Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
New Zealand Population: South Island (SI) data was reported at 1,242,300.000 Person in 2024. This records an increase from the previous number of 1,226,100.000 Person for 2023. New Zealand Population: South Island (SI) data is updated yearly, averaging 1,033,700.000 Person from Jun 1996 (Median) to 2024, with 29 observations. The data reached an all-time high of 1,242,300.000 Person in 2024 and a record low of 921,100.000 Person in 1996. New Zealand Population: South Island (SI) data remains active status in CEIC and is reported by Stats NZ. The data is categorized under Global Database’s New Zealand – Table NZ.G005: Population: by Region.
In 1820, the islands of present-day New Zealand had a population of approximately 100,000 people. This figure would fall until the early 1840s, partly as a result of European diseases brought by colonizers, and a series of destructive inter-tribal wars among the Māori peoples. These conflicts were named the Musket Wars due to the European weapons whose introduction instigated the conflicts, and the wars saw the deaths of between 20,000 and 40,000 Māori, from 1807 to 1837. After falling to just 82 thousand in the 1840s, the population would begin to rise again in 1841 following the establishment of New Zealand as an official British colony, with a strong promotion of European settlement by British citizens sponsored by the Church of England. European migration to New Zealand was low in these early decades, but increased in the mid-19th century, particularly following the discovery of gold in New Zealand’s South Island in the 1860s. This growth would continue throughout the 1870s, in part the result of a strong promotion of mass migration from Britain by Premier Julius Vogel’s administration.
Early 20th century However, between 1881 and the 1920s, the New Zealand government heavily restricted Asiatic migration to the islands, resulting in a fall of population growth rate, which would remain until the Second World War. The country would experience a dip in population during the First World War, in which New Zealand would suffer approximately 18,000 military fatalities, and another 9,000 lost to the coinciding Spanish Flu epidemic. The population would stagnate again in the Second World War, which resulted in the death of almost 12,000 New Zealanders. In the years following the war, New Zealand would see a significant increase in population due to the mixture of a baby boom and a migrant spike from Europe and Asia, following a large demand for unskilled labor. Recent decades This increase continued for several decades, until international factors, such as the oil crises of 1973 and 1979, and the UK's accession to the European Economic Communities (which ended most of New Zealand's trade agreements with Britain; it's largest trade partner), greatly weakened New Zealand's economy in the 1970s. As a result, population growth stagnated during the 1970s, while economic problems persisted into the early 2000s. In contrast, the Great Recession of 2008 did not impact New Zealand as severely as most other developed nations, which allowed the economy to emerge as one of the fastest growing in the world, also leading to dropped unemployment levels and increased living standards. In 2020, with a population of almost five million people, New Zealand is regarded as one of the top countries in the world in terms of human development, quality of life and social freedoms.
https://data.linz.govt.nz/license/attribution-4-0-international/https://data.linz.govt.nz/license/attribution-4-0-international/
The NZ Gazetteer data table is part of NZ Suburbs and Localities Dataset. This table contains the linkage between the NZ Suburbs and Localities data and NZGB official place name.
NZ Suburbs and Localities is an easy to use layer generated from the normalised NZ Suburbs and Localities Dataset. It describes the spatial extent and name of communities in urban areas (suburbs) and rural areas (localities) for navigation and location purposes.
The suburb and locality boundaries cover New Zealand including North Island, South Island, Stewart Island/Rakiura, Chatham Islands, and nearby offshore islands.
Each suburb and locality is assigned a name, major name, Territorial Authority and, if appropriate, additional in use names. A population estimate is provided for each suburb and locality by Stats NZ.
For more information please refer to the NZ Suburbs and Localities Guidance documents:
Data Dictionary Change Request Process Change Request Principles, Requirements and Rules Changes to NZ Suburbs and Localities can be requested by emailing addresses@linz.govt.nz
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
New Zealand Population: North Island (NI) data was reported at 4,044,600.000 Person in 2024. This records an increase from the previous number of 3,973,400.000 Person for 2023. New Zealand Population: North Island (NI) data is updated yearly, averaging 3,311,700.000 Person from Jun 1996 (Median) to 2024, with 29 observations. The data reached an all-time high of 4,044,600.000 Person in 2024 and a record low of 2,810,100.000 Person in 1996. New Zealand Population: North Island (NI) data remains active status in CEIC and is reported by Stats NZ. The data is categorized under Global Database’s New Zealand – Table NZ.G005: Population: by Region.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Refer to the 'Current Geographic Boundaries Table' layer for a list of all current geographies and recent updates.
