprints under one larger project is not known. However, partitioning all solar footprints that are at least partly outside of the techno-economic exclusions and greater than 7 acres yields a total footprint size of 133,493 acres. These can be approximated as utility-scale footprints. Metadata: (1) CBI Solar FootprintsAbstract: Conservation Biology Institute (CBI) created this dataset of solar footprints in California after it was found that no such dataset was publicly available at the time (Dec 2015-Jan 2016). This dataset is used to help identify where current ground based, mostly utility scale, solar facilities are being constructed and will be used in a larger landscape intactness model to help guide future development of renewable energy projects. The process of digitizing these footprints first began by utilizing an excel file from the California Energy Commission with lat/long coordinates of some of the older and bigger locations. After projecting those points and locating the facilities utilizing NAIP 2014 imagery, the developed area around each facility was digitized. While interpreting imagery, there were some instances where a fenced perimeter was clearly seen and was slightly larger than the actual footprint. For those cases the footprint followed the fenced perimeter since it limits wildlife movement through the area. In other instances, it was clear that the top soil had been scraped of any vegetation, even outside of the primary facility footprint. These footprints included the areas that were scraped within the fencing since, especially in desert systems, it has been near permanently altered. Other sources that guided the search for solar facilities included the Energy Justice Map, developed by the Energy Justice Network which can be found here:https://www.energyjustice.net/map/searchobject.php?gsMapsize=large&giCurrentpageiFacilityid;=1&gsTable;=facility&gsSearchtype;=advancedThe Solar Energy Industries Association’s “Project Location Map” which can be found here: https://www.seia.org/map/majorprojectsmap.phpalso assisted in locating newer facilities along with the "Power Plants" shapefile, updated in December 16th, 2015, downloaded from the U.S. Energy Information Administration located here:https://www.eia.gov/maps/layer_info-m.cfmThere were some facilities that were stumbled upon while searching for others, most of these are smaller scale sites located near farm infrastructure. Other sites were located by contacting counties that had solar developments within the county. Still, others were located by sleuthing around for proposals and company websites that had images of the completed facility. These helped to locate the most recently developed sites and these sites were digitized based on landmarks such as ditches, trees, roads and other permanent structures.Metadata: (2) UC Berkeley Solar PointsUC Berkeley report containing point location for energy facilities across the United States.2022_utility-scale_solar_data_update.xlsm (live.com)Metadata: (3) Kruitwagen et al. 2021Abstract: Photovoltaic (PV) solar energy generating capacity has grown by 41 per cent per year since 2009. Energy system projections that mitigate climate change and aid universal energy access show a nearly ten-fold increase in PV solar energy generating capacity by 2040. Geospatial data describing the energy system are required to manage generation intermittency, mitigate climate change risks, and identify trade-offs with biodiversity, conservation and land protection priorities caused by the land-use and land-cover change necessary for PV deployment. Currently available inventories of solar generating capacity cannot fully address these needs. Here we provide a global inventory of commercial-, industrial- and utility-scale PV installations (that is, PV generating stations in excess of 10 kilowatts nameplate capacity) by using a longitudinal corpus of remote sensing imagery, machine learning and a large cloud computation infrastructure. We locate and verify 68,661 facilities, an increase of 432 per cent (in number of facilities) on previously available asset-level data. With the help of a hand-labelled test set, we estimate global installed generating capacity to be 423 gigawatts (−75/+77 gigawatts) at the end of 2018. Enrichment of our dataset with estimates of facility installation date, historic land-cover classification and proximity to vulnerable areas allows us to show that most of the PV solar energy facilities are sited on cropland, followed by arid lands and grassland. Our inventory could aid PV delivery aligned with the Sustainable Development GoalsEnergy Resource Land Use Planning - Kruitwagen_etal_Nature.pdf - All Documents (sharepoint.com)Metadata: (4) BLM Renewable ProjectTo identify renewable energy approved and pending lease areas on BLM administered lands. To provide information about solar and wind energy applications and completed projects within the State of California for analysis and display internally and externally. This feature class denotes "verified" renewable energy projects at the California State BLM Office, displayed in GIS. The term "Verified" refers to the GIS data being constructed at the California State Office, using the actual application/maps with legal descriptions obtained from the renewable energy company. https://www.blm.gov/wo/st/en/prog/energy/renewable_energy https://www.blm.gov/style/medialib/blm/wo/MINERALS_REALTY_AND_RESOURCE_PROTECTION_/energy/solar_and_wind.Par.70101.File.dat/Public%20Webinar%20Dec%203%202014%20-%20Solar%20and%20Wind%20Regulations.pdfBLM CA Renewable Energy Projects | BLM GBP Hub (arcgis.com)Metadata: (5) Quarterly Fuel and Energy Report (QFER) California Power Plants - Overview (arcgis.com)

  3. U

    U.S. Solar Power Industry Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated May 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). U.S. Solar Power Industry Report [Dataset]. https://www.marketreportanalytics.com/reports/us-solar-power-industry-100695
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    May 7, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    United States
    Variables measured
    Market Size
    Description

