68 datasets found
  1. 2014 Horry County, South Carolina Lidar

    • catalog.data.gov
    • fisheries.noaa.gov
    Updated Oct 31, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA Office for Coastal Management (Point of Contact, Custodian) (2024). 2014 Horry County, South Carolina Lidar [Dataset]. https://catalog.data.gov/dataset/2014-horry-county-south-carolina-lidar1
    Explore at:
    Dataset updated
    Oct 31, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Area covered
    Horry County, South Carolina
    Description

    This data set is comprised of lidar point cloud data. This project required lidar data to be acquired over Horry County, South Carolina. The total area of the Horry County Elevation Data and Imagery AOI is approximately 1092 square miles. Lidar data was collected and processed to meet the requirements of the project task order. The lidar collection was a collaborative effort between two data acquisition firms. While Woolpert was responsible for collection of the majority of the county, the coastal portion of the data was collected by Quantum Geospatial and is detailed in the processing steps of the metadata. Lidar data is a remotely sensed high resolution elevation data collected by an airborne platform. The lidar sensor uses a combination of laser range finding, GPS positioning, and inertial measurement technologies. The lidar systems collect data point clouds that are used to produce highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation. The task required the LiDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. The final products include classified LAS, four (4) foot pixel raster DEMs of the bare-earth surface in ERDAS IMG Format. Each LAS file contains lidar point information, which has been calibrated, controlled, and classified. Ground conditions: Water at normal levels; no unusual inundation; no snow. The bare earth DEMs along the coast may have a variance in the water heights due to temporal differences during the lidar data acquisition and will be represented in DEM as a seam-like anomaly. One coastal elevation was applied to entire project area. Due to differing acquisition dates and thus differing tide levels there will be areas in the DEM exhibiting what appears to be "digging" water features. Sometimes as much as approximately 2.5 feet. This was done to ensure that no coastal hydro feature was "floating" above ground surface. This coastal elevation will also affect connected river features wherein a sudden increase in flow will be observed in the DEM to accommodate the coastal elevation value. During Hydrologic breakline collection, Woolpert excluded obvious above-water piers or pier-like structures from the breakline placement. Some features extend beyond the apparent coastline and are constructed in a manner that can be considered an extension of the ground. These features were treated as ground during classification and subsequent hydrologic delineation. In all cases, professional practice was applied to delineate what appeared to be the coast based on data from multiple sources; Due to the many substructures and the complexity of the urban environment, interpolation and apparent "divots" (caused by tinning) may be evident in the surface of the bare earth DEM. In all cases, professional practice was applied to best represent the topography. The data received by the NOAA OCM are topographic data in LAS 1.2 format, classified as unclassified (1), ground (2), all noise (7), water (9), ignored ground (10), overlap unclassified (17), and overlap ground (18). Digital Elevation Models (DEMs) and breakline data are also available. The DEM data are available at: ftp://coast.noaa.gov/pub/DigitalCoast/lidar1_z/geoid18/data/4814/DEMs/ The breakline data are available at: ftp://coast.noaa.gov/pub/DigitalCoast/lidar1_z/geoid18/data/4814/breaklines Any conclusions drawn from the analysis of this information are not the responsibility of NOAA, the Office of Coastal Management (OCM)or its partners. Original contact information: Contact Org: Woolpert Phone: (937) 461-5660

  2. 2007 South Carolina LiDAR: Charleston (partial), Jasper, and Colleton...

    • catalog.data.gov
    • datadiscoverystudio.org
    • +1more
    Updated Oct 31, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA Office for Coastal Management (Point of Contact, Custodian) (2024). 2007 South Carolina LiDAR: Charleston (partial), Jasper, and Colleton Counties [Dataset]. https://catalog.data.gov/dataset/2007-south-carolina-lidar-charleston-partial-jasper-and-colleton-counties1
    Explore at:
    Dataset updated
    Oct 31, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Area covered
    Charleston, Colleton County, South Carolina
    Description

    LiDAR data collection was performed utilizing a Leica ALS-50 sensor, collecting multiple return x, y, and z data as well as intensity data. LiDAR data was processed to achieve a bare ground surface, and was delivered in LAS format. Classified LAS data was also used as a base for collection of hydro features, delivered in MicroStation v8 format. The dates of collection are: 1. JASPER COUNTY (full county): 20061227 to 20070216 2. COLLETON COUNTY (full county: 20070216 to 20070323 3. CHARLESTON COUNTY (Partial County): 20070222 to 20070223 Original contact information: Contact Org: NOAA Office for Coastal Management Phone: 843-740-1202 Email: coastal.info@noaa.gov

