9 datasets found
  1. K

    Horry County, South Carolina Parcels

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Sep 12, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Horry County, South Carolina (2018). Horry County, South Carolina Parcels [Dataset]. https://koordinates.com/layer/97000-horry-county-south-carolina-parcels/
    Explore at:
    geodatabase, geopackage / sqlite, mapinfo mif, kml, pdf, csv, dwg, mapinfo tab, shapefileAvailable download formats
    Dataset updated
    Sep 12, 2018
    Dataset authored and provided by
    Horry County, South Carolina
    Area covered
    Description

    Geospatial data about Horry County, South Carolina Parcels. Export to CAD, GIS, PDF, CSV and access via API.

  2. d

    Protected Areas Database of the United States (PAD-US)

    • search.dataone.org
    • datadiscoverystudio.org
    • +1more
    Updated Oct 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Geological Survey (USGS) Gap Analysis Program (GAP) (2017). Protected Areas Database of the United States (PAD-US) [Dataset]. https://search.dataone.org/view/0459986b-9a0e-41d9-9997-cad0fbea9c4e
    Explore at:
    Dataset updated
    Oct 26, 2017
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    US Geological Survey (USGS) Gap Analysis Program (GAP)
    Time period covered
    Jan 1, 2005 - Jan 1, 2016
    Area covered
    United States,
    Variables measured
    Shape, Access, Des_Nm, Des_Tp, Loc_Ds, Loc_Nm, Agg_Src, GAPCdDt, GAP_Sts, GIS_Src, and 20 more
    Description

    The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public open space and voluntarily provided, private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastral Theme (http://www.fgdc.gov/ngda-reports/NGDA_Datasets.html). PAD-US is an ongoing project with several published versions of a spatial database of areas dedicated to the preservation of biological diversity, and other natural, recreational or cultural uses, managed for these purposes through legal or other effective means. The geodatabase maps and describes public open space and other protected areas. Most areas are public lands owned in fee; however, long-term easements, leases, and agreements or administrative designations documented in agency management plans may be included. The PAD-US database strives to be a complete “best available” inventory of protected areas (lands and waters) including data provided by managing agencies and organizations. The dataset is built in collaboration with several partners and data providers (http://gapanalysis.usgs.gov/padus/stewards/). See Supplemental Information Section of this metadata record for more information on partnerships and links to major partner organizations. As this dataset is a compilation of many data sets; data completeness, accuracy, and scale may vary. Federal and state data are generally complete, while local government and private protected area coverage is about 50% complete, and depends on data management capacity in the state. For completeness estimates by state: http://www.protectedlands.net/partners. As the federal and state data are reasonably complete; focus is shifting to completing the inventory of local gov and voluntarily provided, private protected areas. The PAD-US geodatabase contains over twenty-five attributes and four feature classes to support data management, queries, web mapping services and analyses: Marine Protected Areas (MPA), Fee, Easements and Combined. The data contained in the MPA Feature class are provided directly by the National Oceanic and Atmospheric Administration (NOAA) Marine Protected Areas Center (MPA, http://marineprotectedareas.noaa.gov ) tracking the National Marine Protected Areas System. The Easements feature class contains data provided directly from the National Conservation Easement Database (NCED, http://conservationeasement.us ) The MPA and Easement feature classes contain some attributes unique to the sole source databases tracking them (e.g. Easement Holder Name from NCED, Protection Level from NOAA MPA Inventory). The "Combined" feature class integrates all fee, easement and MPA features as the best available national inventory of protected areas in the standard PAD-US framework. In addition to geographic boundaries, PAD-US describes the protection mechanism category (e.g. fee, easement, designation, other), owner and managing agency, designation type, unit name, area, public access and state name in a suite of standardized fields. An informative set of references (i.e. Aggregator Source, GIS Source, GIS Source Date) and "local" or source data fields provide a transparent link between standardized PAD-US fields and information from authoritative data sources. The areas in PAD-US are also assigned conservation measures that assess management intent to permanently protect biological diversity: the nationally relevant "GAP Status Code" and global "IUCN Category" standard. A wealth of attributes facilitates a wide variety of data analyses and creates a context for data to be used at local, regional, state, national and international scales. More information about specific updates and changes to this PAD-US version can be found in the Data Quality Information section of this metadata record as well as on the PAD-US website, http://gapanalysis.usgs.gov/padus/data/history/.) Due to the completeness and complexity of these data, it is highly recommended to review the Supplemental Information Section of the metadata record as well as the Data Use Constraints, to better understand data partnerships as well as see tips and ideas of appropriate uses of the data and how to parse out the data that you are looking for. For more information regarding the PAD-US dataset please visit, http://gapanalysis.usgs.gov/padus/. To find more data resources as well as view example analysis performed using PAD-US data visit, http://gapanalysis.usgs.gov/padus/resources/. The PAD-US dataset and data standard are compiled and maintained by the USGS Gap Analysis Program, http://gapanalysis.usgs.gov/ . For more information about data standards and how the data are aggregated please review the “Standards and Methods Manual for PAD-US,” http://gapanalysis.usgs.gov/padus/data/standards/ .