    The U.S. solar power industry is experiencing robust growth, driven by increasing demand for renewable energy, supportive government policies like tax incentives and renewable portfolio standards, and decreasing solar panel costs. The market, segmented into Solar Photovoltaic (PV) and Concentrated Solar Power (CSP), shows significant potential for expansion. While precise market size figures for 2025 are not provided, considering a CAGR of 16.48% from an unspecified base year (let's assume 2019 for illustrative purposes) and a current market size in the billions, a reasonable estimate for the 2025 U.S. solar power market size could be in the range of $50-60 billion. This is supported by the numerous large companies involved, including established players like First Solar and NextEra Energy, alongside specialized installers like SOLV Energy and 8minute Solar Energy. Growth is further fueled by technological advancements leading to increased efficiency and reduced installation costs, making solar power a more competitive and attractive option for both residential and commercial consumers. The continued growth of the U.S. solar power market is projected through 2033, though challenges remain. These include land availability for large-scale solar farms, grid infrastructure limitations in accommodating intermittent renewable energy sources, and potential supply chain disruptions impacting the availability and cost of solar panels. However, ongoing innovation, improving energy storage solutions, and a growing emphasis on sustainable energy practices are likely to mitigate these constraints. The strong presence of major players like Mortenson and Hanwha, coupled with the emergence of smaller, specialized companies, indicates a dynamic and competitive landscape poised for sustained expansion. Focusing on specific regional variations within the U.S. and further segmenting the market by residential, commercial, and utility-scale projects will provide a more granular understanding of future growth trajectories. Recent developments include: April 2023: Atlas Renewable Energy and Albras signed a solar power purchase agreement (PPA). Atlas will deliver solar-generated power to Albras for the next 21 years under the contract terms. The 902 MW Vista Alegre Photovoltaic Project will supply solar energy. The factory in Minas Gerais in Southeastern Brazil will begin operations in 2025., April 2023: Masdar increased its foothold in the United States by acquiring a 50% stake in a combined solar and battery storage project from EDF Renewables North America. The Big Beau project in California comprises a 128MW solar facility plus a 40MW battery energy storage system. It is one of eight projects with a total capacity of 1.6 GW in which Masdar and EDF Renewables have agreed to collaborate., March 2023: Duke Energy Sustainable Solutions (DESS), a Duke Energy nonregulated commercial brand, is operating its largest solar power plant, a megawatt (MW) Pisgah Ridge Solar facility in Navarro County, Texas. Over the next 15 years, Charles River Laboratories International Inc. has a virtual power purchase agreement (VPPA) for 102 MW of the project.. Key drivers for this market are: 4., Declining Costs and Increasing Efficiencies of Solar PV Panels 4.; Supportive Government Policies Towards Solar. Potential restraints include: 4., Declining Costs and Increasing Efficiencies of Solar PV Panels 4.; Supportive Government Policies Towards Solar. Notable trends are: Solar Photovoltaic (PV) Expected to Dominate the Market.

  4. U

    U.S. Solar Power Industry Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Dec 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2024). U.S. Solar Power Industry Report [Dataset]. https://www.datainsightsmarket.com/reports/us-solar-power-industry-3676
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Dec 26, 2024
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    United States
    Variables measured
    Market Size
    Description

    The size of the U.S. Solar Power Industry market was valued at USD XX Million in 2023 and is projected to reach USD XXX Million by 2032, with an expected CAGR of 16.48% during the forecast period. This US solar power industry is gaining rapidly with the combination of advancing technology, decreasing costs, and productive government policies. As the country strives towards a cleaner energy future, solar power has come up as an important player in curbing greenhouse gas emissions and improving energy independence. This has caused the cost of solar photovoltaic systems to plummet over the last ten years, thereby making solar energy ready for both residential and commercial users. This lowered the cost and added incentives like tax credits and rebates have made it a natural choice widely adopted all over the country. Besides, growing awareness of climate change and the need for renewable source options enhances the need for solar installation. California, Texas, and Florida are the leading front in terms of solar capacity, backed by an auspicious regulatory environment and adequate sunlight. More community solar projects and energy storage options make solar energy even more appealing to an increasing number of consumers to join the clean energy revolution. Despite supply chain disruptions and tariffs imposed, the outlook for the U.S. solar power industry remains promising. Investments and innovation continue pouring into an industry that will significantly contribute to national energy goals and developing a renewable energy future that is sustainable and resilient. Recent developments include: April 2023: Atlas Renewable Energy and Albras signed a solar power purchase agreement (PPA). Atlas will deliver solar-generated power to Albras for the next 21 years under the contract terms. The 902 MW Vista Alegre Photovoltaic Project will supply solar energy. The factory in Minas Gerais in Southeastern Brazil will begin operations in 2025., April 2023: Masdar increased its foothold in the United States by acquiring a 50% stake in a combined solar and battery storage project from EDF Renewables North America. The Big Beau project in California comprises a 128MW solar facility plus a 40MW battery energy storage system. It is one of eight projects with a total capacity of 1.6 GW in which Masdar and EDF Renewables have agreed to collaborate., March 2023: Duke Energy Sustainable Solutions (DESS), a Duke Energy nonregulated commercial brand, is operating its largest solar power plant, a megawatt (MW) Pisgah Ridge Solar facility in Navarro County, Texas. Over the next 15 years, Charles River Laboratories International Inc. has a virtual power purchase agreement (VPPA) for 102 MW of the project.. Key drivers for this market are: Declining Costs and Increasing Efficiencies of Solar PV Panels 4., Supportive Government Policies Towards Solar. Potential restraints include: Increasing Adoption of Alternative Clean Energy Sources and Increasing Natural Gas Consumption. Notable trends are: Solar Photovoltaic (PV) Expected to Dominate the Market.