This dataset is the definitive version of the annually released statistical area 3 (SA3) boundaries as at 1 January 2025 as defined by Stats NZ. This version contains 929 SA3s, including 4 non-digitised SA3s.
The SA3 geography aims to meet three purposes:
SA3s in major, large, and medium urban areas were created by combining SA2s to approximate suburbs as delineated in the Fire and Emergency NZ (FENZ) Localities dataset. Some of the resulting SA3s have very large populations.
Outside of major, large, and medium urban areas, SA3s generally have populations of 5,000–10,000. These SA3s may represent either a single small urban area, a combination of small urban areas and their surrounding rural SA2s, or a combination of rural SA2s.
Zero or nominal population SA3s
To minimise the amount of unsuppressed data that can be provided in multivariate statistical tables, SA2s with fewer than 1,000 residents are combined with other SA2s wherever possible to reach the 1,000 SA3 population target. However, there are still a number of SA3s with zero or nominal populations.
Small population SA2s designed to maintain alignment between territorial authority and regional council geographies are merged with other SA2s to reach the 5,000–10,000 SA3 population target. These merges mean that some SA3s do not align with regional council boundaries but are aligned to territorial authority.
Small population island SA2s are included in their adjacent land-based SA3.
Island SA2s outside territorial authority or region are the same in the SA3 geography.
Inland water SA2s are aggregated and named by territorial authority, as in the urban rural classification.
Inlet SA2s are aggregated and named by territorial authority or regional council where the water area is outside the territorial authority.
Oceanic SA2s translate directly to SA3s as they are already aggregated to regional council.
The 16 non-digitised SA2s are aggregated to the following 4 non-digitised SA3s (SA3 code; SA3 name):
70001; Oceanic outside region, 70002; Oceanic oil rigs, 70003; Islands outside region, 70004; Ross Dependency outside region.
SA3 numbering and naming
Each SA3 is a single geographic entity with a name and a numeric code. The name refers to a suburb, recognised place name, or portion of a territorial authority. In some instances where place names are the same or very similar, the SA3s are differentiated by their territorial authority, for example, Hillcrest (Hamilton City) and Hillcrest (Rotorua District).
SA3 codes have five digits. North Island SA3 codes start with a 5, South Island SA3 codes start with a 6 and non-digitised SA3 codes start with a 7. They are numbered approximately north to south within their respective territorial authorities. When first created in 2025, the last digit of each code was 0. When SA3 boundaries change in future, only the last digit of the code will change to ensure the north-south pattern is maintained.
High-definition version
This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre.
Macrons
Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.
Digital data
Digital boundary data became freely available on 1 July 2007
Further information
To download geographic classifications in table formats such as CSV please use Ariā
For more information please refer to the Statistical standard for geographic areas 2023.
Contact: geography@stats.govt.nz
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the South Padre Island, TX population pyramid, which represents the South Padre Island population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Padre Island Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the South Padre Island population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for South Padre Island. The dataset can be utilized to understand the population distribution of South Padre Island by age. For example, using this dataset, we can identify the largest age group in South Padre Island.
Key observations
The largest age group in South Padre Island, TX was for the group of age 55 to 59 years years with a population of 548 (19.21%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in South Padre Island, TX was the 85 years and over years with a population of 0 (0%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Padre Island Population by Age. You can refer the same here
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Refer to the 'Current Geographic Boundaries Table' layer for a list of all current geographies and recent updates.
This dataset is the definitive version of the annually released statistical area 2 (SA2) boundaries as at 1 January 2025 as defined by Stats NZ. This version contains 2,395 SA2s (2,379 digitised and 16 with empty or null geometries (non-digitised)).
SA2 is an output geography that provides higher aggregations of population data than can be provided at the statistical area 1 (SA1) level. The SA2 geography aims to reflect communities that interact together socially and economically. In populated areas, SA2s generally contain similar sized populations.
The SA2 should:
form a contiguous cluster of one or more SA1s,
excluding exceptions below, allow the release of multivariate statistics with minimal data suppression,
capture a similar type of area, such as a high-density urban area, farmland, wilderness area, and water area,
be socially homogeneous and capture a community of interest. It may have, for example:
form a nested hierarchy with statistical output geographies and administrative boundaries. It must:
SA2s in city council areas generally have a population of 2,000–4,000 residents while SA2s in district council areas generally have a population of 1,000–3,000 residents.