  3. c

    GIS Data Viewer New

    • opendata.co.cumberland.nc.us
    • hub.arcgis.com
    Updated Nov 14, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cumberland County, NC (2019). GIS Data Viewer New [Dataset]. https://opendata.co.cumberland.nc.us/maps/d203e928181d46658f26fb3b5947921c
    Explore at:
    Dataset updated
    Nov 14, 2019
    Dataset authored and provided by
    Cumberland County, NC
    Area covered
    Description

    The Cumberland County GIS Data Viewer provides the general public with parcel, zoning, hydrology, soils, utilities and topographic data. You can search for a specific address, street name, parcel number (PIN), or by the owner's name.

  4. d

    CCZO -- GIS/Map Data -- Land Grants, 1749-1851 -- Enoree District, Sumter...

    • search.dataone.org
    • hydroshare.org
    Updated Dec 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael R. Coughlan; Donald Nelson (2021). CCZO -- GIS/Map Data -- Land Grants, 1749-1851 -- Enoree District, Sumter National Forest -- (2018-2018) [Dataset]. https://search.dataone.org/view/sha256%3A07b984e00a557f2d7cb771ce7249a6951f2421fa30d13ef877ba81d10656c193
    Explore at:
    Dataset updated
    Dec 5, 2021
    Dataset provided by
    Hydroshare
    Authors
    Michael R. Coughlan; Donald Nelson
    Time period covered
    Mar 1, 2018
    Area covered
    Description

    Map data for the original land grants in the present Enoree District of the Sumter National Forest, with dates and names of grantees. This data set consists of a GIS shapefile mosaic of the original survey plats for land grants from the king of England and the state of South Carolina for the years 1749-1851 for the Enoree District of the Sumter National Forest.

    Dataset DOI: http://dx.doi.org/10.3886/ICPSR37078.v1

  5. a

    Livestock Operations

    • sc-department-of-health-and-environmental-control-gis-sc-dhec.hub.arcgis.com
    Updated Feb 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of South Carolina Health and Environment Control (2021). Livestock Operations [Dataset]. https://sc-department-of-health-and-environmental-control-gis-sc-dhec.hub.arcgis.com/maps/livestock-operations
    Explore at:
    Dataset updated
    Feb 17, 2021
    Dataset authored and provided by
    State of South Carolina Health and Environment Control
    Area covered
    Description

    Points represent the location of permitted agricultural facilites, including animal houses, burial sites and centroids of potential manure utilization areas (MUA). Although a MUA is permitted for land application, the permittee may never have actually used the field for land application. Use records are maintained by the permittee.

  6. w

    U.S. Geological Survey Gap Analysis Program- Land Cover Data v2.2

    • data.wu.ac.at
    • datadiscoverystudio.org
    • +3more
    esri rest
    Updated Jun 8, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2018). U.S. Geological Survey Gap Analysis Program- Land Cover Data v2.2 [Dataset]. https://data.wu.ac.at/schema/data_gov/MmMzYjljMzQtZmJjMy00NjUwLWE3YmMtNzRlOWRmMTFkZTVj
    Explore at:
    esri restAvailable download formats
    Dataset updated
    Jun 8, 2018
    Dataset provided by
    Department of the Interior
    Area covered
    d8998031d4cf34652dda2763c83c7b599a8a3521
    Description

    This dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe's Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe's Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Raster data in both ArcGIS Grid and ERDAS Imagine format is available for download at http://gis1.usgs.gov/csas/gap/viewer/land_cover/Map.aspx Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS. In adition to the raster datasets the data is available in Web Mapping Services (WMS) format for each of the six NVC classification levels (Class, Subclass, Formation, Division, Macrogroup, Ecological System) at the following links. http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Class_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Subclass_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Formation_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Division_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Macrogroup_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_Ecological_Systems_Landuse/MapServer

  7. a

    Parcels

    • opendata-yorkcosc.hub.arcgis.com
    Updated Feb 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    York County, SC - GIS Online (2021). Parcels [Dataset]. https://opendata-yorkcosc.hub.arcgis.com/maps/parcels
    Explore at:
    Dataset updated
    Feb 2, 2021
    Dataset authored and provided by
    York County, SC - GIS Online
    Area covered
    Description

