In 2021, South Africa scored **** in the Human Development Index (HDI), which indicated a high level of development. The country experienced a drop in the HDI score compared to the previous year, which was ****. However, an improvement was recorded from 2005 onwards. At that year, South Africa's score was ****, meaning that the country had a medium human development. The categorization changed from medium to high in 2013.
In 2022, South Africa scored **** points in the Human Development Index (HDI), which indicated a high level of development. Moreover, this was the highest score achieved in the Southern African region. Botswana followed closely behind, with an HDI of **** points. Conversely, Mozambique recorded the lowest in the region with **** points, which signifies low human development.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2023 based on 184 countries was 0.744 points. The highest value was in Iceland: 0.972 points and the lowest value was in South Africa: 0.388 points. The indicator is available from 1980 to 2023. Below is a chart for all countries where data are available.
Compared to other African countries, Seychelles scored the highest in the Human Development Index (HDI) in 2022. The country also ranked 67th globally, as one of the countries with a very high human development. This was followed by Mauritius, Libya, Egypt, and Tunisia, with scores ranging from 0.80 to 0.73 points. On the other hand, Central African Republic, South Sudan, and Somalia were among the countries in the region with the lowest index scores, indicating a low level of human development.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2023 based on 46 countries was 0.569 points. The highest value was in the Seychelles: 0.848 points and the lowest value was in South Africa: 0.388 points. The indicator is available from 1980 to 2023. Below is a chart for all countries where data are available.
0.72 (score) in 2020. A composite index measuring average achievement in three basic dimensions of human development—a long and healthy life, knowledge and a decent standard of living
In 2022, Mauritius and the Seychelles scored just over *** points on the Human Development Index (HDI), which indicated a very high level of development. Moreover, this was the highest score achieved in the East African region. Kenya followed, with an HDI of *** points. Conversely, Somalia and South Sudan recorded the lowest in the region with **** points, which signifies low human development.
******* had the highest level of the Human Development Index (HDI) worldwide in 2023 with a value of *****. With a score of ****, ****** followed closely behind *********** and had the second-highest level of human development in that year. The rise of the Asian tigers In the decades after the Cold War, the four so-called Asian tigers, South Korea, Singapore, Taiwan, and Hong Kong (now a Special Administrative Region of China) experienced rapid economic growth and increasing human development. At number eight and number 13 of the HDI, respectively, *********************** are the only Asian locations within the top-15 highest HDI scores. Both locations have experienced tremendous economic growth since the 1980’s and 1990’s. In 1980, the per capita GDP of Hong Kong was ***** U.S. dollars, increasing throughout the decades until reaching ****** in 2023, which is expected to continue to increase in the future. Meanwhile, in 1989, Singapore had a GDP of nearly ** billion U.S. dollars, which has risen to nearly *** billion U.S. dollars today and is also expected to keep increasing. Growth of the UAE The United Arab Emirates (UAE) is the only Middle Eastern country besides Israel within the highest ranking HDI scores globally. Within the Middle East and North Africa (MENA) region, the UAE has the third-largest GDP behind Saudi Arabia and Israel, reaching nearly *** billion U.S. dollars by 2022. Per capita, the UAE GDP was around ****** U.S. dollars in 1989, and has nearly doubled to ****** U.S. dollars by 2021. Moreover, this is expected to reach over ****** U.S. dollars by 2029. On top of being a major oil producer, the UAE has become a hub for finance and business and attracts millions of tourists annually.
The aim of the Human Development Report is to stimulate global, regional and national policy-relevant discussions on issues pertinent to human development. Accordingly, the data in the Report require the highest standards of data quality, consistency, international comparability and transparency. The Human Development Report Office (HDRO) fully subscribes to the Principles governing international statistical activities.
The HDI was created to emphasize that people and their capabilities should be the ultimate criteria for assessing the development of a country, not economic growth alone. The HDI can also be used to question national policy choices, asking how two countries with the same level of GNI per capita can end up with different human development outcomes. These contrasts can stimulate debate about government policy priorities. The Human Development Index (HDI) is a summary measure of average achievement in key dimensions of human development: a long and healthy life, being knowledgeable and have a decent standard of living. The HDI is the geometric mean of normalized indices for each of the three dimensions.