  5. a

    Wildlife and Habitat Risk Map for Solar Energy Projects

    • hub.arcgis.com
    • gis-fws.opendata.arcgis.com
    Updated Sep 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish & Wildlife Service (2023). Wildlife and Habitat Risk Map for Solar Energy Projects [Dataset]. https://hub.arcgis.com/maps/cd3c76e7ac694e46ad8444a9ac91e21f
    Explore at:
    Dataset updated
    Sep 25, 2023
    Dataset authored and provided by
    U.S. Fish & Wildlife Service
    Area covered
    Description

    In collaboration with the Mississippi Department of Wildlife, Fisheries, and Parks Natural Heritage Program, the U.S. Fish and Wildlife Service (Service) developed the Mississippi Solar Siting Tool to provide stakeholders the general guidance necessary to reduce potential adverse impacts to sensitive habitats and species in Mississippi when siting proposed solar energy projects. The purpose of the map is to assist solar energy developers in screening environmentally sensitive areas compared to areas where lower environmental impacts are anticipated. The decision framework is similar to that described in the Service’s 2012 Land-Based Wind Energy Guidelines (Land-Based Wind Energy Guidelines), particularly during Tiers 1 (Preliminary Site Evaluation) and 2 (Site Characterization); whereas Tiers 3-5 involve field studies to predict and monitor impacts. Environmental risks include direct impacts (e.g., from construction or clearing, loss, fragmentation, or degradation of habitat, displacement or behavioral changes), and indirect impacts (e.g., increased predator populations). The assigned risk categories and corresponding colors in the map represent the Service’s estimation of the relative environmental risk to species of concern and sensitive habitats within an area. Regardless of the environmental risk associated with a particular area, solar developers should coordinate with the Service and other appropriate Federal and State agencies and follow guidelines to inform the siting and development of any proposed solar energy project.

  6. A

    NREL GIS Data: Hawaii Low Resolution Concentrating Solar Power Resource

    • data.amerigeoss.org
    zip
    Updated Jul 30, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). NREL GIS Data: Hawaii Low Resolution Concentrating Solar Power Resource [Dataset]. https://data.amerigeoss.org/pl/dataset/nrel-gis-data-hawaii-low-resolution-concentrating-solar-power-resource
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 30, 2019
    Dataset provided by
    United States[old]
    Area covered
    Hawaii
    Description

    Abstract: Monthly and annual average solar resource potential for Hawaii.

    Purpose: Provide information on the solar resource potential for Hawaii. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location.

    Supplemental Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain. Units are in watt hours.

    Other Citation Details:

    George, R, and E. Maxwell, 1999: "High-Resolution Maps of Solar Collector Performance Using A Climatological Solar Radiation Model", Proceedings of the 1999 Annual Conference, American Solar Energy Society, Portland, ME.

    Maxwell, E, R. George and S. Wilcox, "A Climatological Solar Radiation Model", Proceedings of the 1998 Annual Conference, American Solar Energy Society, Albuquerque NM.

    License Info

    DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data.

    Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data.

    THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA.

    The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.

  7. Solar Energy: Bans or Moratoriums (2022)

    • osti.gov
    • data.openei.org
    • +1more
    Updated Jan 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geospatial Data Science, NREL (2024). Solar Energy: Bans or Moratoriums (2022) [Dataset]. https://www.osti.gov/dataexplorer/biblio/dataset/2441171
    Explore at:
    Dataset updated
    Jan 1, 2024
    Dataset provided by
    United States Department of Energyhttp://energy.gov/
    Office of Energy Efficiency and Renewable Energyhttp://energy.gov/eere
    49.2637,-66.5318|24.5873,-66.5318|24.5873,-125.4514|49.2637,-125.4514|49.2637,-66.5318
    DOE Open Energy Data Initiative (OEDI); National Renewable Energy Laboratory (NREL)
    Authors
    Geospatial Data Science, NREL
    Description

    This dataset identifies counties and municipalities that had a solar energy ban or moratorium as of April 2022. A TIF data file and a PNG map of the data are provided, showing areas where solar energy bans or moratoriums exist across the contiguous United States. For further details and citation, please refer to the publication linked below: Lopez, Anthony, Pavlo Pinchuk, Michael Gleason, Wesley Cole, Trieu Mai, Travis Williams, Owen Roberts, Marie Rivers, Mike Bannister, Sophie-Min Thomson, Gabe Zuckerman, and Brian Sergi. 2024. Solar Photovoltaics and Land-Based Wind Technical Potential and Supply Curves for the Contiguous United States: 2023 Edition. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-87843.

  8. Renewable Energy Capacity Factor Maps (2021)

    • ecat.ga.gov.au
    esri:map-service +3
    Updated Mar 10, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Commonwealth of Australia (Geoscience Australia) (2021). Renewable Energy Capacity Factor Maps (2021) [Dataset]. https://ecat.ga.gov.au/geonetwork/srv/api/records/0b2f1c73-0358-4ff0-9572-2d1ab5077566
    Explore at:
    ogc:wms, www:link-1.0-http--link, esri:map-service, ogc:wcsAvailable download formats
    Dataset updated
    Mar 10, 2021
    Dataset provided by
    Geoscience Australiahttp://ga.gov.au/
    Area covered
    Description

    Geoscience Australia and Monash University have produced a series of renewable energy capacity factor maps of Australia. Solar photovoltaic, concentrated solar power, wind (150 metre hub height) and hybrid wind and solar capacity factor maps are included in this dataset. All maps are available for download in geotiff format.