    This data represents the graphic portrayal of land parcels and their spatial relationships throughout York County, South Carolina. Land parcel boundaries are also the basis for and define coincident boundaries for other layers, such as zoning, subdivisions, public safety response (ORI -Police, Fire, EMS) and Jurisdiction.Boundaries are established from a variety of sources including cadastral plats, subdivision plats, deeds, land contracts, right-of-way plats, and others. Each feature represents a parcel of land that is inventoried by a unique identifier, referred to as a “Tax Map Id” number. This dataset also includes multi-unit structures which have separate tax accounts for each unit, such as condominium units, represented as stacked polygon features. The parent parcel number [ParentTaxID] for the land parcel is distinguished from the child parcel [TaxMapID] for the condo unit. This data does not include mobile home data. Attributes include data stored within the Esri Fabric data model combined with those from the CAMA data. Examples of relevant attributes include:the [TaxMapID], [ParcelID] and [AprAccNum] can be used to uniquely identify each parcel. the [MailAddr1], [MailAddr2], [MailApt], [MailCity], [MailState], [MailZip] can be used as the full tax billing address for the owner.The [Owner1], [Owner2], [Owner3] describe the owner.the [YearBuilt] offers the oldest year a building was built on the property, reference this web map for info on potential lead pipes on premises;the area of the parcel in acres [GISSizeAC] as calculated from the parcel geometry and also the [deededAcres] from recorded documents, and ;the date that the parcel boundary was last edited [DATE_MODIFIED].How were parcels compiled? This layer was initially developed as an ink-on-mylar property maps maintained by the County from the early 1970's through around 2001.In the 1990s, the county procured services to convert parcels from source documents, however the product delivered in 2000 used a methodology which lost fidelity of source documents. Since then, county staff adhered to this same methodology in their daily work. Between 2001 and 2015 staff used an Esri topology to maintain parcel data in ArcMap. In 2015 the county migrated to Parcel Fabric (ArcMap) and then in 2021 to Pro (2.6/10.8.1 Enterprise) Parcel Fabric. In May of 2021 the county began outsourcing maintenance of parcel edits. This has worked well and was initiated in part to ensure a higher standard of editing practice was adhered to, but also to fulfil a shortage of skilled staff in the job market. County parcel mapping staff remain responsible for simple transactions (merge, split), compilation of materials to create vendor edit request task, and QC or review of vendor work. In Q4 2021, County Staff performed a needs assessment to review alignment issues between parcels and other layers and the internal business requirements for data alignment to parcels. They determined boundary layers must remain coincident with parcels, which are used in decision making by citizens and across many areas of government. Also, it was determined that our parcels had many errors from 20 years of edits in a non-Fabric data model and the previous editing practices. The county will be remapping parcels using ARP grant funding in the 2023-2024 timeframe. Upon delivery in 2024, data maintenance practices will ensure ongoing alignment with parcels.Year BuiltTo obtain the year built for structures on a property, use the 'Buildings' table available through our open data portal.Once you have downloaded the 'Buildings' table and this parcels layer, consider processing the building records in some way to join or perform a relate as there could be many buildings on one parcel, using the following fields:Parcel.AprAccNum = BuildingTable.PropertyID(Note: 98,227 parcels have 1 building, 647 parcels have 2 buildings, 272 have 3 or more)Data SchemaReview the Parcel schema document (PDF) to gain a better understand of the data fields. Access the file geodatabase source data in SC State Plane coordinate system

  8. Myrtle Beach, South Carolina 1/ Arc-second MHW Coastal Digital Elevation...

    • datadiscoverystudio.org
    • s.cnmilf.com
    • +2more
    netcdf v.4 classic
    Updated May 26, 2006
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce (2006). Myrtle Beach, South Carolina 1/ Arc-second MHW Coastal Digital Elevation Model [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/4d11da20736d463d864b2669cc5879ea/html
    Explore at:
    netcdf v.4 classicAvailable download formats
    Dataset updated
    May 26, 2006
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Environmental Satellite, Data, and Information Service
    Authors
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce
    Area covered
    Description

    NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and modeling efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of Mean High Water (MHW) and horizontal datum of World Geodetic System 1984 (WGS84). Grid spacings for the DEMs range from 1/3 arc-second (~10 meters) to 3 arc-seconds (~90 meters).The DEM Global Mosaic is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), along with the global GEBCO_2014 grid: http://www.gebco.net/data_and_products/gridded_bathymetry_data. NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service is a general-purpose global, seamless bathymetry/topography mosaic. It combines DEMs from a variety of near sea-level vertical datums, such as mean high water (MHW), mean sea level (MSL), and North American Vertical Datum of 1988 (NAVD88). Elevation values have been rounded to the nearest meter, with DEM cell sizes going down to 1 arc-second. Higher-resolution DEMs, with greater elevation precision, are available in the companion NAVD88: http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042 and MHW: http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799 mosaics. By default, the DEMs are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Please see NCEI's corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. In this visualization, the elevations/depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Centers for Environmental Information (NCEI). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NCEI, and elsewhere on the web); Layers 6-11: NCEI DEM Projects (DEMs hosted at NCEI, color-coded by project); Layer 12: All NCEI Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NCEI).This is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), with vertical units referenced to mean high water (MHW). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service provides data from many individual DEMs combined together as a mosaic. By default, the rasters are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Alternatively, a single DEM or group of DEMs can be isolated using a filter/definition query or using the 'Lock Raster 'mosaic method in ArcMap. This is one of three services displaying collections of DEMs that are referenced to common vertical datums: North American Vertical Datum of 1988 (NAVD88): http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042, Mean High Water (MHW): http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799, and Mean Higher High Water: http://noaa.maps.arcgis.com/home/item.html?id=9471f8d4f43e48109de6275522856696. In addition, the DEM Global Mosaic is a general-purpose global, seamless bathymetry/topography mosaic containing all the DEMs together. Two services are available: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff Elevation Values: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff and Color Shaded Relief: http://noaa.maps.arcgis.com/home/item.html?id=feb3c625dc094112bb5281c17679c769. Please see the corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. This service has several server-side functions available. These can be selected in the ArcGIS Online layer using 'Image Display ', or in ArcMap under 'Processing Templates '. None: The default. Provides elevation/depth values in meters relative to the NAVD88 vertical datum. ColorHillshade: An elevation-tinted hillshade visualization. The depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png. GrayscaleHillshade: A simple grayscale hillshade visualization. SlopeMapRGB: Slope in degrees, visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/SlopeMapLegend_V7b.png. SlopeNumericValues: Slope in degrees, returning the actual numeric values. AspectMapRGB: Orientation of the terrain (0-360 degrees), visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/AspectMapLegendPie_V7b.png. AspectNumericValues: Aspect in degrees, returning the actual numeric values.

  9. d

    Mineral Resources Data System

    • search.dataone.org
    • data.wu.ac.at
    Updated Oct 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2016). Mineral Resources Data System [Dataset]. https://search.dataone.org/view/3e55bd49-a016-4172-ad78-7292618a08c2
    Explore at:
    Dataset updated
    Oct 29, 2016
    Dataset provided by
    USGS Science Data Catalog
    Authors
    U.S. Geological Survey
    Area covered
    Variables measured
    ORE, REF, ADMIN, MODEL, STATE, COUNTY, DEP_ID, GANGUE, MAS_ID, REGION, and 29 more
    Description

    Mineral resource occurrence data covering the world, most thoroughly within the U.S. This database contains the records previously provided in the Mineral Resource Data System (MRDS) of USGS and the Mineral Availability System/Mineral Industry Locator System (MAS/MILS) originated in the U.S. Bureau of Mines, which is now part of USGS. The MRDS is a large and complex relational database developed over several decades by hundreds of researchers and reporters. While database records describe mineral resources worldwide, the compilation of information was intended to cover the United States completely, and its coverage of resources in other countries is incomplete. The content of MRDS records was drawn from reports previously published or made available to USGS researchers. Some of those original source materials are no longer available. The information contained in MRDS was intended to reflect the reports used as sources and is current only as of the date of those source reports. Consequently MRDS does not reflect up-to-date changes to the operating status of mines, ownership, land status, production figures and estimates of reserves and resources, or the nature, size, and extent of workings. Information on the geological characteristics of the mineral resource are likely to remain correct, but aspects involving human activity are likely to be out of date.

  10. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Horry County, South Carolina (2018). Horry County, South Carolina Parcels [Dataset]. https://koordinates.com/layer/97000-horry-county-south-carolina-parcels/

Horry County, South Carolina Parcels

Explore at:
geodatabase, geopackage / sqlite, mapinfo mif, kml, pdf, csv, dwg, mapinfo tab, shapefileAvailable download formats
Dataset updated
Sep 12, 2018
Dataset authored and provided by
Horry County, South Carolina
Area covered
Description

Geospatial data about Horry County, South Carolina Parcels. Export to CAD, GIS, PDF, CSV and access via API.

Search
Clear search
Close search
Google apps
Main menu