The 2019 Global Multidimensional Poverty Index (MPI) data shed light on the number of people experiencing poverty at regional, national and subnational levels, and reveal inequalities across countries and among the poor themselves.Jointly developed by the United Nations Development Programme (UNDP) and the Oxford Poverty and Human Development Initiative (OPHI) at the University of Oxford, the 2019 global MPI offers data for 101 countries, covering 76 percent of the global population. The MPI provides a comprehensive and in-depth picture of global poverty – in all its dimensions – and monitors progress towards Sustainable Development Goal (SDG) 1 – to end poverty in all its forms. It also provides policymakers with the data to respond to the call of Target 1.2, which is to ‘reduce at least by half the proportion of men, women, and children of all ages living in poverty in all its dimensions according to national definition'.
South Sudan and Somalia had the ****** levels of human development based on the Human Development Index (HDI). Many of the countries at the bottom of the list are located in Sub-Saharan Africa, underlining the prevalence of poverty and low levels of education in the region. Meanwhile, Switzerland had the ******* HDI worldwide.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The global Multidimensional Poverty Index provides the only comprehensive measure available for non-income poverty, which has become a critical underpinning of the SDGs. The global Multidimensional Poverty Index (MPI) measures multidimensional poverty in over 100 developing countries, using internationally comparable datasets and is updated annually. The measure captures the acute deprivations that each person faces at the same time using information from 10 indicators, which are grouped into three equally weighted dimensions: health, education, and living standards. Critically, the MPI comprises variables that are already reported under the Demographic Health Surveys (DHS), the Multi-Indicator Cluster Surveys (MICS) and in some cases, national surveys.
The subnational multidimensional poverty data from the data tables are published by the Oxford Poverty and Human Development Initiative (OPHI), University of Oxford. For the details of the global MPI methodology, please see the latest Methodological Notes found here.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Spearman rank correlation between alternatives for indicator standardization and aggregation at district level.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The continuum of care for maternal health index, sub- indices and indicators for North West Province, South Africa, in the period 2013–2017.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Afrique du Sud: Human Development Index (0 - 1): Pour cet indicateur, The United Nations fournit des données pour la Afrique du Sud de 1980 à 2023. La valeur moyenne pour Afrique du Sud pendant cette période était de 0.638 points avec un minimum de 0.381 points en 2022 et un maximum de 0.713 points en 2021.
This project commissioned by the KwaZulu-Natal Provincial Government was designed to obtain baseline data on subjective and objective development indicators. The project comprised a household survey conducted during November and December 1996. The complete survey covered at least 6 500 households across the province of KwaZulu-Natal. It followed a pilot study of perceptions of development conducted among 678 adults in October 1995. As one of the most comprehensive contributions on development indicators in the history of South Africa, it is the first large survey covering the usual “hard” indicators – such as service delivery levels – and peoples’ comments and perceptions of these services and of their governments’ development programmes and priorities. The study/project was motivated by the need to establish an information database for the preparation and monitoring of the province’s RDP business and development plans, to synthesise subjectively articulated (bottom-up) and objectively defined (top-down) approaches to the determination of needs, to modify and improve on the usefulness of the Human Development Index (HDI), to provide an opportunity for research capacity building among civil servants and thereby providing a means to effect good governance practices and, to provide a basis for the development of objective matrices, objectives-by-time-scales and, a semi-rational budgeting and planning tool. 1 data file with 6,606 cases.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Exploratory factor analysis of the items of the continuum of care service delivery framework.
The authors combine data from 84 Demographic and Health Surveys from 46 countries to analyze trends and socioeconomic differences in adult mortality, calculating mortality based on the sibling mortality reports collected from female respondents aged 15-49.