In major urban areas, an SA2 or a group of SA2s often approximates a single suburb. In rural areas, rural settlements are included in their respective SA2 with the surrounding rural area.
SA2s in urban areas where there is significant business and industrial activity, for example ports, airports, industrial, commercial, and retail areas, often have fewer than 1,000 residents. These SA2s are useful for analysing business demographics, labour markets, and commuting patterns.
In rural areas, some SA2s have fewer than 1,000 residents because they are in conservation areas or contain sparse populations that cover a large area.
To minimise suppression of population data, small islands with zero or low populations close to the mainland, and marinas are generally included in their adjacent land-based SA2.
Zero or nominal population SA2s
To ensure that the SA2 geography covers all of New Zealand and aligns with New Zealand’s topography and local government boundaries, some SA2s have zero or nominal populations. These include:
400001; New Zealand Economic Zone, 400002; Oceanic Kermadec Islands, 400003; Kermadec Islands, 400004; Oceanic Oil Rig Taranaki, 400005; Oceanic Campbell Island, 400006; Campbell Island, 400007; Oceanic Oil Rig Southland, 400008; Oceanic Auckland Islands, 400009; Auckland Islands, 400010 ; Oceanic Bounty Islands, 400011; Bounty Islands, 400012; Oceanic Snares Islands, 400013; Snares Islands, 400014; Oceanic Antipodes Islands, 400015; Antipodes Islands, 400016; Ross Dependency.
SA2 numbering and naming
Each SA2 is a single geographic entity with a name and a numeric code. The name refers to a geographic feature or a recognised place name or suburb. In some instances where place names are the same or very similar, the SA2s are differentiated by their territorial authority name, for example, Gladstone (Carterton District) and Gladstone (Invercargill City).
SA2 codes have six digits. North Island SA2 codes start with a 1 or 2, South Island SA2 codes start with a 3 and non-digitised SA2 codes start with a 4. They are numbered approximately north to south within their respective territorial authorities. To ensure the north–south code pattern is maintained, the SA2 codes were given 00 for the last two digits when the geography was created in 2018. When SA2 names or boundaries change only the last two digits of the code will change.
High-definition version
This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre.
Macrons
Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.
Digital data
Digital boundary data became freely available on 1 July 2007.
Further information
To download geographic classifications in table formats such as CSV please use Ariā
For more information please refer to the Statistical standard for geographic areas 2023.
Contact: geography@stats.govt.nz
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
The expansion of human settlements over the past few centuries is responsible for an unprecedented number of invasive species introductions globally. An important component of biological invasion management is understanding how introduction history and post-introduction processes have jointly shaped present-day distributions and patterns of population structure, diversity, and adaptation. One example of a successful invader is the European starling (Sturnus vulgaris), which was intentionally introduced to numerous countries in the 19th century, including Aotearoa New Zealand, where it has become firmly established. We used reduced-representation sequencing to characterise the genetic population structure of the European starling in New Zealand, and compared the population structure to that present in sampling locations in the native range and invasive Australian range. We found that population structure and genetic diversity patterns suggested restricted gene flow from the majority of New Zealand to the northmost sampling location (Auckland). We also profiled genetic bottlenecks and shared outlier genomic regions, which supported historical accounts of translocations between both Australian subpopulations and New Zealand, and provided evidence of which documented translocation events were more likely to have been successful. Using these results as well as historic demographic patterns, we demonstrate how genomic analysis complements even well-documented invasion histories to better understand invasion processes, with direct implication for understanding contemporary gene flow and informing invasion management. Methods Sample Collection A total of 106 starling specimen samples were obtained from various contributors within New Zealand from five geographically distinct locations between May 2022 and October 2023. Sampling covered three locations in the North Island, specifically in the Auckland region (AUK: n=18), the Manawatū-Whanganui region (WHA: n=12), the Wellington region (WEL: n=40) and two in the South Island in the Marlborough region (MRL: n=15) and Canterbury region (CAN: n=21). In addition to the newly obtained samples, we also incorporated sequence