  3. A

    2008 South Carolina Department of Natural Resources (SCDNR) South Carolina...

    • data.amerigeoss.org
    • datadiscoverystudio.org
    html
    Updated Aug 28, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2022). 2008 South Carolina Department of Natural Resources (SCDNR) South Carolina Lidar - Fairfield County [Dataset]. https://data.amerigeoss.org/hu/dataset/2008-south-carolina-department-of-natural-resources-scdnr-south-carolina-lidar-fairfield-c
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Aug 28, 2022
    Dataset provided by
    United States
    Area covered
    Fairfield County, South Carolina
    Description

    The project area is composed of 16 counties in the State of South Carolina - Cherokee, Union, Laurens, Greenwood, Newberry, Chester, Fairfield, Lancaster, Chesterfield, Marlboro, Darlington, Dillon, Marion, Williamsburg, Clarendon, and Orangeburg. The project area consists of approximately 10,194 square miles including a buffer of 50 feet along the edges of the project area and an additional buffer in some areas. The project design of the lidar data acquisition was developed to support a nominal post spacing of 1.4 meters. The Fugro EarthData, Inc. acquisition team of Fugro Horizons, Inc. and North West Group acquired 721 flight lines in 44 lifts from January 15, 2008 through February 10, 2008. The data was divided into 5000' by 5000' foot cells that serve as the tiling scheme. Lidar data collection was performed with a Cessna 310 aircraft, utilizing a Leica ALS50-II MPiA sensor, collecting multiple return x, y, and z data as well as intensity data. Lidar data was processed to achieve a bare ground surface (Classes 2 and 8). Lidar data is remotely sensed high-resolution elevation data collected by an airborne collection platform. Using a combination of laser range finding, GPS positioning and inertial measurement technologies, lidar instruments are able to make highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation.

  4. d

    2007 South Carolina DNR Lidar: Dorchester County.

    • datadiscoverystudio.org
    Updated Feb 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). 2007 South Carolina DNR Lidar: Dorchester County. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/3be10a71de2e4ec89cb310fe02449d16/html
    Explore at:
    Dataset updated
    Feb 7, 2018
    Description

    description: Woolpert Inc. conducted a LiDAR survey to acquire LiDAR capable of producing a DEM for orthophoto rectification and able to support 2-foot contour specifications. The LiDAR data was acquired across the project area of Dorchester County, SC. The lidar data acquisition was executed in 5 sessions, from March 5 to March 7, 2007, using a Leica ALS50(83) Lidar System. The airborne GPS (ABGPS) base stations supporting the LiDAR acquisition consisted of the bases set up by the flight crews at KDYB Airport. Dual Frequency data was logged continuously for the duration of each LiDAR flight mission at a one-second sampling rate or better. The flight plan for LiDAR consisted of parallel flights in a north-south extent across the site. Ninety-seven (97) flight lines of LiDAR data were acquired. No problems were encountered during the LiDAR data acquisition phase of the project which would adversely affect the final accuracy, nor schedule of the final deliverables.; abstract: Woolpert Inc. conducted a LiDAR survey to acquire LiDAR capable of producing a DEM for orthophoto rectification and able to support 2-foot contour specifications. The LiDAR data was acquired across the project area of Dorchester County, SC. The lidar data acquisition was executed in 5 sessions, from March 5 to March 7, 2007, using a Leica ALS50(83) Lidar System. The airborne GPS (ABGPS) base stations supporting the LiDAR acquisition consisted of the bases set up by the flight crews at KDYB Airport. Dual Frequency data was logged continuously for the duration of each LiDAR flight mission at a one-second sampling rate or better. The flight plan for LiDAR consisted of parallel flights in a north-south extent across the site. Ninety-seven (97) flight lines of LiDAR data were acquired. No problems were encountered during the LiDAR data acquisition phase of the project which would adversely affect the final accuracy, nor schedule of the final deliverables.