    Solar Photovoltaic capacity factor map The minimum capacity factor is <10% and the maximum is 25%. The map is derived from Bureau of Meteorology (2020) data. The scientific colour map is sourced from Crameri (2018).

    Concentrated Solar Power capacity factor map The minimum capacity factor is 52% and the maximum is 62%. The map is derived from Bureau of Meteorology (2020) data. Minimum exposure cut-off values used are from International Renewable Energy Agency (2012) and Wang (2019). The scientific colour map is sourced from Crameri (2018).

    Wind (150 m hub height) capacity factor map The minimum capacity factor is <15% and the maximum is 42%. The map is derived from Global Modeling and Assimilation Office (2015) and DNV GL (2016) data. The scientific colour map is sourced from Crameri (2018).

    Hybrid Wind and Solar capacity factor maps Nine hybrid wind and solar maps are available, divided into 10% intervals of wind to solar ratio (eg. (wind 40% : solar 60%), (wind 50% : solar 50%), (wind 60% : solar 40%) etc.). The maps show the capacity factor available for electrolysis. Wind and solar plants might be oversized to increase the overall running time of the hydrogen plant allowing the investor to reduce electrolyser capital expenditures for the same amount of output. Calculations also include curtailment (or capping) of excess electricity when more electricity is generated than required to operate the electrolyser. The minimum and maximum capacity factors vary relative to a map’s specified wind to solar ratio. A wind to solar ratio of 50:50 produces the highest available capacity factor of 64%. The maps are derived from Global Modeling and Assimilation Office (2015), DNV GL (2016) and Bureau of Meteorology (2020) data. The scientific colour map is sourced from Crameri (2018).

    See the ‘Downloads' tab for the full list of references.

    Disclaimer The capacity factor maps are derived from modelling output and not all locations are validated. Geoscience Australia does not guarantee the accuracy of the maps, data, and visualizations presented, and accepts no responsibility for any consequence of their use. Capacity factor values shown in the maps should not be relied upon in an absolute sense when making a commercial decision. Rather they should be strictly interpreted as indicative. Users are urged to exercise caution when using the information and data contained. If you have found an error in this dataset, please let us know by contacting clientservices@ga.gov.au.

    This dataset is published with the permission of the CEO, Geoscience Australia.

  9. d

    NREL GIS Data: Continental United States Photovoltaic Low Resolution.

    • datadiscoverystudio.org
    • data.globalchange.gov
    • +1more
    zip
    Updated Oct 9, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). NREL GIS Data: Continental United States Photovoltaic Low Resolution. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/87ec97871407423e839b64e8f3edba75/html
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 9, 2017
    Area covered
    United States
    Description

    description: Abstract: Monthly and annual average solar resource potential for the lower 48 states of the United States of America. Purpose: Provide information on the solar resource potential for the United States of America lower 48 states. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. Supplemental Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximatley 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain. Units are in kilowatt hours per meter squared per day. OtherCitation Details: George, R, and E. Maxwell, 1999: "High-Resolution Maps of Solar Collector Performance Using A Climatological Solar Radiation Model", Proceedings of the 1999 Annual Conference, American Solar Energy Society, Portland, ME. Maxwell, E, R. George and S. Wilcox, "A Climatological Solar Radiation Model", Proceedings of the 1998 Annual Conference, American Solar Energy Society, Albuquerque NM. Marion, William and Stephen Wilcox, 1994: "Solar Radiation Data Manual for Flat-plate and Concentrating Collectors". NREL/TP-463-5607, National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401. ### License Info DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.; abstract: Abstract: Monthly and annual average solar resource potential for the lower 48 states of the United States of America. Purpose: Provide information on the solar resource potential for the United States of America lower 48 states. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. Supplemental Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximatley 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain. Units are in kilowatt hours per meter squared per day. OtherCitation Details: George, R, and E. Maxwell, 1999: "High-Resolution Maps of Solar Collector Performance Using A Climatological Solar Radiation Model", Proceedings of the 1999 Annual Conference, American Solar Energy Society, Portland, ME. Maxwell, E, R. George and S. Wilcox, "A Climatological Solar Radiation Model", Proceedings of the 1998 Annual Conference, American Solar Energy Society, Albuquerque NM. Marion, William and Stephen Wilcox, 1994: "Solar Radiation Data Manual for Flat-plate and Concentrating Collectors". NREL/TP-463-5607, National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401. ### License Info DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN

  10. S

    Solar Resource Assessment Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Solar Resource Assessment Software Report [Dataset]. https://www.datainsightsmarket.com/reports/solar-resource-assessment-software-1969847
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    May 8, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global market for solar resource assessment software is experiencing robust growth, driven by the increasing adoption of renewable energy sources and the need for accurate solar resource data for project planning and development. The market, estimated at $500 million in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $1.5 billion by 2033. This expansion is fueled by several key factors, including the decreasing cost of solar energy technologies, supportive government policies and incentives promoting renewable energy deployment, and the growing awareness of climate change and the urgency to transition to sustainable energy sources. The market is segmented by application (personal and commercial) and software type (paid and free), with the paid segment currently dominating due to its advanced features and comprehensive data analysis capabilities. Geographic growth is robust across various regions, with North America and Europe currently leading, fueled by established solar energy markets and robust government support. However, the Asia-Pacific region is expected to experience significant growth in the coming years, driven by rapid economic expansion and increasing investments in renewable energy infrastructure, particularly in countries like China and India. The competitive landscape is characterized by a mix of established players and emerging companies. Major players like Solargis, Global Solar Atlas, and NRG Systems are leveraging their expertise and established market presence to maintain their dominance. However, the market is also witnessing the entry of new players offering innovative solutions, potentially disrupting the market with niche offerings or cost-effective solutions. Market restraints include the high initial cost of advanced software and the need for specialized technical expertise to effectively utilize the software. However, ongoing technological advancements, including cloud-based solutions and user-friendly interfaces, are steadily mitigating these challenges. The overall market outlook remains positive, suggesting a strong trajectory for growth in the coming years, driven by a confluence of factors promoting the expansion of the solar energy sector globally.

  11. Latin America and Caribbean - Solar irradiation and PV power potential map

    • cloud.csiss.gmu.edu
    • data.amerigeoss.org
    Updated Jun 13, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2019). Latin America and Caribbean - Solar irradiation and PV power potential map [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/latin-america-and-caribbean-solar-irradiation-ghi-dni-and-pv-power-potential-map
    Explore at:
    Dataset updated
    Jun 13, 2019
    Dataset provided by
    World Bankhttp://worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Latin America, Caribbean
    Description

    Map with Global Horizontal Irradiation (GHI), Direct Normal Irradiation (DNI) and PV power potential in Latin America and Caribbean. The GIS data stems from the Global Solar Atlas (http://globalsolaratlas.info). The link provides poster size (.tif) and midsize maps (.png).

  12. Solar Resource, NSRDB PSM Direct Normal Irradiance (DNI) - North American...

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    esri rest, wms
    Updated May 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2021). Solar Resource, NSRDB PSM Direct Normal Irradiance (DNI) - North American Cooperation on Energy Information [Dataset]. https://open.canada.ca/data/en/dataset/9554ed18-6ab2-477f-9545-da091eba762f
    Explore at:
    esri rest, wmsAvailable download formats
    Dataset updated
    May 19, 2021
    Dataset provided by
    Ministry of Natural Resources of Canadahttps://www.nrcan.gc.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Jan 1, 1998 - Jan 1, 2014
    Area covered
    United States
    Description

    Average of the hourly Direct Normal Irradiance (DNI) over 17 years (1998-2014). Data extracted from the National Solar Radiation Database (NSRDB) developed using the Physical Solar Model (PSM) by National Renewable Energy Laboratory ("NREL"), Alliance for Sustainable Energy, LLC, U.S. Department of Energy ("DOE"). The current version of the National Solar Radiation Database (NSRDB) (v2.0.1) was developed using the Physical Solar Model (PSM), and offers users the solar resource datasets from 1998 to 2014). The NSRDB comprises 30-minute solar and meteorological data for approximately 2 million 0.038-degree latitude by 0.038-degree longitude surface pixels (nominally 4 km2). The area covered is bordered by longitudes 25° W on the east and 175° W on the west, and by latitudes -20° S on the south and 60° N on the north. The solar radiation values represent the resource available to solar energy systems. The AVHRR Pathfinder Atmospheres-Extended (PATMOS-x) model uses half-hourly radiance images in visible and infrared channels from the GOES series of geostationary weather satellites, a climatological albedo database and mixing ratio, temperature and pressure profiles from Modern Era-Retrospective Analysis (MERRA) to generate cloud masking and cloud properties. Cloud properties generated using PATMOS-x are used in fast radiative transfer models along with aerosol optical depth (AOD) and precipitable water vapor (PWV) from ancillary sources to estimate Direct Normal Irradiance (DNI) and Global Horizontal Irradiance (GHI). A daily AOD is retrieved by combining information from the MODIS and MISR satellites and ground-based AERONET stations. Water vapor and other inputs are obtained from MERRA. For clear sky scenes the direct normal irradiance (DNI) and GHI are computed using the REST2 radiative transfer model. For cloud scenes identified by the cloud mask, Fast All-sky Radiation Model for Solar applications (FARMS) is used to compute the GHI. The DNI for cloud scenes is then computed using the DISC model. The data in this layer is an average of the hourly GHI over 17 years (1998-2014). NOTE: The Geographical Information System (GIS) data and maps for solar resources for Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) were developed by the U.S. National Renewable Energy Laboratory (NREL) and provided for Canada as an estimate. At present, neither the NREL data, nor the Physical Solar Model (PSM) on which the NREL data is based, have been either assessed or validated for the particular Canadian weather applications. A Canadian GHI map developed by the department of Natural Resources Canada (NRCan) is based on the State University of New York (SUNY) model and has been assessed and validated for the particular Canadian weather applications. The Canadian GHI map is available at http://atlas.gc.ca/cerp-rpep/en/.