The analysis yields four main findings. First, adult mortality is different from child mortality: while under-5 mortality shows a definite improving trend over time, adult mortality does not, especially in Sub-Saharan Africa. The second main finding is the increase in adult mortality in Sub-Saharan African countries. The increase is dramatic among those most affected by the HIV/AIDS pandemic. Mortality rates in the highest HIV-prevalence countries of southern Africa exceed those in countries that experienced episodes of civil war. Third, even in Sub-Saharan countries where HIV-prevalence is not as high, mortality rates appear to be at best stagnating, and even increasing in several cases. Finally, the main socioeconomic dimension along which mortality appears to differ in the aggregate is gender. Adult mortality rates in Sub-Saharan Africa have risen substantially higher for men than for women?especially so in the high HIV-prevalence countries. On the whole, the data do not show large gaps by urban/rural residence or by school attainment.
This paper is a product of the Human Development and Public Services Team, Development Research Group. It is part of a larger effort by the World Bank to provide open access to its research and make a contribution to development policy discussions around the world. Policy Research Working Papers are also posted on the Web at http://econ.worldbank.org.
We derive estimates of adult mortality from an analysis of Demographic and Health Survey (DHS) data from 46 countries, 33 of which are from Sub-Saharan Africa and 13 of which are from countries in other regions (Annex Table). Several of the countries have been surveyed more than once and we base our estimates on the total of 84 surveys that have been carried out (59 in Sub-Saharan Africa, 25 elsewhere).
The countries covered by DHS in Sub-Saharan Africa represent almost 90 percent of the region's population. Outside of Sub-Saharan Africa the DHS surveys we use cover a far smaller share of the population-even if this is restricted to countries whose GDP per capita never exceeds $10,000: overall about 14 percent of the population is covered by these countries, although this increases to 29 percent if China and India are excluded (countries for which we cannot calculate adult mortality using the DHS). It is therefore important to keep in mind that the sample of non-Sub-Saharan African countries we have cannot be thought of as "representative" of the rest of the world, or even the rest of the developing world.
Country
Sample survey data [ssd]
Face-to-face [f2f]
In the course of carrying out this study, the authors created two databases of adult mortality estimates based on the original DHS datasets, both of which are publicly available for analysts who wish to carry out their own analysis of the data.
The naming conventions for the adult mortality-related are as follows. Variables are named:
GGG_MC_AAAA
GGG refers to the population subgroup. The values it can take, and the corresponding definitions are in the following table:
All - All Fem - Female Mal - Male Rur - Rural Urb - Urban Rurm - Rural/Male Urbm - Urban/Male Rurf - Rural/Female Urbf - Urban/Female Noed - No education Pri - Some or completed primary only Sec - At least some secondary education Noedm - No education/Male Prim - Some or completed primary only/Male Secm - At least some secondary education/Male Noedf - No education/Female Prif - Some or completed primary only/Female Secf - At least some secondary education/Female Rch - Rural as child Uch - Urban as child Rchm - Rural as child/Male Uchm - Urban as child/Male Rchf - Rural as child/Female Uchf - Urban as child/Female Edltp - Less than primary schooling Edpom - Primary or more schooling Edltpm - Less than primary schooling/Male Edpomm - Primary or more schooling/Male Edltpf - Less than primary schooling/Female Edpomf - Primary or more schooling/Female Edltpu - Less than primary schooling/Urban Edpomu - Primary or more schooling/Urban Edltpr - Less than primary schooling/Rural Edpomr - Primary or more schooling/Rural Edltpmu - Less than primary schooling/Male/Urban Edpommu - Primary or more schooling/Male/Urban Edltpmr - Less than primary schooling/Male/Rural Edpommr - Primary or more schooling/Male/Rural Edltpfu - Less than primary schooling/Female/Urban Edpomfu - Primary or more schooling/Female/Urban Edltpfr - Less than primary schooling/Female/Rural Edpomfr - Primary or more schooling/Female/Rural
M refers to whether the variable is the number of observations used to calculate the estimate (in which case M takes on the value "n") or whether it is a mortality estimate (in which case M takes on the value "m").
C refers to whether the variable is for the unadjusted mortality rate calculation (in which case C takes on the value "u") or whether it adjusts for the number of surviving female siblings (in which case C takes on the value "a").
