100+ datasets found
  1. TIGER/Line Shapefile, Current, State, South Carolina, 2020 Census Block

    • catalog.data.gov
    Updated Aug 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division (Point of Contact) (2025). TIGER/Line Shapefile, Current, State, South Carolina, 2020 Census Block [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-current-state-south-carolina-2020-census-block
    Explore at:
    Dataset updated
    Aug 9, 2025
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    United States Department of Commercehttp://commerce.gov/
    Area covered
    South Carolina
    Description

    This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) System (MTS). The MTS represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census blocks are statistical areas bounded on all sides by visible features, such as streets, roads, streams, and railroad tracks, and/or by nonvisible boundaries such as city, town, township, and county limits, and short line-of-sight extensions of streets and roads. Census blocks are relatively small in area; for example, a block in a city bounded by streets. However, census blocks in remote areas are often large and irregular and may even be many square miles in area. A common misunderstanding is that census blocks are used geographically to build all other census geographic areas, rather all other census geographic areas are updated and then used as the primary constraints, along with roads and water features, to delineate the tabulation blocks. As a result, all 2020 Census blocks nest within every other 2020 Census geographic area, so that Census Bureau statistical data can be tabulated at the block level and aggregated up to the appropriate geographic areas. Census blocks cover all territory in the United States, Puerto Rico, and the Island Areas (American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands). Blocks are the smallest geographic areas for which the Census Bureau publishes data from the decennial census. A block may consist of one or more faces.

  2. TIGER/Line Shapefile, 2020, State, South Carolina, Census Tracts

    • catalog.data.gov
    Updated Oct 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch (Publisher) (2021). TIGER/Line Shapefile, 2020, State, South Carolina, Census Tracts [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2020-state-south-carolina-census-tracts
    Explore at:
    Dataset updated
    Oct 12, 2021
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    United States Department of Commercehttp://commerce.gov/
    Area covered
    South Carolina
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  3. N

    Dataset for South Carolina Census Bureau Demographics and Population...

    • neilsberg.com
    Updated Jul 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Dataset for South Carolina Census Bureau Demographics and Population Distribution Across Age // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/b7b557d6-5460-11ee-804b-3860777c1fe6/
    Explore at:
    Dataset updated
    Jul 24, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Carolina
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the South Carolina population by age. The dataset can be utilized to understand the age distribution and demographics of South Carolina.

    Content

    The dataset constitues the following three datasets

    • South Carolina Age Group Population Dataset: A complete breakdown of South Carolina age demographics from 0 to 85 years, distributed across 18 age groups
    • South Carolina Age Cohorts Dataset: Children, Working Adults, and Seniors in South Carolina - Population and Percentage Analysis
    • South Carolina Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

  4. N

    Dataset for South Carolina Census Bureau Income Distribution by Race

    • neilsberg.com
    Updated Jan 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Dataset for South Carolina Census Bureau Income Distribution by Race [Dataset]. https://www.neilsberg.com/research/datasets/80f9a32d-9fc2-11ee-b48f-3860777c1fe6/
    Explore at:
    Dataset updated
    Jan 3, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Carolina
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the South Carolina median household income by race. The dataset can be utilized to understand the racial distribution of South Carolina income.

    Content

    The dataset will have the following datasets when applicable

    Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).

    • South Carolina median household income breakdown by race betwen 2012 and 2022
    • Median Household Income by Racial Categories in South Carolina (2022)

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Interested in deeper insights and visual analysis?

    Explore our comprehensive data analysis and visual representations for a deeper understanding of South Carolina median household income by race. You can refer the same here

  5. TIGER/Line Shapefile, Current, State, South Carolina, Census Tract

    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    Updated Dec 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Geospatial Products Branch (Point of Contact) (2023). TIGER/Line Shapefile, Current, State, South Carolina, Census Tract [Dataset]. https://res1catalogd-o-tdatad-o-tgov.vcapture.xyz/dataset/tiger-line-shapefile-current-state-south-carolina-census-tract
    Explore at:
    Dataset updated
    Dec 15, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    United States Department of Commercehttp://commerce.gov/
    Area covered
    South Carolina
    Description

    This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  6. TIGER/Line Shapefile, 2021, State, South Carolina, Census Tracts

