This layer shows total population count by sex and age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of the population that are considered dependent (ages 65+ and <18). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B01001Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
The 2022 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The cartographic boundary files include both incorporated places (legal entities) and census designated places or CDPs (statistical entities). An incorporated place is established to provide governmental functions for a concentration of people as opposed to a minor civil division (MCD), which generally is created to provide services or administer an area without regard, necessarily, to population. Places always nest within a state, but may extend across county and county subdivision boundaries. An incorporated place usually is a city, town, village, or borough, but can have other legal descriptions. CDPs are delineated for the decennial census as the statistical counterparts of incorporated places. CDPs are delineated to provide data for settled concentrations of population that are identifiable by name, but are not legally incorporated under the laws of the state in which they are located. The boundaries for CDPs often are defined in partnership with state, local, and/or tribal officials and usually coincide with visible features or the boundary of an adjacent incorporated place or another legal entity. CDP boundaries often change from one decennial census to the next with changes in the settlement pattern and development; a CDP with the same name as in an earlier census does not necessarily have the same boundary. The only population/housing size requirement for CDPs is that they must contain some housing and population. The generalized boundaries of most incorporated places in this file are based on those as of January 1, 2022, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The generalized boundaries of all CDPs are based on those delineated as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.
The Florida Fish and Wildlife Conservation Commission (FWC) collected annual trawl data at 27 open-water sites from 1987 to 1991 (Bull et al. 1995). Nearly 37,000 fish were recorded in 438 10-minute open-water trawls (Bull et al. 1995). Seven species accounted for 98% of the total number and total fish biomass. Clustering of sites based on mean catch of the primary species expressed as number and weight produced four distinct groups. The groups were labeled as the northeast shore, northwest shore, south-southwest shore and open water area. Areal fish distribution patterns also were compared using analysis of variance (ANOVA) and Tukey’s HSD post hoc test. Within the four groups there were significant differences in the distribution of certain fish species.
In addition to the open-water trawl sites, the FWC has utilized electrofishing techniques to collect annual largemouth bass (Micropterous salmodies) (LMB) data from 22 near-shore and interior marsh locations since 1999 (Havens et al. 2004). Although the trawl and electrofishing data provide some baseline information, still there is limited data regarding temporal changes in the community structure, density and condition of the primary sport fish LMB, black crappie (Pomoxis nigromaculatus), bluegill (Lepomis macrochirus) and redear (Lepomis microlophus) sunfish) and other fish species in Lake Okeechobee.
During this study, fish species will be collected from 49 historic sampling locations.
Fish assemblages in the 27 open water regions of the lake will be sampled with an Otter Trawl net. The 22 near-shore and interior marsh sites will be sampled utilizing electrofishing gear. Ancillary data, including water temperature, dissolved oxygen, pH, turbidity, conductivity, and sediment/aquatic plant type will be recorded at the 49 sampling locations.
The two historic sets of non-MAP data will be used to help establish baseline conditions for the near-shore, interior marsh and open-water fishery. It is appropriate to include the non-MAP data in our analysis as current sampling will occur at the historical locations and sampling methods will be similar. We anticipate significant spatial differences in fish abundance and biomass will exist at the near-shore, interior marsh and open water sites. Therefore, similar statistical tests including cluster analysis and analysis of variance should be used to evaluate temporal changes in the near-shore and open water fishery. Detailed statistical analysis should be conducted at a minimum of every three years to evaluate long-term trends and establish relationships between fish distribution, condition, and community structure and environmental conditions including habitat and water depth.
The objectives of this project are to evaluate temporal changes in Lake Okeechobee’s fishery by determining annual changes in the areal distribution, condition, density and community structure (year classes) of all major fish species found in the near-shore, interior marsh and open-water regions of the lake. Ancillary data including water temperature, dissolved oxygen, pH, turbidity, conductivity, and sediment type also will be recorded.
OverviewThis feature layer shows population change compared to pre-crisis baseline in the affected areas by Hurricane Idalia on a daily basis for all Census Designated Population (CDP), an administrative unit smaller than county, in Florida, Georgia, Alabama, and South Carolina. The layer has time enabled to show the change from 2023-08-28 to the latest date when population change data harvested by Data for Good at Meta is available.Population maps provided by Data for Good at Meta are generated based on users of Facebook. For more information about the disaster population maps provided by Data for Good at Meta, please refer to this link.Default data visualizationA divergent color ramp was employed to create a choropleth map for % population change compared to the pre-crisis baseline. The size of pre-crisis baseline is visualized using circles in different sizes. Each polygon represents one census designated place in the affected areas.This feature layer contains the following metrics for mapping and analysis:Baseline population - an estimated number of Facebook users during the pre-crisis period. It is calculated as an average of 90 days before the crisis (in this case, 2023-08-28 was used as the onset of crisis).Crisis population - an estimated number of Facebook users during the crisis. Original data are provided every 8 hours.Difference in population - the difference between crisis population and the baseline populationPercent change in population - the percentage of population change from baseline to a given date during the crisisZ-score - a unitless normalized measurement to quantify the population change from baselineDate - Date of data acquisition. Original data are provided three times a day (8-hour interval). We calculated a daily average using all three timestamps available for each day. Users can filter by Date to create a subset showing the population change on a selected dateMethod of data preparationRemove data points without a valid baseline population or percent change in populationCalculate daily average using the three timestamps available for each dayAggregate the original point data to census designated places in the affected areasAppend all daily average census designated places data to a single file to enable time option of the layer
https://www.florida-demographics.com/terms_and_conditionshttps://www.florida-demographics.com/terms_and_conditions
A dataset listing Florida counties by population for 2024.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
U.S. Census Bureau QuickFacts statistics for South Miami city, Florida. QuickFacts data are derived from: Population Estimates, American Community Survey, Census of Population and Housing, Current Population Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
This layer shows total population count by sex and age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of the population that are considered dependent (ages 65+ and <18). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B01001Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.