AAAA refers to the age group that the mortality estimate is calculated for. It takes on the values: 1554 - Ages 15-54 1524 - Ages 15-24 2534 - Ages 25-34 3544 - Ages 35-44 4554 - Ages 45-54
Other variables that are in the databases are:
period - Period for which mortality rate is calculated (takes on the values 1975-79, 1980-84 … 2000-04) svycountry - Name of country for DHS countries ccode3 - Country code u5mr - Under-5 mortality (from World Development Indicators) cname - Country name gdppc - GDP per capita (constant 2000 US$) (from World Development Indicators) gdppcppp - GDP per capita PPP (constant 2005 intl $) (from World Development Indicators) pop - Population (from World Development Indicators) hivprev2001 - HIV prevalence in 2001 (from UNAIDS 2010) region - Region
Goal 4Ensure inclusive and equitable quality education and promote lifelong learning opportunities for allTarget 4.1: By 2030, ensure that all girls and boys complete free, equitable and quality primary and secondary education leading to relevant and effective learning outcomesIndicator 4.1.1: Proportion of children and young people (a) in grades 2/3; (b) at the end of primary; and (c) at the end of lower secondary achieving at least a minimum proficiency level in (i) reading and (ii) mathematics, by sexSE_TOT_PRFL: Proportion of children and young people achieving a minimum proficiency level in reading and mathematics (%)Indicator 4.1.2: Completion rate (primary education, lower secondary education, upper secondary education)SE_TOT_CPLR: Completion rate, by sex, location, wealth quintile and education level (%)Target 4.2: By 2030, ensure that all girls and boys have access to quality early childhood development, care and pre-primary education so that they are ready for primary educationIndicator 4.2.1: Proportion of children aged 24-59 months who are developmentally on track in health, learning and psychosocial well-being, by sexiSE_DEV_ONTRK: Proportion of children aged 36−59 months who are developmentally on track in at least three of the following domains: literacy-numeracy, physical development, social-emotional development, and learning (% of children aged 36-59 months)Indicator 4.2.2: Participation rate in organized learning (one year before the official primary entry age), by sexSE_PRE_PARTN: Participation rate in organized learning (one year before the official primary entry age), by sex (%)Target 4.3: By 2030, ensure equal access for all women and men to affordable and quality technical, vocational and tertiary education, including universityIndicator 4.3.1: Participation rate of youth and adults in formal and non-formal education and training in the previous 12 months, by sexSE_ADT_EDUCTRN: Participation rate in formal and non-formal education and training, by sex (%)Target 4.4: By 2030, substantially increase the number of youth and adults who have relevant skills, including technical and vocational skills, for employment, decent jobs and entrepreneurshipIndicator 4.4.1: Proportion of youth and adults with information and communications technology (ICT) skills, by type of skillSE_ADT_ACTS: Proportion of youth and adults with information and communications technology (ICT) skills, by sex and type of skill (%)Target 4.5: By 2030, eliminate gender disparities in education and ensure equal access to all levels of education and vocational training for the vulnerable, including persons with disabilities, indigenous peoples and children in vulnerable situationsIndicator 4.5.1: Parity indices (female/male, rural/urban, bottom/top wealth quintile and others such as disability status, indigenous peoples and conflict-affected, as data become available) for all education indicators on this list that can be disaggregatedSE_GPI_PTNPRE: Gender parity index for participation rate in organized learning (one year before the official primary entry age), (ratio)SE_GPI_TCAQ: Gender parity index of trained teachers, by education level (ratio)SE_GPI_PART: Gender parity index for participation rate in formal and non-formal education and training (ratio)SE_GPI_ICTS: Gender parity index for youth/adults with information and communications technology (ICT) skills, by type of skill (ratio)SE_IMP_FPOF: Immigration status parity index for achieving at least a fixed level of proficiency in functional skills, by numeracy/literacy skills (ratio)SE_NAP_ACHI: Native parity index for achievement (ratio)SE_LGP_ACHI: Language test parity index for achievement (ratio)SE_TOT_GPI: Gender parity index for achievement (ratio)SE_TOT_SESPI: Low to high socio-economic parity status index for achievement (ratio)SE_TOT_RUPI: Rural to urban parity index for achievement (ratio)SE_ALP_CPLR: Adjusted location parity index for completion rate, by sex, location, wealth quintile and education levelSE_AWP_CPRA: Adjusted wealth parity index for completion rate, by sex, location, wealth quintile and education levelSE_AGP_CPRA: Adjusted gender parity index for completion rate, by sex, location, wealth quintile and education levelTarget 4.6: By 2030, ensure that all youth and a substantial proportion of adults, both men and women, achieve literacy and numeracyIndicator 4.6.1: Proportion of population in a given age group achieving at least a fixed level of proficiency in functional (a) literacy and (b) numeracy skills, by sexSE_ADT_FUNS: Proportion of population achieving at least a fixed level of proficiency in functional skills, by sex, age and type of skill (%)Target 4.7: By 