data from the native European range (Antwerp, Belgium; ANT: n=15, Newcastle, United Kingdom; NWC: n=15, Monks Wood, United Kingdom; MKW: n=15), as well as two locations from within the invasive Australian range (Orange; ORG: n=15, McLaren Vale; MLV: n=15) from a previously published Diversity Arrays Technology Pty Ltd sequencing (DArT-seq) dataset. DNA Extraction and Sequencing Extracted DNA from the newly collected New Zealand samples was sent to Diversity Arrays for sequencing. Sequencing was performed on an Illumina Hiseq2500/Novaseq6000. Raw Sequence Processing The previously published raw DArT-seq data, along with the MRL samples (January 2023 sequencing batch) were demultiplexed using stacks v2.2 process_radtags, while also discarding low quality reads (-q), reads with uncalled bases (-c), and rescuing barcodes and RAD-Tag cut sites (-r). It was not necessary to perform this step on the remainder of the new raw sequence data because DArT performed in-house demultiplexing using a proprietary bioinformatic pipeline. For all the data, we used fastp v0.23.2 to remove adapter sequences and in the same step filtered reads for a minimum Phred quality score of 22 (-q 22) and a minimum length of 40 (-l 40). Both batches of sequence data produced as part of this study were additionally length trimmed to reduce the read length of the newer sequence data to match the base length of the older sequence data (-b 69). Mapping, Variant Calling, and Filtering We used the program bwa v0.7.17 to index the reference genome S. vulgaris vAU1.0 and align the trimmed DArT reads using the bwa aln function (-B 5 to trim the first 5 base pairs of each read), which is optimised for single-end short reads. This was then followed by the bwa samse function for producing the SAM formatted output files containing the alignments and their respective base qualities. Alignments were then sorted and indexed using samtools v1.16.1, and single nucleotide polymorphisms (SNPs) were subsequently called and annotated using bcftools v1.16 with the mpileup (-a "DP,AD,SP", --ignore-RG) and call (-mv, -f GQ) functions. We removed known technical replicates and identified relatives from the data. vcftools v0.1.15 was used to remove indels (--remove-indels), and quality filter for a minimum site quality score of 30 (--minQ30), minimum genotype quality score of 20 (--minGQ 20), and minimum and maximum depth of coverage of 5 (--minDP 5) and 100 (--maxDP 100). Then, to account for batch effects that may impact the sequenced loci, we kept only SNPs present in at least 50% of the individuals in each sampling location. We ran one final filtering step to ensure appropriate levels of missingness and rare alleles using the following parameters: maximum missingness per site of 30% (--max-missing 0.7), minor allele count of 5 (--mac 5), and a minimum and maximum allele per locus of 2 (--min-alleles 2 --max-alleles 2), resulting in a dataset containing 19,174 SNPs and 141 individuals.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
人口:South Island (SI)在06-01-2024达1,242,300.000人,相较于06-01-2023的1,226,100.000人有所增长。人口:South Island (SI)数据按年更新,06-01-1996至06-01-2024期间平均值为1,033,700.000人,共29份观测结果。该数据的历史最高值出现于06-01-2024,达1,242,300.000人,而历史最低值则出现于06-01-1996,为921,100.000人。CEIC提供的人口:South Island (SI)数据处于定期更新的状态,数据来源于Stats NZ,数据归类于全球数据库的新西兰 – Table NZ.G005: Population: by Region。
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Statistical Area 2 2023 update
SA2 2023 is the first major update of the geography since it was first created in 2018. The update is to ensure SA2s are relevant and meet criteria before each five-yearly population and dwelling census. SA2 2023 contains 135 new SA2s. Updates were made to reflect real world change of population and dwelling growth mainly in urban areas, and to make some improvements to their delineation of communities of interest.
Description
This dataset is the definitive version of the annually released statistical area 2 (SA2) boundaries as at 1 January 2023 as defined by Stats NZ. This version contains 2,395 SA2s (2,379 digitised and 16 with empty or null geometries (non-digitised)).
SA2 is an output geography that provides higher aggregations of population data than can be provided at the statistical area 1 (SA1) level. The SA2 geography aims to reflect communities that interact together socially and economically. In populated areas, SA2s generally contain similar sized populations.
The SA2 should:
form a contiguous cluster of one or more SA1s,
excluding exceptions below, allow the release of multivariate statistics with minimal data suppression,
capture a similar type of area, such as a high-density urban area, farmland, wilderness area, and water area,
be socially homogeneous and capture a community of interest. It may have, for example:
form a nested hierarchy with statistical output geographies and administrative boundaries. It must:
SA2s in city council areas generally have a population of 2,000–4,000 residents while SA2s in district council areas generally have a population of 1,000–3,000 residents.