    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • datasets.ai
    • +1more
    Updated Nov 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch (Publisher) (2022). TIGER/Line Shapefile, 2021, State, South Carolina, Census Tracts [Dataset]. https://res1catalogd-o-tdatad-o-tgov.vcapture.xyz/dataset/tiger-line-shapefile-2021-state-south-carolina-census-tracts
    Explore at:
    Dataset updated
    Nov 1, 2022
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    United States Department of Commercehttp://commerce.gov/
    Area covered
    South Carolina
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  7. N

    South Carolina Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). South Carolina Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in South Carolina from 2000 to 2024 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/south-carolina-population-by-year/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Carolina
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2024, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2024. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2024. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the South Carolina population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of South Carolina across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2024, the population of South Carolina was 5.48 million, a 1.69% increase year-by-year from 2023. Previously, in 2023, South Carolina population was 5.39 million, an increase of 1.89% compared to a population of 5.29 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of South Carolina increased by 1.45 million. In this period, the peak population was 5.48 million in the year 2024. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2024

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2024)
    • Population: The population for the specific year for the South Carolina is shown in this column.
    • Year on Year Change: This column displays the change in South Carolina population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for South Carolina Population by Year. You can refer the same here

  8. N

    Dataset for South Carolina Census Bureau Income Distribution by Gender

    • neilsberg.com
    Updated Jan 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Dataset for South Carolina Census Bureau Income Distribution by Gender [Dataset]. https://www.neilsberg.com/research/datasets/b3d3b96a-abcb-11ee-8b96-3860777c1fe6/
    Explore at:
    Dataset updated
    Jan 9, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Carolina
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the South Carolina household income by gender. The dataset can be utilized to understand the gender-based income distribution of South Carolina income.

    Content

    The dataset will have the following datasets when applicable

    Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).

    • South Carolina annual median income by work experience and sex dataset : Aged 15+, 2010-2022 (in 2022 inflation-adjusted dollars)
    • South Carolina annual income distribution by work experience and gender dataset (Number of individuals ages 15+ with income, 2022)

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Interested in deeper insights and visual analysis?

    Explore our comprehensive data analysis and visual representations for a deeper understanding of South Carolina income distribution by gender. You can refer the same here

  9. TIGER/Line Shapefile, 2022, State, South Carolina, SC, Census Tract

    • catalog.data.gov
    Updated Jan 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch (Point of Contact) (2024). TIGER/Line Shapefile, 2022, State, South Carolina, SC, Census Tract [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2022-state-south-carolina-sc-census-tract
    Explore at:
    Dataset updated
    Jan 27, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    United States Department of Commercehttp://commerce.gov/
    Area covered
    South Carolina
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  10. F

    Monthly State Retail Sales: Food and Beverage Stores in South Carolina

    • fred.stlouisfed.org
    json
    Updated Aug 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Monthly State Retail Sales: Food and Beverage Stores in South Carolina [Dataset]. https://fred.stlouisfed.org/series/MSRSSC445
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 27, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    South Carolina
    Description

    Graph and download economic data for Monthly State Retail Sales: Food and Beverage Stores in South Carolina (MSRSSC445) from Jan 2019 to May 2025 about beverages, SC, retail trade, food, sales, retail, and USA.

  11. Data from: Census of Population and Housing, 2000 [United States]: 1998...

    • icpsr.umich.edu
    ascii
    Updated May 21, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States. Bureau of the Census (2008). Census of Population and Housing, 2000 [United States]: 1998 Dress Rehearsal, 100-Percent Summary Files for 11 Counties in South Carolina, Sacramento, California, and Menominee County, Wisconsin [Dataset]. http://doi.org/10.3886/ICPSR03020.v1
    Explore at:
    asciiAvailable download formats
    Dataset updated
    May 21, 2008
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States. Bureau of the Census
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/3020/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/3020/terms