2030, ensure that all learners acquire the knowledge and skills needed to promote sustainable development, including, among others, through education for sustainable development and sustainable lifestyles, human rights, gender equality, promotion of a culture of peace and non-violence, global citizenship and appreciation of cultural diversity and of culture’s contribution to sustainable developmentIndicator 4.7.1: Extent to which (i) global citizenship education and (ii) education for sustainable development are mainstreamed in (a) national education policies; (b) curricula; (c) teacher education; and (d) student assessmentTarget 4.a: Build and upgrade education facilities that are child, disability and gender sensitive and provide safe, non-violent, inclusive and effective learning environments for allIndicator 4.a.1: Proportion of schools offering basic services, by type of serviceSE_ACS_CMPTR: Schools with access to computers for pedagogical purposes, by education level (%)SE_ACS_H2O: Schools with access to basic drinking water, by education level (%)SE_ACS_ELECT: Schools with access to electricity, by education level (%)SE_ACC_HNDWSH: Schools with basic handwashing facilities, by education level (%)SE_ACS_INTNT: Schools with access to the internet for pedagogical purposes, by education level (%)SE_ACS_SANIT: Schools with access to access to single-sex basic sanitation, by education level (%)SE_INF_DSBL: Proportion of schools with access to adapted infrastructure and materials for students with disabilities, by education level (%)Target 4.b: By 2020, substantially expand globally the number of scholarships available to developing countries, in particular least developed countries, small island developing States and African countries, for enrolment in higher education, including vocational training and information and communications technology, technical, engineering and scientific programmes, in developed countries and other developing countriesIndicator 4.b.1: Volume of official development assistance flows for scholarships by sector and type of studyDC_TOF_SCHIPSL: Total official flows for scholarships, by recipient countries (millions of constant 2018 United States dollars)Target 4.c: By 2030, substantially increase the supply of qualified teachers, including through international cooperation for teacher training in developing countries, especially least developed countries and small island developing StatesIndicator 4.c.1: Proportion of teachers with the minimum required qualifications, by education leveliSE_TRA_GRDL: Proportion of teachers who have received at least the minimum organized teacher training (e.g. pedagogical training) pre-service or in-service required for teaching at the relevant level in a given country, by sex and education level (%)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundDespite rising incidence and mortality rates in Africa, cancer has been given low priority in the research field and in healthcare services. Indeed, 57% of all new cancer cases around the world occur in low income countries exacerbated by lack of awareness, lack of preventive strategies, and increased life expectancies. Despite recent efforts devoted to cancer epidemiology, statistics on cancer rates in Africa are often dispersed across different registries. In this study our goal included identifying the most promising prevention and treatment approaches available in Africa. To do this, we collated and analyzed the incidence and fatality rates for the 10 most common and fatal cancers in 56 African countries grouped into 5 different regions (North, West, East, Central and South) over 16-years (2002–2018). We examined temporal and regional trends by investigating the most important risk factors associated to each cancer type. Data were analyzed by cancer type, African region, gender, measures of socioeconomic status and the availability of medical devices.ResultsWe observed that Northern and Southern Africa were most similar in their cancer incidences and fatality rates compared to other African regions. The most prevalent cancers are breast, bladder and liver cancers in Northern Africa; prostate, lung and colorectal cancers in Southern Africa; and esophageal and cervical cancer in East Africa. In Southern Africa, fatality rates from prostate cancer and cervical cancer have increased. In addition, these three cancers are less fatal in Northern and Southern Africa compared to other regions, which correlates with the Human Development Index and the availability of medical devices. With the exception of thyroid cancer, all other cancers have higher incidences in males than females.ConclusionOur results show that the African continent suffers from a shortage of medical equipment, research resources and epidemiological expertise. While recognizing that risk factors are interconnected, we focused on risk factors more or less specific to each cancer type. This helps identify specific preventive and therapeutic options in Africa. We see a need for implementing more accurate preventive strategies to tackle this disease as many cases are likely preventable. Opportunities exist for vaccination programs for cervical and liver cancer, genetic testing and use of new targeted therapies for breast and prostate cancer, and positive changes in lifestyle for lung, colorectal and bladder cancers. Such recommendations should be tailored for the different African regions depending on their disease profiles and specific needs.
