Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Real Residential Property Prices for United States (QUSR628BIS) from Q1 1970 to Q2 2025 about residential, HPI, housing, real, price index, indexes, price, and USA.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains 2,000 entries of house price data from all states in Malaysia, providing a comprehensive overview of the country’s real estate market for 2025. Sourced from Brickz, a trusted platform for property transaction insights, it includes detailed information such as property location, tenure, type, median prices, and transaction counts. This dataset is ideal for real estate market analysis, predictive modeling, and exploring trends across Malaysia’s diverse property market.
https://encrypted-tbn1.gstatic.com/licensed-image?q=tbn:ANd9GcR8ttDRWTx7dIxuUegBTsggS4a6tQrnNA6DEW_HJu2DphQNsverV0PYsSkdbSdqm4qRaRuBOh4Txbv11yXMxIKWqh-_WAkeTuQI8Diu-Q" alt="Kuala Lumpur, Malaysia">
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
House Price Index YoY in the United States decreased to 1.70 percent in September from 2.40 percent in August of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index YoY.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for the United States (USSTHPI) from Q1 1975 to Q3 2025 about appraisers, HPI, housing, price index, indexes, price, and USA.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Real Residential Property Prices for Canada (QCAR628BIS) from Q1 1970 to Q2 2025 about Canada, residential, HPI, housing, real, price index, indexes, and price.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Median Sales Price of Houses Sold for the United States was 410800.00000 $ in April of 2025, according to the United States Federal Reserve. Historically, Median Sales Price of Houses Sold for the United States reached a record high of 442600.00000 in October of 2022 and a record low of 17800.00000 in January of 1963. Trading Economics provides the current actual value, an historical data chart and related indicators for Median Sales Price of Houses Sold for the United States - last updated from the United States Federal Reserve on December of 2025.
Facebook
TwitterThis dataset is designed for beginners to practice regression problems, particularly in the context of predicting house prices. It contains 1000 rows, with each row representing a house and various attributes that influence its price. The dataset is well-suited for learning basic to intermediate-level regression modeling techniques.
Beginner Regression Projects: This dataset can be used to practice building regression models such as Linear Regression, Decision Trees, or Random Forests. The target variable (house price) is continuous, making this an ideal problem for supervised learning techniques.
Feature Engineering Practice: Learners can create new features by combining existing ones, such as the price per square foot or age of the house, providing an opportunity to experiment with feature transformations.
Exploratory Data Analysis (EDA): You can explore how different features (e.g., square footage, number of bedrooms) correlate with the target variable, making it a great dataset for learning about data visualization and summary statistics.
Model Evaluation: The dataset allows for various model evaluation techniques such as cross-validation, R-squared, and Mean Absolute Error (MAE). These metrics can be used to compare the effectiveness of different models.
The dataset is highly versatile for a range of machine learning tasks. You can apply simple linear models to predict house prices based on one or two features, or use more complex models like Random Forest or Gradient Boosting Machines to understand interactions between variables.
It can also be used for dimensionality reduction techniques like PCA or to practice handling categorical variables (e.g., neighborhood quality) through encoding techniques like one-hot encoding.
This dataset is ideal for anyone wanting to gain practical experience in building regression models while working with real-world features.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth
Facebook
TwitterAttribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
India's residential house prices - quarterly and annual changes in house prices across cities, expert analysis and comparison with global peers.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Average House Prices in Canada increased to 688800 CAD in October from 687600 CAD in September of 2025. This dataset includes a chart with historical data for Canada Average House Prices.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth
Facebook
TwitterIn December 2024, the average house price in England was pricier than in any other country. This considerable disparity in average house prices is in no small part down to the country's capital city, where the average asking price was more than double that of the UK’s average. Even in London, for those who can afford a mortgage, the savings made through buying over renting can be beneficial. What drives house prices? Average house prices are affected by several factors, including economic growth, unemployment, and interest rates. Housing supply also plays a considerable role, with a shortage of supply leading to increased competition and an upward push in prices. Conversely, an excess of housing means prices fall to stimulate buyers. House prices still set to grow The housing market in the UK is expected to continue to grow in the next years. By 2029,.the annual number of housing transactions is set to reach *** million. With transactions on the rise, the average house price is also set to rise.