  5. w

    2008 South Carolina Lidar: Union County

    • data.wu.ac.at
    • datadiscoverystudio.org
    • +1more
    Updated Feb 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration, Department of Commerce (2018). 2008 South Carolina Lidar: Union County [Dataset]. https://data.wu.ac.at/schema/data_gov/ZmFlMGY2MGItZDk1YS00YTJlLWE0YjYtYWNjNjBjMWM2Njcz
    Explore at:
    Dataset updated
    Feb 7, 2018
    Dataset provided by
    National Oceanic and Atmospheric Administration, Department of Commerce
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    2ffc4f15e57fd6fc7bab5b627ea89b75100c168c
    Description

    The project area is composed of 16 counties in the State of South Carolina - Cherokee, Union, Laurens, Greenwood, Newberry, Chester, Fairfield, Lancaster, Chesterfield, Marlboro, Darlington, Dillon, Marion, Williamsburg, Clarendon, and Orangeburg. This metadata file is for the lidar county deliverables for Union County, SC. The project area consists of approximately 10,194 square miles including a buffer of 50 feet along the edges of the project area and an additional buffer in some areas. The project design of the lidar data acquisition was developed to support a nominal post spacing of 1.4 meters. The Fugro EarthData, Inc. acquisition team of Fugro Horizons, Inc. and North West Group acquired 721 flight lines in 44 lifts from January 15, 2008 through February 10, 2008. The data was divided into 5000' by 5000' foot cells that serve as the tiling scheme. Lidar data collection was performed with a Cessna 310 aircraft, utilizing a Leica ALS50-II MPiA sensor, collecting multiple return x, y, and z data as well as intensity data. Lidar data was processed to achieve a bare ground surface (Classes 2 and 8). Lidar data is remotely sensed high-resolution elevation data collected by an airborne collection platform. Using a combination of laser range finding, GPS positioning and inertial measurement technologies, lidar instruments are able to make highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation.

  6. d

    2008 South Carolina Lidar: Marlboro County.

    • datadiscoverystudio.org
    Updated Feb 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). 2008 South Carolina Lidar: Marlboro County. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/bf84dbc7aa89479e861fd56bbedcf643/html
    Explore at:
    Dataset updated
    Feb 7, 2018
    Area covered
    Marlboro County
    Description

    description: The project area is composed of 16 counties in the State of South Carolina - Cherokee, Union, Laurens, Greenwood, Newberry, Chester, Fairfield, Lancaster, Chesterfield, Marlboro, Darlington, Dillon, Marion, Williamsburg, Clarendon, and Orangeburg. This metadata file is for the lidar county deliverables for Marlboro County, SC. The project area consists of approximately 10,194 square miles including a buffer of 50 feet along the edges of the project area and an additional buffer in some areas. The project design of the lidar data acquisition was developed to support a nominal post spacing of 1.4 meters. The Fugro EarthData, Inc. acquisition team of Fugro Horizons, Inc. and North West Group acquired 721 flight lines in 44 lifts from January 15, 2008 through February 10, 2008. The data was divided into 5000' by 5000' foot cells that serve as the tiling scheme. Lidar data collection was performed with a Cessna 310 aircraft, utilizing a Leica ALS50-II MPiA sensor, collecting multiple return x, y, and z data as well as intensity data. Lidar data was processed to achieve a bare ground surface (Classes 2 and 8). Lidar data is remotely sensed high-resolution elevation data collected by an airborne collection platform. Using a combination of laser range finding, GPS positioning and inertial measurement technologies, lidar instruments are able to make highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation.; abstract: The project area is composed of 16 counties in the State of South Carolina - Cherokee, Union, Laurens, Greenwood, Newberry, Chester, Fairfield, Lancaster, Chesterfield, Marlboro, Darlington, Dillon, Marion, Williamsburg, Clarendon, and Orangeburg. This metadata file is for the lidar county deliverables for Marlboro County, SC. The project area consists of approximately 10,194 square miles including a buffer of 50 feet along the edges of the project area and an additional buffer in some areas. The project design of the lidar data acquisition was developed to support a nominal post spacing of 1.4 meters. The Fugro EarthData, Inc. acquisition team of Fugro Horizons, Inc. and North West Group acquired 721 flight lines in 44 lifts from January 15, 2008 through February 10, 2008. The data was divided into 5000' by 5000' foot cells that serve as the tiling scheme. Lidar data collection was performed with a Cessna 310 aircraft, utilizing a Leica ALS50-II MPiA sensor, collecting multiple return x, y, and z data as well as intensity data. Lidar data was processed to achieve a bare ground surface (Classes 2 and 8). Lidar data is remotely sensed high-resolution elevation data collected by an airborne collection platform. Using a combination of laser range finding, GPS positioning and inertial measurement technologies, lidar instruments are able to make highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation.

