Maps of rural areas in the south-west region (Census 2001).
Defra statistics: rural
Email mailto:rural.statistics@defra.gov.uk">rural.statistics@defra.gov.uk
<p class="govuk-body">You can also contact us via Twitter: <a href="https://twitter.com/DefraStats" class="govuk-link">https://twitter.com/DefraStats</a></p>
https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
A PDF map showing the output areas in the South East Region of England as at December 2011. (File Size - 29 MB)
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
A PDF map showing the middle layer super output areas in the South East Region of England as at December 2011. (File Size - 26 MB)
https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
A PDF map showing the middle layer super output areas in the South East Region of England as at December 2011. (File Size - 26 MB)
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
This dataset consists of an interactive map (and supporting guidance) containing background information that informs how we understand flood risk across the South East River Basin District. The map shows the River Basin District, component river basins and the coastline together with layers showing land use and topography.
This dataset together with equivalent datasets for each River Basin District, supports the Preliminary Flood Risk Assessment for England report which has been written to meet the requirements of the Flood Risk Regulations (2009) - to complete an assessment of flood risk and produce supporting maps of river catchments. Attribution statement: Open Government Licence
© Environment Agency copyright and/or database right 2018. All rights reserved.
© Crown copyright and database rights 2018 Ordnance Survey 100024198
© Bluesky International Ltd/Getmapping PLC.
Some features of this map are based on digital spatial data from the Centre for Ecology & Hydrology, British Antarctic Survey and British Geological Survey.
© NERC (Centre for Ecology & Hydrology; British Antarctic Survey; British Geological Survey).
Contains public sector information licensed under the Open Government Licence v3.0.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Crop Map of England (CROME) is a polygon vector dataset mainly containing the crop types of England. The dataset contains approximately 32 million hexagonal cells classifying England into over 50 main crop types, grassland, and non-agricultural land covers, such as Trees, Water Bodies, Fallow Land and other non-agricultural land covers. The classification was created automatically using supervised classification (Random Forest Classification) from the combination of Sentinel-1 and Sentinel-2 images during the period late January 2017 – August 2017. The dataset was created to aid the classification of crop types from optical imagery, which can be affected by cloud cover. The results were checked against survey data collected by field inspectors and visually validated. Refer to the CROME specification document. Attribution statement: © Rural Payments Agency
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
A PDF map showing the lower layer super output areas in the South East Region of England as at December 2011. (File Size - 27 MB)
https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
A PDF map showing the lower layer super output areas in the South East Region of England as at December 2011. (File Size - 27 MB)
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Crop Map of England (CROME) South West is a polygon vector dataset mainly containing the crop types of England. The dataset contains approximately 32 million hexagonal cells classifying England into over 20 main crop types, grassland, and non-agricultural land covers, such as Woodland, Water Bodies, Fallow Land and other non-agricultural land covers. The classification was created automatically using supervised classification (Random Forest Classification) from the combination of Sentinel-1 and Sentinel-2 images during the period late January 2016 – August 2016. The dataset was created to aid the classification of crop types from optical imagery, which can be affected by cloud cover. The results were checked against survey data collected by field inspectors and visually validated. refer to the CROME specification document Attribution statement: © Rural Payments Agency
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
A PDF map showing the Rural Urban Classification (2011) of the MSOAs in the South East Region. (File Size - 1 MB)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Roads in central southern England c.1675, constructed from John Ogilby's strip maps.The .kml file gives a crude preview; please download the shapefiles for discrimination between major routes, minor routes, and speculative spurs.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
The rivers of South and East Asia dataset is derived from the World Wildlife Fund's (WWF) HydroSHEDS drainage direction layer and a stream network layer. The source of the drainage direction layer was the 15-second Digital Elevation Model (DEM) from NASA's Shuttle Radar Topographic Mission (SRTM). The raster stream network was determined by using the HydroSHEDS flow accumulation grid, with a threshold of about 1000 km² upstream area.
The stream network dataset consists of the following information: - the origin node of each arc in the network (FROM_NODE), the destination of each arc in the network (TO_NODE), the Strahler stream order of each arc in the network (STRAHLER), numerical code and name of the major basin that the arc falls within (MAJ_BAS and MAJ_NAME); - area of the major basin in square km that the arc falls within (MAJ_AREA); - numerical code and name of the sub-basin that the arc falls within (SUB_BAS and SUB_NAME); - area of the sub-basin in square km that the arc falls within (SUB_AREA); - numerical code of the sub-basin towards which the sub-basin flows that the arc falls within (TO_SUBBAS) (the codes -888 and -999 have been assigned respectively to internal sub-basins and to sub-basins draining into the sea).
The attributes table now includes a field named "Regime" with tentative classification of perennial ("P") and intermittent ("I") streams.