Facebook
TwitterThe average Canadian house price declined slightly in 2023, after four years of consecutive growth. The average house price stood at ******* Canadian dollars in 2023 and was forecast to reach ******* Canadian dollars by 2026. Home sales on the rise The number of housing units sold is also set to increase over the two-year period. From ******* units sold, the annual number of home sales in the country is expected to rise to ******* in 2025. British Columbia and Ontario have traditionally been housing markets with prices above the Canadian average, and both are set to witness an increase in sales in 2025. How did Canadians feel about the future development of house prices? When it comes to consumer confidence in the performance of the real estate market in the next six months, Canadian consumers in 2024 mostly expected that the market would go up. A slightly lower share of the respondents believed real estate prices would remain the same.
Facebook
TwitterThe house price index in Germany increased steadily from 2015 to 2022, followed by a decline until the first quarter of 2024. The index amounted to 100 in 2015 and, at its peak in the second quarter of 2022, exceeded 167 index points, meaning that house prices had risen by 67 percent during that period. Among the leading residential real estate markets in Germany, Munich had the highest square meter price for apartments.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset includes detailed information about flats available for sale in Ahmedabad, India, as listed on MagicBricks.
It captures various aspects of the properties, such as the type of area, price, and additional property details. The dataset is structured into several columns, each representing a distinct attribute of the property listing.
Title: The headline or title of the property listing.
type_area: The type of area measurement (e.g., Built-up, Carpet).
value_area: The numerical value of the area of the flat.
status: The status of the property (e.g., Ready to Move, Under Construction).
floor: The floor number or description (e.g., Ground Floor, 5th Floor).
transaction: The type of transaction (e.g., New Property, Resale).
furnishing: The furnishing status (e.g., Unfurnished, Semi-Furnished, Fully-Furnished).
facing: The direction the property faces (e.g., East, North-East).
price: The total listed price of the property.
price_sqft: The price per square foot.
description: Additional descriptive text provided in the listing.
Facebook
TwitterDuring the COVID-19 pandemic, the number of house sales in the UK spiked, followed by a period of decline. In 2023 and 2024, the housing market slowed notably, and in January 2025, transaction volumes fell to 46,774. House sales volumes are impacted by a number of factors, including mortgage rates, house prices, supply, demand, as well as the overall health of the market. The economic uncertainty and rising unemployment rates has also affected the homebuyer sentiment of Brits. How have UK house prices developed over the past 10 years? House prices in the UK have increased year-on-year since 2015, except for a brief period of decline in the second half of 2023 and the beginning of 2024. That is based on the 12-month percentage change of the UK house price index. At the peak of the housing boom in 2022, prices soared by nearly 14 percent. The decline that followed was mild, at under three percent. The cooling in the market was more pronounced in England and Wales, where the average house price declined in 2023. Conversely, growth in Scotland and Northern Ireland continued. What is the impact of mortgage rates on house sales? For a long period, mortgage rates were at record-low, allowing prospective homebuyers to take out a 10-year loan at a mortgage rate of less than three percent. In the last quarter of 2021, this period came to an end as the Bank of England rose the bank lending rate to contain the spike in inflation. Naturally, the higher borrowing costs affected consumer sentiment, urging many homebuyers to place their plans on hold and leading to a decline in sales.
Facebook
TwitterIn the quarter ending December 2024, the house price index in Portugal was recorded at 235.68 points, having increased by nearly six index points from the previous quarter. That was the highest value over the period under consideration.
Facebook
TwitterResidential real estate prices have been steadily growing in Russia both in the primary and the secondary market over the observed period. After a brief decline at the beginning of 2012, price growth resumed over the following years. In the second quarter of 2024, the average square meter price of residential estate in the country was measured at around ******* Russian rubles for new construction and at ******* Russian rubles for the second-hand properties.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for San Francisco-San Mateo-Redwood City, CA (MSAD) (ATNHPIUS41884Q) from Q3 1975 to Q3 2025 about San Francisco, appraisers, CA, HPI, housing, price index, indexes, price, and USA.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.