The Human Sciences Research Council (HSRC) carried out the Migration and Remittances Survey in South Africa for the World Bank in collaboration with the African Development Bank. The primary mandate of the HSRC in this project was to come up with a migration database that includes both immigrants and emigrants. The specific activities included: · A household survey with a view of producing a detailed demographic/economic database of immigrants, emigrants and non migrants · The collation and preparation of a data set based on the survey · The production of basic primary statistics for the analysis of migration and remittance behaviour in South Africa.
Like many other African countries, South Africa lacks reliable census or other data on migrants (immigrants and emigrants), and on flows of resources that accompanies movement of people. This is so because a large proportion of African immigrants are in the country undocumented. A special effort was therefore made to design a household survey that would cover sufficient numbers and proportions of immigrants, and still conform to the principles of probability sampling. The approach that was followed gives a representative picture of migration in 2 provinces, Limpopo and Gauteng, which should be reflective of migration behaviour and its impacts in South Africa.
Two provinces: Gauteng and Limpopo
Limpopo is the main corridor for migration from African countries to the north of South Africa while Gauteng is the main port of entry as it has the largest airport in Africa. Gauteng is a destination for internal and international migrants because it has three large metropolitan cities with a great economic potential and reputation for offering employment, accommodations and access to many different opportunities within a distance of 56 km. These two provinces therefore were expected to accommodate most African migrants in South Africa, co-existing with a large host population.
The target group consists of households in all communities. The survey will be conducted among metro and non-metro households. Non-metro households include those in: - small towns, - secondary cities, - peri-urban settlements and - deep rural areas. From each selected household, one adult respondent will be selected to participate in the study.
Sample survey data [ssd]
Migration data for South Africa are available for 2007 only at the level of local governments or municipalities from the 2007 Census; for smaller areas called "sub places" (SPs) only as recently as the 2001 census, and for the desired EAs only back so far as the Census of 1996. In sum, there was no single source that provided recent data on the five types of migrants of principal interest at the level of the Enumeration Area, which was the area for which data were needed to draw the sample since it was going to be necessary to identify migrant and non-migrant households in the sample areas in order to oversample those with migrants for interview.
In an attempt to overcome the data limitations referred to above, it was necessary to adopt a novel approach to the design of the sample for the World Bank's household migration survey in South Africa, to identify EAs with a high probability of finding immigrants and those with a low probability. This required the combined use of the three sources of data described above. The starting point was the CS 2007 survey, which provided data on migration at a local government level, classifying each local government cluster in terms of migration level, taking into account the types of migrants identified. The researchers then spatially zoomed in from these clusters to the so-called sub-places (SPs) from the 2001 Census to classifying SP clusters by migration level. Finally, the 1996 Census data were used to zoom in even further down to the EA level, using the 1996 census data on migration levels of various typed, to identify the final level of clusters for the survey, namely the spatially small EAs (each typically containing about 200 households, and hence amenable to the listing operation in the field).
A higher score or weight was attached to the 2007 Community Survey municipality-level (MN) data than to the Census 2001 sub-place (SP) data, which in turn was given a greater weight than the 1996 enumerator area (EA) data. The latter was derived exclusively from the Census 1996 EA data, but has then been reallocated to the 2001 EAs proportional to geographical size. Although these weights are purely arbitrary since it was composed from different sources, they give an indication of the relevant importance attached to the different migrant categories. These weighted migrant proportions (secondary strata), therefore constituted the second level of clusters for sampling purposes.