    Time period covered
    1998
    Area covered
    United States
    Description

    This collection provides 100-percent data from the Census 2000 Dress Rehearsal conducted in 1998 in the following locations: (1) Columbia, South Carolina, and surrounding areas, including the town of Irmo and the counties of Chester, Chesterfield, Darlington, Fairfield, Kershaw, Lancaster, Lee, Marlboro, Newberry, Richland, and Union, (2) Sacramento, California, and (3) Menominee County, Wisconsin, including the Menominee American Indian Reservation. The collection includes data on population, race, Hispanic/Latino origin, age, sex, marital status, family type and presence of own children, household relationship, household type and size, and group quarters. There are 104 population (P) and 42 housing (H) tables that provide data down to the block level. There are 29 additional population tables that provide data down to the census tract level. Also provided are accompanying map files, including Census Block and Census Tract Maps, in two formats, Portable Document Format (PDF) for viewing and Hewlett-Packard Graphics Language (HP-GL) for plotting large-scale maps. The Corner Point files contain the bounding latitude and longitude coordinates for each individual map sheet of the 1998 Dress Rehearsal 100-Percent Summary Files map products.

  12. QuickFacts: South Carolina

    • census.gov
    • shutdown.census.gov
    csv
    Updated Jul 1, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau (2021). QuickFacts: South Carolina [Dataset]. https://www.census.gov/quickfacts/geo/chart/SC/EDU635219
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 1, 2021
    Dataset authored and provided by
    United States Census Bureauhttp://census.gov/
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    South Carolina
    Description

    U.S. Census Bureau QuickFacts statistics for South Carolina. QuickFacts data are derived from: Population Estimates, American Community Survey, Census of Population and Housing, Current Population Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits.

  13. Social Vulnerability Index (SoVI) for South Carolina based on 2000 Census...

    • catalog.data.gov
    • fisheries.noaa.gov
    Updated Oct 31, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA Office for Coastal Management (Point of Contact, Custodian) (2024). Social Vulnerability Index (SoVI) for South Carolina based on 2000 Census Block Groups [Dataset]. https://catalog.data.gov/dataset/social-vulnerability-index-sovi-for-south-carolina-based-on-2000-census-block-groups1
    Explore at:
    Dataset updated
    Oct 31, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description

    This data depicts the social vulnerability of South Carolina census block groups to environmental hazards. Data were culled primarily from the 2000 Decennial Census.

  14. F

    Resident Population in Charleston County, SC

    • fred.stlouisfed.org
    json
    Updated Mar 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Resident Population in Charleston County, SC [Dataset]. https://fred.stlouisfed.org/series/SCCHAR9POP
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 14, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Charleston County, South Carolina
    Description

    Graph and download economic data for Resident Population in Charleston County, SC (SCCHAR9POP) from 1970 to 2024 about Charleston County, SC; Charleston; SC; residents; population; and USA.

  15. N

    South Carolina Age Group Population Dataset: A Complete Breakdown of South...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). South Carolina Age Group Population Dataset: A Complete Breakdown of South Carolina Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/454718c0-f122-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Carolina
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the South Carolina population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for South Carolina. The dataset can be utilized to understand the population distribution of South Carolina by age. For example, using this dataset, we can identify the largest age group in South Carolina.

    Key observations

    The largest age group in South Carolina was for the group of age 60 to 64 years years with a population of 357,526 (6.86%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in South Carolina was the 85 years and over years with a population of 90,837 (1.74%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the South Carolina is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of South Carolina total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for South Carolina Population by Age. You can refer the same here

  16. F

    Resident Population in Lexington County, SC

    • fred.stlouisfed.org
    json
    Updated Mar 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Resident Population in Lexington County, SC [Dataset]. https://fred.stlouisfed.org/series/SCLEXI0POP
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 14, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Lexington County, South Carolina
    Description

    Graph and download economic data for Resident Population in Lexington County, SC (SCLEXI0POP) from 1970 to 2024 about Lexington County, SC; Columbia; SC; residents; population; and USA.

  17. 2022 Cartographic Boundary File (KML), Current Census Tract for South...

    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • catalog.data.gov
    Updated Dec 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Customer Engagement Branch (Point of Contact) (2023). 2022 Cartographic Boundary File (KML), Current Census Tract for South Carolina, 1:500,000 [Dataset]. https://res1catalogd-o-tdatad-o-tgov.vcapture.xyz/dataset/2022-cartographic-boundary-file-kml-current-census-tract-for-south-carolina-1-500000
    Explore at:
    Dataset updated
    Dec 14, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    United States Department of Commercehttp://commerce.gov/
    Area covered
    South Carolina
    Description

    The 2022 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  18. 2023 Cartographic Boundary File (KML), Census Tract for South Carolina,...