  13. U

    Concentrated Solar Power Potential, 2012, Colorado Plateau

    • data.usgs.gov
    • search.dataone.org
    • +1more
    Updated Nov 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rudy Schuster; Stella Copeland; John Bradford; Michael Duniway (2021). Concentrated Solar Power Potential, 2012, Colorado Plateau [Dataset]. http://doi.org/10.5066/F72J6B1M
    Explore at:
    Dataset updated
    Nov 19, 2021
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Rudy Schuster; Stella Copeland; John Bradford; Michael Duniway
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Dec 31, 2012
    Area covered
    Colorado Plateau
    Description

    Potential for concentrated solar power generation in Wh/sq. m./day determined with the RE Atlas (NREL 2012, Lopez et al. 2012). Lopez, A., B. Roberts, D. Heimiller, N. Blair, and G. Porro. 2012. U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis. U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, National Renewable Energy Laboratory, Golden, CO. NREL [National Renewable Energy Laboratory]. 2012. Renewable Energy Atlas. U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy.

  14. d

    Data from: India Direct Normal & Global Horizontal Irradiance Solar...

    • catalog.data.gov
    • data.openei.org
    • +2more
    Updated Jan 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Renewable Energy Laboratory (2025). India Direct Normal & Global Horizontal Irradiance Solar Resources [Dataset]. https://catalog.data.gov/dataset/india-direct-normal-global-horizontal-irradiance-solar-resources-249f3
    Explore at:
    Dataset updated
    Jan 20, 2025
    Dataset provided by
    National Renewable Energy Laboratory
    Area covered
    India
    Description

    GIS data for India's direct normal irradiance (DNI) and global horizontal irradiance. Provides 10-kilometer (km) solar resource maps and data for India. The 10-km hourly solar resource data were developed using weather satellite (METEOSAT) measurements incorporated into a site-time specific solar modeling approach developed at the U.S. State University of New York at Albany. The data is made publicly available in geographic information system (GIS) format (shape files etc). The new maps and data were released in June 2013. The new data expands the time period of analysis from 2002-2007 to 2002-2011 and incorporates enhanced aerosols information to improve direct normal irradiance (DNI). These products were developed by the U.S. National Renewable Energy Laboratory (NREL) in cooperation with India's Ministry of New and Renewable Energy, through funding from the U.S. Department of Energy and U.S. Department of State.

  15. Solar Resource, NSRDB PSM Global Horizontal Irradiance (GHI) - North...

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    esri rest, wms
    Updated May 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2021). Solar Resource, NSRDB PSM Global Horizontal Irradiance (GHI) - North American Cooperation on Energy Information [Dataset]. https://open.canada.ca/data/en/dataset/a2dd0554-03f8-4edc-a3b3-67b47c5c9d6d
    Explore at:
    esri rest, wmsAvailable download formats
    Dataset updated
    May 19, 2021
    Dataset provided by
    Ministry of Natural Resources of Canadahttps://www.nrcan.gc.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Jan 1, 1998 - Jan 1, 2014
    Description

    Average of the hourly Global Horizontal Irradiance (GHI) over 17 years (1998-2014). Data extracted from the National Solar Radiation Database (NSRDB) developed using the Physical Solar Model (PSM) by National Renewable Energy Laboratory ("NREL"), Alliance for Sustainable Energy, LLC, U.S. Department of Energy ("DOE"). The current version of the National Solar Radiation Database (NSRDB) (v2.0.1) was developed using the Physical Solar Model (PSM), and offers users the solar resource datasets from 1998 to 2014). The NSRDB comprises 30-minute solar and meteorological data for approximately 2 million 0.038-degree latitude by 0.038-degree longitude surface pixels (nominally 4 km2). The area covered is bordered by longitudes 25° W on the east and 175° W on the west, and by latitudes -20° S on the south and 60° N on the north. The solar radiation values represent the resource available to solar energy systems. The AVHRR Pathfinder Atmospheres-Extended (PATMOS-x) model uses half-hourly radiance images in visible and infrared channels from the GOES series of geostationary weather satellites, a climatological albedo database and mixing ratio, temperature and pressure profiles from Modern Era-Retrospective Analysis (MERRA) to generate cloud masking and cloud properties. Cloud properties generated using PATMOS-x are used in fast radiative transfer models along with aerosol optical depth (AOD) and precipitable water vapor (PWV) from ancillary sources to estimate Direct Normal Irradiance (DNI) and Global Horizontal Irradiance (GHI). A daily AOD is retrieved by combining information from the MODIS and MISR satellites and ground-based AERONET stations. Water vapor and other inputs are obtained from MERRA. For clear sky scenes the direct normal irradiance (DNI) and GHI are computed using the REST2 radiative transfer model. For cloud scenes identified by the cloud mask, Fast All-sky Radiation Model for Solar applications (FARMS) is used to compute the GHI. The DNI for cloud scenes is then computed using the DISC model. The data in this layer is an average of the hourly GHI over 17 years (1998-2014). NOTE: The Geographical Information System (GIS) data and maps for solar resources for Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) were developed by the U.S. National Renewable Energy Laboratory (NREL) and provided for Canada as an estimate. At present, neither the NREL data, nor the Physical Solar Model (PSM) on which the NREL data is based, have been either assessed or validated for the particular Canadian weather applications. A Canadian GHI map developed by the department of Natural Resources Canada (NRCan) is based on the State University of New York (SUNY) model and has been assessed and validated for the particular Canadian weather applications. The Canadian GHI map is available at http://atlas.gc.ca/cerp-rpep/en/.