In addition, a system of weighting or scoring the different persons by migrant type was applied to ensure that the likelihood of finding migrants would be optimised. As part of this procedure, recent migrants (who had migrated in the preceding five years) received a higher score than lifetime migrants (who had not migrated during the preceding five years). Similarly, a higher score was attached to international immigrants (both recent and lifetime, who had come to SA from abroad) than to internal migrants (who had only moved within SA's borders). A greater weight also applied to inter-provincial (internal) than to intra-provincial migrants (who only moved within the same South African province).
How the three data sources were combined to provide overall scores for EA can be briefly described. First, in each of the two provinces, all local government units were given migration scores according to the numbers or relative proportions of the population classified in the various categories of migrants (with non-migrants given a score of 1.0. Migrants were assigned higher scores according to their priority, with international migrants given higher scores than internal migrants and recent migrants higher scores than lifetime migrants. Then within the local governments, sub-places were assigned scores assigned on the basis of inter vs. intra-provincial migrants using the 2001 census data. Each SP area in a local government was thus assigned a value which was the product of its local government score (the same for all SPs in the local government) and its own SP score. The third and final stage was to develop relative migration scores for all the EAs from the 1996 census by similarly weighting the proportions of migrants (and non-migrants, assigned always 1.0) of each type. The the final migration score for an EA is the product of its own EA score from 1996, the SP score of which it is a part (assigned to all the EAs within the SP), and the local government score from the 2007 survey.
Based on all the above principles the set of weights or scores was developed.
In sum, we multiplied the proportion of populations of each migrant type, or their incidence, by the appropriate final corresponding EA scores for persons of each type in the EA (based on multiplying the three weights together), to obtain the overall score for each EA. This takes into account the distribution of persons in the EA according to migration status in 1996, the SP score of the EA in 2001, and the local government score (in which the EA is located) from 2007. Finally, all EAs in each province were then classified into quartiles, prior to sampling from the quartiles.
From the EAs so classified, the sampling took the form of selecting EAs, i.e., primary sampling units (PSUs, which in this case are also Ultimate Sampling Units, since this is a single stage sample), according to their classification into quartiles. The proportions selected from each quartile are based on the range of EA-level scores which are assumed to reflect weighted probabilities of finding desired migrants in each EA. To enhance the likelihood of finding migrants, much higher proportions of EAs were selected into the sample from the quartiles with the higher scores compared to the lower scores (disproportionate sampling). The decision on the most appropriate categorisations was informed by the observed migration levels in the two provinces of the study area during 2007, 2001 and 1996, analysed at the lowest spatial level for which migration data was available in each case.
Because of the differences in their characteristics it was decided that the provinces of Gauteng and Limpopo should each be regarded as an explicit stratum for sampling purposes. These two provinces therefore represented the primary explicit strata. It was decided to select an equal number of EAs from these two primary strata.
The migration-level categories referred to above were treated as secondary explicit strata to ensure optimal coverage of each in the sample. The distribution of migration levels was then used to draw EAs in such a way that greater preference could be given to areas with higher proportions of migrants in general, but especially immigrants (note the relative scores assigned to each type of person above). The proportion of EAs selected into the sample from the quartiles draws upon the relative mean weighted migrant scores (referred to as proportions) found below the table, but this is a coincidence and not necessary, as any disproportionate sampling of EAs from the quartiles could be done, since it would be rectified in the weighting at the end for the analysis.
The resultant proportions of migrants then led to the following proportional allocation of sampled EAs (Quartile 1: 5 per cent (instead of 25% as in an equal distribution), Quartile 2: 15 per cent (instead
In 2021, South Africa scored **** in the Human Development Index (HDI), which indicated a high level of development. The country experienced a drop in the HDI score compared to the previous year, which was ****. However, an improvement was recorded from 2005 onwards. At that year, South Africa's score was ****, meaning that the country had a medium human development. The categorization changed from medium to high in 2013.