Supplemental Information:
This dataset is developed as part of a GIS-based information system on water resources for South America. It has been published in the framework of the AQUASTAT - programme of the Land and Water Division of the Food and Agriculture Organization of the United Nations.
Contact points:
Metadata contact: AQUASTAT FAO-UN Land and Water Division
Contact: Jippe Hoogeveen FAO-UN Land and Water Division
Contact: Livia Peiser FAO-UN Land and Water Division
Data lineage:
The linework of the map was obtained by converting the stream network to a feature dataset with the Hydrology toolset in ESRI ArcGIS.The Flow Direction and Stream Order grids were derived from hydrologically corrected elevation data with a resolution of 15 arc-seconds.The elevation dataset was part of a mapping product, HydroSHEDS, developed by the Conservation Science Program of World Wildlife Fund.Original input data had been obtained during NASA's Shuttle Radar Topography Mission (SRTM).
Online resources:
Download - Rivers of South and East Asia (ESRI shapefile)
General information regarding the HydroSHEDS data product
https://artefacts.ceda.ac.uk/licences/specific_licences/ncaveo_lcm2000.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ncaveo_lcm2000.pdf
This dataset contains 25m resolution raster formatted data derived from the Centre of Ecology and Hydrology's (CEH) Land Cover Map 2000 (LCM2000) data for the Thorney Island, South Coast of England, UK, NCAVEO calibration/validation (cal/val) test site. The NERC funded Network for Calibration and Validation of EO (NCAVEO) campaign was designed to illustrate and explain the processes involved in cal/val of earth observation data.
https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
A PDF map showing the Rural Urban Classification (2011) of the LSOAs in the South East Region. (File Size - 2 MB)
This dataset contains polylines depicting non-woodland linear tree and shrub features in Cornwall and much of Devon, derived from lidar data collected by the Tellus South West project. Data from a lidar (light detection and ranging) survey of South West England was used with existing open source GIS datasets to map non-woodland linear features consisting of woody vegetation. The output dataset is the product of several steps of filtering and masking the lidar data using GIS landscape feature datasets available from the Tellus South West project (digital terrain model (DTM) and digital surface model (DSM)), the Ordnance Survey (OS VectorMap District and OpenMap Local, to remove buildings) and the Forestry Commission (Forestry Commission National Forest Inventory Great Britain 2015, to remove woodland parcels). The dataset was tiled as 20 x 20 km shapefiles, coded by the bottom-left 10 km hectad name. Ground-truthing suggests an accuracy of 73.2% for hedgerow height classes.
https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
This data is experimental, see the ‘Access Constraints or User Limitations’ section for more details. This dataset has been generalised to 10 metre resolution where it is still but the space needed for downloads will be improved.A set of UK wide estimated travel area geometries (isochrones), from Output Area (across England, Scotland, and Wales) and Small Area (across Northern Ireland) population-weighted centroids. The modes used in the isochrone calculations are limited to public transport and walking. Generated using Open Trip Planner routing software in combination with Open Street Maps and open public transport schedule data (UK and Ireland).The geometries provide an estimate of reachable areas by public transport and on foot between 7:15am and 9:15am for a range of maximum travel durations (15, 30, 45 and 60 minutes). For England, Scotland and Wales, these estimates were generated using public transport schedule data for Tuesday 15th November 2022. For Northern Ireland, the date used is Tuesday 6th December 2022.The data is made available as a set of ESRI shape files, in .zip format. This corresponds to a total of 17 files; one for Northern Ireland, one for Wales, eleven for England (one per English region, where London, and North West have been split into two files each) and four for Scotland (one per NUTS2 region, where the ‘North-East’ and ‘Highlands and Islands’ have been combined into one shape file, and South West Scotland has been split into two files).The shape files contain the following attributes. For further details, see the ‘Access Constraints or User Limitations’ section:AttributeDescriptionOA21CD or SA2011 or OA11CDEngland and Wales: The 2021 Output Area code.Northern Ireland: The 2011 Small Area code.Scotland: The 2011 Output Area code.centre_latThe population-weighted centroid latitude.centre_lonThe population-weighted centroid longitude.node_latThe latitude of the nearest Open Street Map “highway” node to the population-weighted centroid.node_lonThe longitude of the nearest Open Street Map “highway” node to the population-weighted centroid.node_distThe distance, in meters, between the population-weighted centroid and the nearest Open Street Map “highway” node.stop_latThe latitude of the nearest public transport stop to the population-weighted centroid.stop_lonThe longitude of the nearest public transport stop to the population-weighted centroid.stop_distThe distance, in metres, between the population-weighted centroid and the nearest public transport stop.centre_inBinary value (0 or 1), where 1 signifies the population-weighted centroid lies within the Output Area/Small Area boundary. 0 indicates the population-weighted centroid lies outside the boundary.node_inBinary value (0 or 1), where 1 signifies the nearest Open Street Map “highway” node lies within the Output Area/Small Area boundary. 