Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the South Miami population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of South Miami across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of South Miami was 12,073, a 2.85% increase year-by-year from 2022. Previously, in 2022, South Miami population was 11,739, a decline of 0.56% compared to a population of 11,805 in 2021. Over the last 20 plus years, between 2000 and 2023, population of South Miami increased by 1,458. In this period, the peak population was 12,092 in the year 2017. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Miami Population by Year. You can refer the same here
Facebook
Twitterhttps://www.florida-demographics.com/terms_and_conditionshttps://www.florida-demographics.com/terms_and_conditions
A dataset listing Florida counties by population for 2024.
Facebook
Twitterhttps://www.florida-demographics.com/terms_and_conditionshttps://www.florida-demographics.com/terms_and_conditions
A dataset listing Florida cities by population for 2024.
Facebook
TwitterWe illustrate the utility of expert elicitation, explicit recognition of uncertainty, and the value of information for directing management and research efforts for invasive species, using tegu lizards (Salvator merianae) in southern Florida as a case study. We posited a post-birth pulse, matrix model, which was parameterized using a 3-point process to elicit estimates of tegu demographic rates from herpetology experts. We fit statistical distributions for each parameter and for each expert, then drew and pooled a large number of replicate samples from these to form a distribution for each demographic parameter. Using these distributions, we generated a large sample of matrix models to infer how the tegu population might respond to control efforts. We used the concepts of Pareto efficiency and stochastic dominance to conclude that targeting older age classes at relatively high rates appears to have the best chance of minimizing tegu abundance and control costs. Expert opinion combined with an explicit consideration of uncertainty can be valuable for conducting an initial assessment of the effort needed to control the invader. The value of information can be used to focus research in a way that not only helps increases the efficacy of control, but minimizes costs as well.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the South Miami Hispanic or Latino population. It includes the distribution of the Hispanic or Latino population, of South Miami, by their ancestries, as identified by the Census Bureau. The dataset can be utilized to understand the origin of the Hispanic or Latino population of South Miami.
Key observations
Among the Hispanic population in South Miami, regardless of the race, the largest group is of Cuban origin, with a population of 3,174 (48.01% of the total Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Origin for Hispanic or Latino population include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Miami Population by Race & Ethnicity. You can refer the same here
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Resident Population in Miami-Fort Lauderdale-West Palm Beach, FL (MSA) (MIMPOP) from 2000 to 2024 about Miami, FL, residents, population, and USA.
Facebook
TwitterComprehensive demographic dataset for South Miami, FL, US including population statistics, household income, housing units, education levels, employment data, and transportation with year-over-year changes.
Facebook
Twitterhttps://www.florida-demographics.com/terms_and_conditionshttps://www.florida-demographics.com/terms_and_conditions
A dataset listing Florida zip codes by population for 2024.
Facebook
TwitterComprehensive demographic dataset for South Gulf Cove, , FL, US including population statistics, household income, housing units, education levels, employment data, and transportation with year-over-year changes.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 33 cities in the Miami-Dade County, FL by South African population, as estimated by the United States Census Bureau. It also highlights population changes in each city over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Florida population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Florida across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2024, the population of Florida was 23.37 million, a 2.04% increase year-by-year from 2023. Previously, in 2023, Florida population was 22.9 million, an increase of 2.35% compared to a population of 22.38 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of Florida increased by 7.33 million. In this period, the peak population was 23.37 million in the year 2024. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Florida Population by Year. You can refer the same here
Facebook
TwitterComprehensive demographic dataset for South Palm Beach, FL, US including population statistics, household income, housing units, education levels, employment data, and transportation with year-over-year changes.
Facebook
TwitterThis dataset is a compilation and synthesis of secondary data in South Florida (Martin, Palm Beach, Broward, Miami-Dade, and Monroe Counties) corresponding to the following topics: Human population changes near coral reefs, Economic impact of coral reef fishing to jurisdiction, Economic impact of dive/snorkel tourism to jurisdiction, Community well-being, Physical infrastructure, and Governance. Data are collected from a variety of publicly available sources to supplement primary data collected through resident surveys. These secondary data are collected to address topics outside the scope of NCRMP resident surveys, and are collected on an annual basis throughout the US coral reef jurisdictions. The primary data that were collected as part of this study in Florida are available in NCEI Accession 0161541.
Facebook
TwitterIn 2022, the real gross domestic product (GDP) of the South Florida metropolitan area amounted to ****** billion U.S. dollars. This was an increase from the previous year when the real GDP of the area came to ****** billion U.S. dollars.
Facebook
TwitterComprehensive demographic dataset for South Daytona, FL, US including population statistics, household income, housing units, education levels, employment data, and transportation with year-over-year changes.
Facebook
TwitterComprehensive demographic dataset for Pine Forest South - Lake Estelle, , FL, US including population statistics, household income, housing units, education levels, employment data, and transportation with year-over-year changes.
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Facebook
TwitterComprehensive demographic dataset for Orange Park South, Middleburg, FL, US including population statistics, household income, housing units, education levels, employment data, and transportation with year-over-year changes.
Facebook
TwitterComprehensive demographic dataset for South Bay, FL, US including population statistics, household income, housing units, education levels, employment data, and transportation with year-over-year changes.
Facebook
TwitterComprehensive demographic dataset for Bardmoor South, , FL, US including population statistics, household income, housing units, education levels, employment data, and transportation with year-over-year changes.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the South Miami population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of South Miami across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of South Miami was 12,073, a 2.85% increase year-by-year from 2022. Previously, in 2022, South Miami population was 11,739, a decline of 0.56% compared to a population of 11,805 in 2021. Over the last 20 plus years, between 2000 and 2023, population of South Miami increased by 1,458. In this period, the peak population was 12,092 in the year 2017. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Miami Population by Year. You can refer the same here