In major urban areas, an SA2 or a group of SA2s often approximates a single suburb. In rural areas, rural settlements are included in their respective SA2 with the surrounding rural area.
SA2s in urban areas where there is significant business and industrial activity, for example ports, airports, industrial, commercial, and retail areas, often have fewer than 1,000 residents. These SA2s are useful for analysing business demographics, labour markets, and commuting patterns.
In rural areas, some SA2s have fewer than 1,000 residents because they are in conservation areas or contain sparse populations that cover a large area.
To minimise suppression of population data, small islands with zero or low populations close to the mainland, and marinas are generally included in their adjacent land-based SA2.
Zero or nominal population SA2s
To ensure that the SA2 geography covers all of New Zealand and aligns with New Zealand’s topography and local government boundaries, some SA2s have zero or nominal populations. These include:
400001; New Zealand Economic Zone, 400002; Oceanic Kermadec Islands, 400003; Kermadec Islands, 400004; Oceanic Oil Rig Taranaki, 400005; Oceanic Campbell Island, 400006; Campbell Island, 400007; Oceanic Oil Rig Southland, 400008; Oceanic Auckland Islands, 400009; Auckland Islands, 400010 ; Oceanic Bounty Islands, 400011; Bounty Islands, 400012; Oceanic Snares Islands, 400013; Snares Islands, 400014; Oceanic Antipodes Islands, 400015; Antipodes Islands, 400016; Ross Dependency.
SA2 numbering and naming
Each SA2 is a single geographic entity with a name and a numeric code. The name refers to a geographic feature or a recognised place name or suburb. In some instances where place names are the same or very similar, the SA2s are differentiated by their territorial authority name, for example, Gladstone (Carterton District) and Gladstone (Invercargill City).
SA2 codes have six digits. North Island SA2 codes start with a 1 or 2, South Island SA2 codes start with a 3 and non-digitised SA2 codes start with a 4. They are numbered approximately north to south within their respective territorial authorities. To ensure the north–south code pattern is maintained, the SA2 codes were given 00 for the last two digits when the geography was created in 2018. When SA2 names or boundaries change only the last two digits of the code will change.
For more information please refer to the Statistical standard for geographic areas 2023.
Generalised version
This generalised version has been simplified for rapid drawing and is designed for thematic or web mapping purposes.
Macrons
Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.
Digital data
Digital boundary data became freely available on 1 July 2007.
To download geographic classifications in table formats such as CSV please use Ariā
In 2024, Papua New Guinea had the largest population of the Pacific Island nations, with around *** million people. The second-highest population in the region was Fiji, with just over *** thousand people.
NZ Suburbs and Localities describes the spatial extent and name of communities in urban areas (suburbs) and rural areas (localities) for navigation and location purposes.
The suburb and locality boundaries cover New Zealand including North Island, South Island, Stewart Island/Rakiura, Chatham Islands, and nearby offshore islands.
Each suburb and locality is assigned a name, major name, Territorial Authority and, if appropriate, additional in use names. A population estimate is provided for each suburb and locality by Stats NZ.
For more information please refer to the NZ Suburbs and Localities Data Dictionary and the LINZ Website
Changes to NZ Suburbs and Localities can be requested by emailing addresses@linz.govt.nz
Change Request Guidance Documents: - Change Request Process - Change Request Principles, Requirements and Rules
APIs and web services
This dataset is available via ArcGIS Online and ArcGIS REST services, as well as our standard APIs. LDS APIs and OGC web services "https://www.arcgis.com/home/item.html?id=cfe52bdf2a76491d86c4f433957f2460">ArcGIS Online map services
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Explore the World Bank Population dataset to access rankings and insights on global population statistics. Click here for extensive data on various countries.