  7. U

    Lidar-derived Data Layers for South Carolina StreamStats, 2007-2013

    • data.usgs.gov
    • catalog.data.gov
    Updated Jul 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elizabeth Heal; Jimmy Clark (2024). Lidar-derived Data Layers for South Carolina StreamStats, 2007-2013 [Dataset]. http://doi.org/10.5066/P9Q8RSF5
    Explore at:
    Dataset updated
    Jul 11, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Elizabeth Heal; Jimmy Clark
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    2017 - 2018
    Area covered
    South Carolina
    Description

    In cooperation with the South Carolina Department of Transportation, the U.S. Geological Survey developed a StreamStats web application (https://water.usgs.gov/osw/streamstats/) that provides analytical tools for water-resources planning and management (Ries and others, 2017). This data set presents the lidar-derived flow direction, flow accumulation, streamline, and hydro-enforced digital elevation model raster data used for analysis in StreamStats. Rasters are included for each of the following hydrologic unit codes (HUCs): 03040101, 03040102, 03040103, 03040104, 03040105, 03040201, 03040202, 03040203, 03040204, 03040205, 03040206, 03040207, 03040208, 03050101, 03050102, 03050103, 03050104, 03050105, 03050106, 03050107, 03050108, 03050109, 03050110, 03050111, 03050112, 03050201, 03050202, 03050203, 03050204, 03050205, 03050206, 03050207, 03050208, 03050209, 03050210, 03060101, 03060102, 03060103, 03060104, 03060105, 03060106, 03060107, 03060108, 03060109, and 03060110. The raste ...

  8. 2013 South Carolina DNR Lidar DEM: Beaufort County

    • fisheries.noaa.gov
    html
    Updated Aug 1, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OCM Partners (2013). 2013 South Carolina DNR Lidar DEM: Beaufort County [Dataset]. https://www.fisheries.noaa.gov/inport/item/57197
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Aug 1, 2013
    Dataset provided by
    OCM Partners, LLC
    Time period covered
    Mar 6, 2013 - Apr 20, 2013
    Area covered
    Description

    LMSI provided high accuracy, calibrated multiple return LiDAR for roughly 785 square miles covering Beaufort County, South Carolina. The nominal point spacing for this project was at least 4 points per square meter. Dewberry used proprietary procedures to classify the LAS according to project specifications: 1-Unclassified, 2-Ground, 7-Noise, 8-Model Key Points, 9-Water, 10-Ignored Ground, 11-W...

  9. 2020 SC DNR Lidar DEM: 5 County (Cherokee, Chester, Fairfield, Lancaster,...

    • fisheries.noaa.gov
    geotiff +1
    Updated Aug 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OCM Partners (2023). 2020 SC DNR Lidar DEM: 5 County (Cherokee, Chester, Fairfield, Lancaster, Union), SC [Dataset]. https://www.fisheries.noaa.gov/inport/item/73569
    Explore at:
    geotiff, not applicableAvailable download formats
    Dataset updated
    Aug 16, 2023
    Dataset provided by
    OCM Partners, LLC
    Time period covered
    Jan 16, 2020 - Feb 15, 2020
    Area covered
    Description

    Original Dataset Description: Aerial lidar data was collected for a 5-county project area which encompassed the South Carolina Counties of Cherokee, Union, Chester, Lancaster, and Fairfield. Lidar data for the project was collected by Quantum Spatial as part of the ESP team, between January 16, 2020 and February 15, 2020 using 2 Leica ALS80 sensors; serial numbers 3061 and 3546. Data was collec...

  10. 2008 South Carolina Lidar: Orangeburg County

    • fisheries.noaa.gov
    • datadiscoverystudio.org
    html
    Updated Jan 1, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OCM Partners (2009). 2008 South Carolina Lidar: Orangeburg County [Dataset]. https://www.fisheries.noaa.gov/inport/item/49974
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jan 1, 2009
    Dataset provided by
    OCM Partners, LLC
    Time period covered
    Jan 15, 2008 - Feb 10, 2008
    Area covered
    Description

    The project area is composed of 16 counties in the State of South Carolina - Cherokee, Union, Laurens, Greenwood, Newberry, Chester, Fairfield, Lancaster, Chesterfield, Marlboro, Darlington, Dillon, Marion, Williamsburg, Clarendon, and Orangeburg. This metadata file is for the lidar county deliverables for Orangeburg County, SC.

    The project area consists of approximately 10,194 square miles in...