  16. d

    EnviroAtlas - Average Direct Normal Solar resources kWh/m2/Day by 12-Digit...

    • catalog.data.gov
    • datasets.ai
    • +3more
    Updated Apr 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency, Office of Research and Development-Sustainable and Healthy Communities Research Program, EnviroAtlas (Point of Contact) (2025). EnviroAtlas - Average Direct Normal Solar resources kWh/m2/Day by 12-Digit HUC for the Conterminous United States [Dataset]. https://catalog.data.gov/dataset/enviroatlas-average-direct-normal-solar-resources-kwh-m2-day-by-12-digit-huc-for-the-contermino7
    Explore at:
    Dataset updated
    Apr 20, 2025
    Dataset provided by
    U.S. Environmental Protection Agency, Office of Research and Development-Sustainable and Healthy Communities Research Program, EnviroAtlas (Point of Contact)
    Area covered
    Contiguous United States, United States
    Description

    The annual average direct normal solar resources by 12-Digit Hydrologic Unit (HUC) was estimated from maps produced by the National Renewable Energy Laboratory for the U.S. Department of Energy (February 2009). The original data was from 10km, satellite modeled dataset (SUNY/NREL, 2007) representing data from 1998-2005. The 10km data was converted to 30m grid cells, and then zonal statistics were estimated for a final value of average kWh/m2/day for each 12-digit HUC. For more information about the original dataset please refer to the National Renewable Energy Laboratory (NREL) website at www.nrel.gov/gis/data_solar.html. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  17. u

    Solar Resource, NSRDB PSM Direct Normal Irradiance (DNI) - North American...

    • data.urbandatacentre.ca
    • beta.data.urbandatacentre.ca
    Updated Oct 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Solar Resource, NSRDB PSM Direct Normal Irradiance (DNI) - North American Cooperation on Energy Information - Catalogue - Canadian Urban Data Catalogue (CUDC) [Dataset]. https://data.urbandatacentre.ca/dataset/gov-canada-9554ed18-6ab2-477f-9545-da091eba762f
    Explore at:
    Dataset updated
    Oct 1, 2024
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    Canada
    Description

    Average of the hourly Direct Normal Irradiance (DNI) over 17 years (1998-2014). Data extracted from the National Solar Radiation Database (NSRDB) developed using the Physical Solar Model (PSM) by National Renewable Energy Laboratory ("NREL"), Alliance for Sustainable Energy, LLC, U.S. Department of Energy ("DOE"). The current version of the National Solar Radiation Database (NSRDB) (v2.0.1) was developed using the Physical Solar Model (PSM), and offers users the solar resource datasets from 1998 to 2014). The NSRDB comprises 30-minute solar and meteorological data for approximately 2 million 0.038-degree latitude by 0.038-degree longitude surface pixels (nominally 4 km2). The area covered is bordered by longitudes 25° W on the east and 175° W on the west, and by latitudes -20° S on the south and 60° N on the north. The solar radiation values represent the resource available to solar energy systems. The AVHRR Pathfinder Atmospheres-Extended (PATMOS-x) model uses half-hourly radiance images in visible and infrared channels from the GOES series of geostationary weather satellites, a climatological albedo database and mixing ratio, temperature and pressure profiles from Modern Era-Retrospective Analysis (MERRA) to generate cloud masking and cloud properties. Cloud properties generated using PATMOS-x are used in fast radiative transfer models along with aerosol optical depth (AOD) and precipitable water vapor (PWV) from ancillary sources to estimate Direct Normal Irradiance (DNI) and Global Horizontal Irradiance (GHI). A daily AOD is retrieved by combining information from the MODIS and MISR satellites and ground-based AERONET stations. Water vapor and other inputs are obtained from MERRA. For clear sky scenes the direct normal irradiance (DNI) and GHI are computed using the REST2 radiative transfer model. For cloud scenes identified by the cloud mask, Fast All-sky Radiation Model for Solar applications (FARMS) is used to compute the GHI. The DNI for cloud scenes is then computed using the DISC model. The data in this layer is an average of the hourly GHI over 17 years (1998-2014). NOTE: The Geographical Information System (GIS) data and maps for solar resources for Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) were developed by the U.S. National Renewable Energy Laboratory (NREL) and provided for Canada as an estimate. At present, neither the NREL data, nor the Physical Solar Model (PSM) on which the NREL data is based, have been either assessed or validated for the particular Canadian weather applications. A Canadian GHI map developed by the department of Natural Resources Canada (NRCan) is based on the State University of New York (SUNY) model and has been assessed and validated for the particular Canadian weather applications. The Canadian GHI map is available at http://atlas.gc.ca/cerp-rpep/en/.

  18. Where Are Housing Units that are Heated by Solar?

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • hub.arcgis.com
    Updated Feb 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). Where Are Housing Units that are Heated by Solar? [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/UrbanObservatory::where-are-housing-units-that-are-heated-by-solar/about
    Explore at:
    Dataset updated
    Feb 4, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This map shows the count and percentage of occupied housing units that is heated mostly by solar energy (i.e., percent of non-vacant housing units that use heat provided by sunlight that is collected, stored, and actively distributed to most of the rooms). Map opens in Hawaii and California at county-level, but zoom in for tract-level map / zoom out for state-level. Breakdown by owner/renter in pop-up:Map has national coverage. If a county or tract has an estimated 0 households using solar, that county/tract is filtered out from appearing in the map.This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of the ArcGIS Living Atlas, and are updated every year when the American Community Survey releases new estimates, so values in the map always reflect the newest data available.