Rankings
Afghanistan, Albania, Algeria, Andorra, Angola, Antigua and Barbuda, Argentina, Armenia, Australia, Austria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belgium, Belize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Brunei, Bulgaria, Burkina Faso, Burundi, Cabo Verde, Cambodia, Cameroon, Canada, Central African Republic, Chad, Chile, China, Colombia, Comoros, Congo, Costa Rica, Croatia, Cuba, Cyprus, Denmark, Djibouti, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Estonia, Eswatini, Ethiopia, Fiji, Finland, France, Gabon, Gambia, Georgia, Germany, Ghana, Greece, Grenada, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kiribati, Kuwait, Latvia, Lebanon, Lesotho, Liberia, Libya, Liechtenstein, Lithuania, Luxembourg, Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Marshall Islands, Mauritania, Mauritius, Mexico, Micronesia, Moldova, Monaco, Mongolia, Montenegro, Morocco, Mozambique, Myanmar, Namibia, Nauru, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, North Macedonia, Norway, Oman, Pakistan, Palau, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Rwanda, Samoa, San Marino, Saudi Arabia, Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Slovenia, Solomon Islands, Somalia, South Africa, South Sudan, Spain, Sri Lanka, Sudan, Suriname, Sweden, Switzerland, Syria, Tajikistan, Tanzania, Thailand, Timor-Leste, Togo, Tonga, Trinidad and Tobago, Tunisia, Turkmenistan, Tuvalu, Uganda, Ukraine, United Arab Emirates, United Kingdom, Uruguay, Uzbekistan, Vanuatu, Venezuela, Vietnam, Yemen, Zambia, ZimbabweFollow data.kapsarc.org for timely data to advance energy economics research..
Recolonization or range expansion of large marine predators can be facilitated by reestablishing formally important trophic linkages within intact coastal marine food webs. We analyzed long-term changes in the structure of coastal marine food webs supporting remnant and recolonizing populations of New Zealand sea lions (Phocarctos hookeri), an apex marine predator, using trophic position and a mixture of alternate sources of organic matter as metrics for their resource niche. We measured both d¹³C, d¹⁵N, and d¹⁵NAA of amino acids in the collagen of archived prehistoric bone samples and modern bone, muscle, and fur samples. Using the resulting isotopic values we calculated individual-based estimates of trophic position and basal organic matter source use from pelagic and benthic habitats, phytoplankton versus macroalgae, in the underlying food webs supporting sea lions from the Auckland Islands, Stewart Island, Southland, and Otago among discrete time periods dating to the first human settlements in New Zealand. The data resolved significant changes in the trophic position of New Zealand sea lions since the first arrivals of Māori in New Zealand (ca 1250-1450 CE), the advent of European whaling and sealing (ca 1650 -1850 CE) when sea lions were extirpated from the South Island, and expansion of industrialized fishing (ca 1950 -present CE) indicating a vastly altered resource landscape for recolonizing populations on the South Island. New Zealand is the last major land mass to be settled by people therefore the patterns we observe comprise the complete time course of human influences on the marine ecosystem. These patterns provide a unique understanding of how long-term changes in coastal marine food webs influence the trophic position and population recovery of apex predators.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Resident Population in Hilton Head Island-Bluffton-Beaufort, SC (MSA) (HHIPOP) from 2010 to 2022 about Hilton Head Island, SC, residents, population, and USA.
Comprehensive demographic dataset for Gardiners Island, The Hamptons - South Fork, NY, US including population statistics, household income, housing units, education levels, employment data, and transportation with year-over-year changes.
Comprehensive demographic dataset for Tahoe Island Park, South Lake Tahoe, CA, US including population statistics, household income, housing units, education levels, employment data, and transportation with year-over-year changes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of South Padre Island by race. It includes the distribution of the Non-Hispanic population of South Padre Island across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of South Padre Island across relevant racial categories.
Key observations
Of the Non-Hispanic population in South Padre Island, the largest racial group is White alone with a population of 2,174 (89.50% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Padre Island Population by Race & Ethnicity. You can refer the same here
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Estimate, Total, Hispanic or Latino, Native Hawaiian and Other Pacific Islander Alone (5-year estimate) in St. Joseph County, IN (B03002017E018141) from 2009 to 2023 about St. Joseph County, IN; South Bend; Pacific Islands; latino; hispanic; IN; estimate; 5-year; persons; population; and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
New Zealand Population: South Island (SI) data was reported at 1,242,300.000 Person in 2024. This records an increase from the previous number of 1,226,100.000 Person for 2023. New Zealand Population: South Island (SI) data is updated yearly, averaging 1,033,700.000 Person from Jun 1996 (Median) to 2024, with 29 observations. The data reached an all-time high of 1,242,300.000 Person in 2024 and a record low of 921,100.000 Person in 1996. New Zealand Population: South Island (SI) data remains active status in CEIC and is reported by Stats NZ. The data is categorized under Global Database’s New Zealand – Table NZ.G005: Population: by Region.