  11. 2008 South Carolina Lidar: Lancaster County

    • datadiscoverystudio.org
    • fisheries.noaa.gov
    Updated Jan 1, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Commerce (DOC), National Oceanic and Atmospheric Administration (NOAA), National Ocean Service (NOS), Office for Coastal Management (OCM) (2009). 2008 South Carolina Lidar: Lancaster County [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/d858ed904a354f15a4626580c20bc090/html
    Explore at:
    Dataset updated
    Jan 1, 2009
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    South Carolina Department of Natural Resources (SCDNR)
    Area covered
    Description

    The project area is composed of 16 counties in the State of South Carolina - Cherokee, Union, Laurens, Greenwood, Newberry, Chester, Fairfield, Lancaster, Chesterfield, Marlboro, Darlington, Dillon, Marion, Williamsburg, Clarendon, and Orangeburg. This metadata file is for the lidar county deliverables for Lancaster County, SC. The project area consists of approximately 10,194 square miles including a buffer of 50 feet along the edges of the project area and an additional buffer in some areas. The project design of the lidar data acquisition was developed to support a nominal post spacing of 1.4 meters. The Fugro EarthData, Inc. acquisition team of Fugro Horizons, Inc. and North West Group acquired 721 flight lines in 44 lifts from January 15, 2008 through February 10, 2008. The data was divided into 5000' by 5000' foot cells that serve as the tiling scheme. Lidar data collection was performed with a Cessna 310 aircraft, utilizing a Leica ALS50-II MPiA sensor, collecting multiple return x, y, and z data as well as intensity data. Lidar data was processed to achieve a bare ground surface (Classes 2 and 8). Lidar data is remotely sensed high-resolution elevation data collected by an airborne collection platform. Using a combination of laser range finding, GPS positioning and inertial measurement technologies, lidar instruments are able to make highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation.

  12. 2016-2017 NOAA NGS Topobathy Lidar DEM: Coastal South Carolina

    • catalog.data.gov
    • fisheries.noaa.gov
    • +1more
    Updated Oct 31, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA Office for Coastal Management (Point of Contact, Custodian) (2024). 2016-2017 NOAA NGS Topobathy Lidar DEM: Coastal South Carolina [Dataset]. https://catalog.data.gov/dataset/2016-2017-noaa-ngs-topobathy-lidar-dem-coastal-south-carolina1
    Explore at:
    Dataset updated
    Oct 31, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description

    These data were collected by Quantum Spatial, Inc. (QSI) for the National Oceanic and Atmospheric Administration (NOAA), National Geodetic Survey (NGS), Remote Sensing Devision (RSD), Coastal Mapping Program (CMP) using a Riegl VQ880G system. The Delivery 1 and Delivery 2 (D1/D2) data were acquired from 20161203 - 20170301 in nine missions. The missions were flown on 20161203, 20161209, 20161210, 20161228, 20161229, 20161230, 20170105, 20170228, and 20170301. The Delivery 3 (D3) data were acquired from 20161002 - 20170219 in fifteen missions. Data acquired on 10/02, pre-Hurricane Matthew, was only used to fill a small gap in data entirely over water where no bathymetric coverage was achieved. The Delivery 4 (D4) data were acquired from 20161211 - 20170204 in thirteen missions. The Delivery 5 (D5) data were acquired from 20170112 - 20170204 in eleven missions. The Delivery 6 (D6) data were acquired from 20161203 - 20170301 in eleven missions. The Delivery 7 (D7) data were acquired from 20170212 - 20170221 in eight missions. The Delivery 8 (D8) data were acquired from 20170218 - 20170227 in six missions.

  13. NOAA Office for Coastal Management Coastal Inundation Digital Elevation...

    • catalog.data.gov
    • fisheries.noaa.gov
    Updated Oct 31, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA Office for Coastal Management (Point of Contact) (2024). NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: South Carolina Central [Dataset]. https://catalog.data.gov/dataset/noaa-office-for-coastal-management-coastal-inundation-digital-elevation-model-south-carolina-ce1
    Explore at:
    Dataset updated
    Oct 31, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Area covered
    South Carolina
    Description

    These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer called the Sea Level Rise and Coastal Flooding Impacts Viewer. It depicts potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The Sea Level Rise and Coastal Flooding Impacts Viewer may be accessed at: https://coast.noaa.gov/slr. This metadata record describes the South Carolina Central digital elevation model (DEM), which is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea Level Rise and Coastal Flooding Impacts Viewer described above. This DEM includes the best available lidar known to exist at the time of DEM creation that met project specifications. This DEM includes data for Charleston, Berkeley and Dorchester Counties. The DEM was produced from the following lidar data sets: 1. 2017 SC DNR Lidar DEM: Charleston County, SC 2. 2017 SC DNR Lidar DEM: Berkeley County, SC 3. 2007 SC DNR Lidar DEM: Dorchester County, SC The DEM is referenced vertically to the North American Vertical Datum of 1988 (NAVD88, Geoid12B) with vertical units of meters and horizontally to the North American Datum of 1983 (NAD83). The resolution of the DEM is approximately 3 meters.