  19. Data from: Renewable Energy Power Plants

    • climate.esri.ca
    • climat.esri.ca
    • +1more
    Updated Jan 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Canada - Technology Strategy Group (2020). Renewable Energy Power Plants [Dataset]. https://climate.esri.ca/datasets/esrica-tsg::renewable-energy-power-plants/about
    Explore at:
    Dataset updated
    Jan 2, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Canada - Technology Strategy Group
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    Description

    IMPORTANT NOTICE This item has moved to a new organization and entered Mature Support on February 3rd, 2025. This item is scheduled to be Retired and removed from ArcGIS Online on July 30th, 2025. We encourage you to switch to using the item on the new organization as soon as possible to avoid any disruptions within your workflows. If you have any questions, please feel free to leave a comment below or email our Living Atlas Curator (livingatlascurator@esri.ca) The new version of this item can be found here Stations containing prime movers, electric generators, and auxiliary equipment for converting mechanical, chemical into electric energy with an installed capacity of 1 Megawatt or more generated from renewable energy, including biomass, hydroelectric, pumped-storage hydroelectric, geothermal, solar, wind, and tidal.Mapping Resources implemented as part of the North American Cooperation on Energy Information (NACEI) between the Department of Energy of the United States of America, the Department of Natural Resources of Canada, and the Ministry of Energy of the United Mexican States.The participating Agencies and Institutions shall not be held liable for improper or incorrect use of the data described and/or contained herein. These data and related graphics, if available, are not legal documents and are not intended to be used as such. The information contained in these data is dynamic and may change over time and may differ from other official information. The Agencies and Institutions participants give no warranty, expressed or implied, as to the accuracy, reliability, or completeness of these data.Maintenance and Update Frequency: As Needed For more information visit Renewable Energy Power Plants

  20. Data from: Block Scale Rooftop Solar Technical Potential for the City of...

    • data.openei.org
    • osti.gov
    • +1more
    website
    Updated Nov 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Prasanna; Sigrin; McCabe; Prasanna; Sigrin; McCabe (2021). Block Scale Rooftop Solar Technical Potential for the City of Orlando [Dataset]. https://data.openei.org/submissions/8235
    Explore at:
    websiteAvailable download formats
    Dataset updated
    Nov 24, 2021
    Dataset provided by
    United States Department of Energyhttp://energy.gov/
    National Renewable Energy Laboratory
    Open Energy Data Initiative (OEDI)
    Authors
    Prasanna; Sigrin; McCabe; Prasanna; Sigrin; McCabe
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Orlando
    Description

    The html maps are provided as supplementary information for the publication titled Parcel Scale Assessment of Rooftop Solar Technical Potential (NREL/PR-7A40-80780). The maps contain information on rooftop solar technical potential at the block scale for the city of Orlando in Florida. The rooftop solar technical potential information is based on data from two different datasets. The first dataset is LiDAR data for the city of Orlando obtained from the Orlando Utilities Commission (OUC) (Koebrich et al. 2021). The second dataset is a national parcel dataset (HIFLD 2020) which contains descriptive data and geometries for parcels in the U.S. Parcel scale data from both these datasets have been processed and aggregated to block scale to produce these html maps. The first html map (block scale developable roof area for Orlando) contains the developable roof area for solar. The second html map (block scale rooftop solar technical potential for Orlando) contains the rooftop solar technical potential in units of kilowatts as well as additional information on the most common building use type and the most common building occupancy type for the block. These html maps are provided to demonstrate the proof-of-concept analysis conducted for Orlando.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2017). NREL GIS Data: Continental United States High Resolution Concentrating Solar Power. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/e400840327d4438c8f34932ae6a2ae84/html

NREL GIS Data: Continental United States High Resolution Concentrating Solar Power.

Explore at:
zipAvailable download formats
Dataset updated
Aug 29, 2017
Area covered
United States
Description

description: Abstract: Monthly and annual average solar resource potential for the lower 48 states of the United States of America. Purpose: Provide information on the solar resource potential for the for the lower 48 states of the United States of America. Supplemental Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximatley 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain. Other Citation Details: George, R, and E. Maxwell, 1999: "High-Resolution Maps of Solar Collector Performance Using A Climatological Solar Radiation Model", Proceedings of the 1999 Annual Conference, American Solar Energy Society, Portland, ME. ### License Info This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.; abstract: Abstract: Monthly and annual average solar resource potential for the lower 48 states of the United States of America. Purpose: Provide information on the solar resource potential for the for the lower 48 states of the United States of America. Supplemental Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximatley 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain. Other Citation Details: George, R, and E. Maxwell, 1999: "High-Resolution Maps of Solar Collector Performance Using A Climatological Solar Radiation Model", Proceedings of the 1999 Annual Conference, American Solar Energy Society, Portland, ME. ### License Info This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.

Search
Clear search
Close search
Google apps
Main menu