    • s.cnmilf.com
    • catalog.data.gov
    Updated May 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division (Point of Contact) (2024). 2023 Cartographic Boundary File (KML), Census Tract for South Carolina, 1:500,000 [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/2023-cartographic-boundary-file-kml-census-tract-for-south-carolina-1-500000
    Explore at:
    Dataset updated
    May 16, 2024
    Dataset provided by
    United States Department of Commercehttp://commerce.gov/
    United States Census Bureauhttp://census.gov/
    Area covered
    South Carolina
    Description

    The 2023 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  19. N

    South Carolina Non-Hispanic Population Breakdown By Race Dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). South Carolina Non-Hispanic Population Breakdown By Race Dataset: Non-Hispanic Population Counts and Percentages for 7 Racial Categories as Identified by the US Census Bureau // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/south-carolina-population-by-race/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Carolina
    Variables measured
    Non-Hispanic Asian Population, Non-Hispanic Black Population, Non-Hispanic White Population, Non-Hispanic Some other race Population, Non-Hispanic Two or more races Population, Non-Hispanic American Indian and Alaska Native Population, Non-Hispanic Native Hawaiian and Other Pacific Islander Population, Non-Hispanic Asian Population as Percent of Total Non-Hispanic Population, Non-Hispanic Black Population as Percent of Total Non-Hispanic Population, Non-Hispanic White Population as Percent of Total Non-Hispanic Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) Non-Hispanic population and (b) population as a percentage of the total Non-Hispanic population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and are part of Non-Hispanic classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Non-Hispanic population of South Carolina by race. It includes the distribution of the Non-Hispanic population of South Carolina across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of South Carolina across relevant racial categories.

    Key observations

    Of the Non-Hispanic population in South Carolina, the largest racial group is White alone with a population of 3.24 million (66.97% of the total Non-Hispanic population).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (for Non-Hispanic) for the South Carolina
    • Population: The population of the racial category (for Non-Hispanic) in the South Carolina is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of South Carolina total Non-Hispanic population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for South Carolina Population by Race & Ethnicity. You can refer the same here

  20. F

    Population Estimate, Total (5-year estimate) in Spartanburg County, SC

    • fred.stlouisfed.org
    json
    Updated Dec 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Population Estimate, Total (5-year estimate) in Spartanburg County, SC [Dataset]. https://fred.stlouisfed.org/series/B03002001E045083
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 12, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Spartanburg County, South Carolina
    Description

    Graph and download economic data for Population Estimate, Total (5-year estimate) in Spartanburg County, SC (B03002001E045083) from 2009 to 2023 about Spartanburg County, SC; Spartanburg; SC; estimate; persons; 5-year; population; and USA.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Department of Commerce, U.S. Census Bureau, Geography Division (Point of Contact) (2025). TIGER/Line Shapefile, Current, State, South Carolina, 2020 Census Block [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-current-state-south-carolina-2020-census-block
Organization logoOrganization logo

TIGER/Line Shapefile, Current, State, South Carolina, 2020 Census Block

Explore at:
Dataset updated
Aug 9, 2025
Dataset provided by
United States Census Bureauhttp://census.gov/
United States Department of Commercehttp://commerce.gov/
Area covered
South Carolina
Description

This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) System (MTS). The MTS represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census blocks are statistical areas bounded on all sides by visible features, such as streets, roads, streams, and railroad tracks, and/or by nonvisible boundaries such as city, town, township, and county limits, and short line-of-sight extensions of streets and roads. Census blocks are relatively small in area; for example, a block in a city bounded by streets. However, census blocks in remote areas are often large and irregular and may even be many square miles in area. A common misunderstanding is that census blocks are used geographically to build all other census geographic areas, rather all other census geographic areas are updated and then used as the primary constraints, along with roads and water features, to delineate the tabulation blocks. As a result, all 2020 Census blocks nest within every other 2020 Census geographic area, so that Census Bureau statistical data can be tabulated at the block level and aggregated up to the appropriate geographic areas. Census blocks cover all territory in the United States, Puerto Rico, and the Island Areas (American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands). Blocks are the smallest geographic areas for which the Census Bureau publishes data from the decennial census. A block may consist of one or more faces.

Search
Clear search
Close search
Google apps
Main menu