  14. U

    Stream Lines Used to Produce the South Carolina StreamStats 2018 Release

    • data.usgs.gov
    • catalog.data.gov
    • +1more
    Updated Jan 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Katharine Kolb; Jimmy Clark; Tara Gross; Laura Gurley; Bradley Huffman; Jonathan Musser (2025). Stream Lines Used to Produce the South Carolina StreamStats 2018 Release [Dataset]. http://doi.org/10.5066/P9VDWVJO
    Explore at:
    Dataset updated
    Jan 1, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Katharine Kolb; Jimmy Clark; Tara Gross; Laura Gurley; Bradley Huffman; Jonathan Musser
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    2004 - 2018
    Area covered
    South Carolina
    Description

    The U.S. Geological Survey South Atlantic Water Science Center, in cooperation with the South Carolina Department of Transportation, implemented a South Carolina StreamStats application in 2018. This shapefile dataset contains vector lines representing streams, rivers, and ditches that were used in preparing the underlying data for the South Carolina StreamStats application. Data were compiled from multiple sources, but principally represent lidar-derived linework from the South Carolina Department of Natural Resources and the South Carolina Lidar Consortium.The South Carolina hydrography lines were created from elevation rasters that ranged from 4 to 10 ft resolution, to produce a product of approximately 1:6,000-scale. Other sources include the 1:24,000 scale high resolution National Hydrography Dataset streamlines [for streamlines in Georgetown County (SC), NC, and GA] and the 1:4,800 scale local-resolution North Carolina Stream Mapping Project lines (mountain counties). These ...

  15. 2008 South Carolina Lidar: Greenwood County

    • datadiscoverystudio.org
    • fisheries.noaa.gov
    Updated Jan 1, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    South Carolina Department of Natural Resources (SCDNR) (2009). 2008 South Carolina Lidar: Greenwood County [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/f44bf948b0754ad7a01b3d8ce0e0fb51/html
    Explore at:
    Dataset updated
    Jan 1, 2009
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    South Carolina Department of Natural Resources (SCDNR)
    Area covered
    Description

    The project area is composed of 16 counties in the State of South Carolina - Cherokee, Union, Laurens, Greenwood, Newberry, Chester, Fairfield, Lancaster, Chesterfield, Marlboro, Darlington, Dillon, Marion, Williamsburg, Clarendon, and Orangeburg. This metadata file is for the lidar county deliverables for Greenwood County, SC. The project area consists of approximately 10,194 square miles including a buffer of 50 feet along the edges of the project area and an additional buffer in some areas. The project design of the lidar data acquisition was developed to support a nominal post spacing of 1.4 meters. The Fugro EarthData, Inc. acquisition team of Fugro Horizons, Inc. and North West Group acquired 721 flight lines in 44 lifts from January 15, 2008 through February 10, 2008. The data was divided into 5000' by 5000' foot cells that serve as the tiling scheme. Lidar data collection was performed with a Cessna 310 aircraft, utilizing a Leica ALS50-II MPiA sensor, collecting multiple return x, y, and z data as well as intensity data. Lidar data was processed to achieve a bare ground surface (Classes 2 and 8). Lidar data is remotely sensed high-resolution elevation data collected by an airborne collection platform. Using a combination of laser range finding, GPS positioning and inertial measurement technologies, lidar instruments are able to make highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation.

  16. 2010 South Carolina DNR Lidar: Richland County

    • data.wu.ac.at
    • fisheries.noaa.gov
    Updated Feb 7, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration, Department of Commerce (2018). 2010 South Carolina DNR Lidar: Richland County [Dataset]. https://data.wu.ac.at/schema/data_gov/MzJiM2Y3NzktMDYzNC00NzQ1LTg3NDctNTdkNWZkNDcwYjRh
    Explore at:
    Dataset updated
    Feb 7, 2018
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    3c227b68adfec5170c433d31bc9867b3a24ce979
    Description

    Provide high density LiDAR elevation data map of Richland County, SC. Provide Bare Earth DEM (vegetation removal) of Richland County, SC.

  17. S

    Surface Expression of the 1886 Charleston, South Carolina Earthquake

    • portal.opentopography.org
    • dataone.org
    • +4more
    point cloud data
    Updated Feb 27, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenTopography (2012). Surface Expression of the 1886 Charleston, South Carolina Earthquake [Dataset]. http://doi.org/10.5069/G9RF5RZS
    Explore at:
    point cloud dataAvailable download formats
    Dataset updated
    Feb 27, 2012
    Dataset provided by
    OpenTopography
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 25, 2010
    Area covered
    Variables measured
    Area, Unit, LidarReturns, PointDensity
    Dataset funded by
    National Science Foundation
    Description

    NCALM Seed Project. PI: Jeffery Hoeft, Georgia Institute of Technology. The Survey area consists of two irregular polygons totaling 42 square kilometers. The areas of interest are located 20 kilometers west of Charleston, South Carolina. The data were collected to search for surface expressions of the 1886 Charleston, South Carolina Earthquake.


    Publications associated with this dataset can be found at NCALM's Data Tracking Center

  18. d

    2012 South Carolina DNR Lidar: Edgefield County.

    • datadiscoverystudio.org
    • fisheries.noaa.gov
    • +1more
    Updated Feb 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). 2012 South Carolina DNR Lidar: Edgefield County. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/ac3b1666c1e74353b9c0fc75aa8972bf/html
    Explore at:
    Dataset updated
    Feb 7, 2018
    Area covered
    Edgefield County
    Description

    description: Towill Inc. collected LiDAR for over 3,300 square miles in Calhoun, Aiken, Barnwell, Edgefield, McCormick, and Abbeville counties in South Carolina. This metadata covers the LiDAR products for Edgefield County. The nominal pulse spacing for this project is 1.4 meters. This project was collected with a sensor which collects waveform data and provides an intensity value for each discrete pulse extracted from the waveform. GPS Week Time, Intensity, Flightline and echo number attributes were provided for each LiDAR point. Dewberry used proprietary procedures to classify the LAS according to contract specifications: 1-Unclassified, 2-Ground, 7-Noise, 8-Model Key Points, 9-Water, 10-Ignored Ground due to breakline proximity. Dewberry produced 3D breaklines and combined these with the final LiDAR data to produce seamless hydro flattened DEMs for the 651 tiles (5000 ft x 5000 ft) that cover the project area.; abstract: Towill Inc. collected LiDAR for over 3,300 square miles in Calhoun, Aiken, Barnwell, Edgefield, McCormick, and Abbeville counties in South Carolina. This metadata covers the LiDAR products for Edgefield County. The nominal pulse spacing for this project is 1.4 meters. This project was collected with a sensor which collects waveform data and provides an intensity value for each discrete pulse extracted from the waveform. GPS Week Time, Intensity, Flightline and echo number attributes were provided for each LiDAR point. Dewberry used proprietary procedures to classify the LAS according to contract specifications: 1-Unclassified, 2-Ground, 7-Noise, 8-Model Key Points, 9-Water, 10-Ignored Ground due to breakline proximity. Dewberry produced 3D breaklines and combined these with the final LiDAR data to produce seamless hydro flattened DEMs for the 651 tiles (5000 ft x 5000 ft) that cover the project area.

  19. d

    Calhoun Critical Zone Observatory 2016 Leaf Off LiDAR Survey

    • search.dataone.org
    • dataone.org
    • +3more
    Updated Oct 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenTopography (2023). Calhoun Critical Zone Observatory 2016 Leaf Off LiDAR Survey [Dataset]. https://search.dataone.org/view/sha256%3A17a8ff02fc5a75ccd2e3fb9c87fe7ab55268989388c01d99138c7d5aa79123db
    Explore at:
    Dataset updated
    Oct 31, 2023
    Dataset provided by
    OpenTopography
    Time period covered
    Feb 26, 2016
    Area covered
    Description

    The National Center for Airborne Laser Mapping (NCALM) conducted a lidar survey of the Calhoun Critical Zone Observatory (CCZO) area on February 26, 2016. The survey was funded by NSF award EAR-1339015; the Calhoun CZO is funded by NSF award EAR-1331846 (P.I. Daniel deB. Richter).

    Note: Lidar and DEM data have been adjusted by -0.098 meters to adjust for systematic vertical bias determined by analysis of 1251 ground check points collected at the Spartanburg airfield using a vehicle-mounted GPS antenna and receiver.


    Publications associated with this dataset can be found at NCALM's Data Tracking Center

  20. 2014 NOAA Post-Sandy Topobathymetric Lidar DEMs: South Carolina to New York

    • catalog.data.gov
    • fisheries.noaa.gov
    Updated Oct 31, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA Office for Coastal Management (Point of Contact, Custodian) (2024). 2014 NOAA Post-Sandy Topobathymetric Lidar DEMs: South Carolina to New York [Dataset]. https://catalog.data.gov/dataset/2014-noaa-post-sandy-topobathymetric-lidar-dems-south-carolina-to-new-york1
    Explore at:
    Dataset updated
    Oct 31, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Area covered
    New York, South Carolina
    Description

    These data were collected by the National Oceanic Atmospheric Administration National Geodetic Survey Remote Sensing Division using a Riegl VQ820G system. The data were acquired from 201311- 201406. The data includes topobathy data with points classified by target type (e.g. ground, water, etc). The final classified LiDAR data were then used to create topobathymetric DEMs in IMG format with 1m pixel size using ground points. The full project consists of 2,775 square miles along the Atlantic Coast from New York to South Carolina, or 41,388 - 500 m x 500 m lidar tiles. These tiles have been combined into 140 larger blocks. The data collection and processing was funded by post-Sandy supplemental funds. While Sandy was considered an extra-tropical storm when it struck, the word hurricane is in this sentence for search purposes. Original contact information: Contact Org: National Oceanic and Atmospheric Administration (NOAA), National Ocean Service (NOS), National Geodetic Survey (NGS), Remote Sensing Division Title: Chief, Remote Sensing Division Phone: 301-713-2663

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
NOAA Office for Coastal Management (Point of Contact, Custodian) (2024). 2014 Horry County, South Carolina Lidar [Dataset]. https://catalog.data.gov/dataset/2014-horry-county-south-carolina-lidar1
Organization logo

2014 Horry County, South Carolina Lidar

Explore at:
Dataset updated
Oct 31, 2024
Dataset provided by
National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
Area covered
Horry County, South Carolina
Description

This data set is comprised of lidar point cloud data. This project required lidar data to be acquired over Horry County, South Carolina. The total area of the Horry County Elevation Data and Imagery AOI is approximately 1092 square miles. Lidar data was collected and processed to meet the requirements of the project task order. The lidar collection was a collaborative effort between two data acquisition firms. While Woolpert was responsible for collection of the majority of the county, the coastal portion of the data was collected by Quantum Geospatial and is detailed in the processing steps of the metadata. Lidar data is a remotely sensed high resolution elevation data collected by an airborne platform. The lidar sensor uses a combination of laser range finding, GPS positioning, and inertial measurement technologies. The lidar systems collect data point clouds that are used to produce highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation. The task required the LiDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. The final products include classified LAS, four (4) foot pixel raster DEMs of the bare-earth surface in ERDAS IMG Format. Each LAS file contains lidar point information, which has been calibrated, controlled, and classified. Ground conditions: Water at normal levels; no unusual inundation; no snow. The bare earth DEMs along the coast may have a variance in the water heights due to temporal differences during the lidar data acquisition and will be represented in DEM as a seam-like anomaly. One coastal elevation was applied to entire project area. Due to differing acquisition dates and thus differing tide levels there will be areas in the DEM exhibiting what appears to be "digging" water features. Sometimes as much as approximately 2.5 feet. This was done to ensure that no coastal hydro feature was "floating" above ground surface. This coastal elevation will also affect connected river features wherein a sudden increase in flow will be observed in the DEM to accommodate the coastal elevation value. During Hydrologic breakline collection, Woolpert excluded obvious above-water piers or pier-like structures from the breakline placement. Some features extend beyond the apparent coastline and are constructed in a manner that can be considered an extension of the ground. These features were treated as ground during classification and subsequent hydrologic delineation. In all cases, professional practice was applied to delineate what appeared to be the coast based on data from multiple sources; Due to the many substructures and the complexity of the urban environment, interpolation and apparent "divots" (caused by tinning) may be evident in the surface of the bare earth DEM. In all cases, professional practice was applied to best represent the topography. The data received by the NOAA OCM are topographic data in LAS 1.2 format, classified as unclassified (1), ground (2), all noise (7), water (9), ignored ground (10), overlap unclassified (17), and overlap ground (18). Digital Elevation Models (DEMs) and breakline data are also available. The DEM data are available at: ftp://coast.noaa.gov/pub/DigitalCoast/lidar1_z/geoid18/data/4814/DEMs/ The breakline data are available at: ftp://coast.noaa.gov/pub/DigitalCoast/lidar1_z/geoid18/data/4814/breaklines Any conclusions drawn from the analysis of this information are not the responsibility of NOAA, the Office of Coastal Management (OCM)or its partners. Original contact information: Contact Org: Woolpert Phone: (937) 461-5660

Search
Clear search
Close search
Google apps
Main menu