0 indicates the nearest Open Street Map node lies outside the boundary.stop_inBinary value (0 or 1), where 1 signifies the nearest public transport stop lies within the Output Area/Small Area boundary. 0 indicates the nearest transport stop lies outside the boundary.iso_cutoffThe maximum travel time, in seconds, to construct the reachable area/isochrone. Values are either 900, 1800, 2700, or 3600 which correspond to 15, 30, 45, and 60 minute limits respectively.iso_dateThe date for which the isochrones were estimated, in YYYY-MM-DD format.iso_typeThe start point from which the estimated isochrone was calculated. Valid values are:from_centroid: calculated using population weighted centroid.from_node: calculated using the nearest Open Street Map “highway” node.from_stop: calculated using the nearest public transport stop.no_trip_found: no isochrone was calculated.geometryThe isochrone geometry.iso_hectarThe area of the isochrone, in hectares.Access constraints or user limitations.These data are experimental and will potentially have a wider degree of uncertainty. They remain subject to testing of quality, volatility, and ability to meet user needs. The methodologies used to generate them are still subject to modification and further evaluation.These experimental data have been published with specific caveats outlined in this section. The data are shared with the analytical community with the purpose of benefitting from the community's scrutiny and in improving the quality and demand of potential future releases. There may be potential modification following user feedback on both its quality and suitability.For England and Wales, where possible, the latest census 2021 Output Area population weighted centroids were used as the starting point from which isochrones were calculated.For Northern Ireland, 2011 Small Area population weighted centroids were used as the starting point from which isochrones were calculated. Small Areas and Output Areas contain a similar number of households within their boundaries. 2011 data was used because this was the most up-to-date data available at the time of generating this dataset. Population weighted centroids for Northern Ireland were calculated internally but may be subject to change - in the future we aim to update these data to be consistent with Census 2021 across the UK.For Scotland, 2011 Output Area population-weighted centroids were used as the starting point from which isochrones were calculated. 2011 data was used because this was the most up-to-date data available at the time of work.The data for England, Scotland and Wales are released with the projection EPSG:27700 (British National Grid).The data for Northern Ireland are released with the projection EPSG:29902 (Irish Grid).The modes used in the isochrone calculations are limited to public transport and walking. Other modes were not considered when generating this data.A maximum value of 1.5 kilometres walking distance was used when generating isochrones. This approximately represents typical walking distances during a commute (based on Department for Transport/Labour Force Survey data and Travel Survey for Northern Ireland technical reports).When generating Northern Ireland data, public transport schedule data for both Northern Ireland and Republic of Ireland were used.Isochrone geometries and calculated areas are subject to public transport schedule data accuracy, Open Trip Planner routing methods and Open Street Map accuracy. The location of the population-weighted centroid can also influence the validity of the isochrones, when this falls on land which is not possible or is difficult to traverse (e.g., private land and very remote locations).The Northern Ireland public transport data were collated from several files, and as such required additional pre-processing. Location data are missing for two bus stops. Some services run by local public transport providers may also be missing. However, the missing data should have limited impact on the isochrone output. Due to the availability of Northern Ireland public transport data, the isochrones for Northern Ireland were calculated on a comparable but slight later date of 6th December 2022. Any potential future releases are likely to contained aligned dates between all four regions of the UK.In cases where isochrones are not calculable from the population-weighted centroid, or when the calculated isochrones are unrealistically small, the nearest Open Street Map ‘highway’ node is used as an alternative starting point. If this then fails to yield a result, the nearest public transport stop is used as the isochrone origin. If this also fails to yield a result, the geometry will be ‘None’ and the ‘iso_hectar’ will be set to zero. The following information shows a further breakdown of the isochrone types for the UK as a whole:from_centroid: 99.8844%from_node: 0.0332%from_stop: 0.0734%no_trip_found: 0.0090%The term ‘unrealistically small’ in the point above refers to outlier isochrones with a significantly smaller area when compared with both their neighbouring Output/Small Areas and the entire regional distribution. These reflect a very small fraction of circumstances whereby the isochrone extent was impacted by the centroid location and/or how Open Trip Planner handled them (e.g. remote location, private roads and/or no means of traversing the land). Analysis showed these outliers were consistently below 100 hectares for 60-minute isochrones. Therefore, In these cases, the isochrone point of origin was adjusted to the nearest node or stop, as outlined above.During the quality assurance checks, the extent of the isochrones was observed to be in good agreement with other routing software and within the limitations stated within this section. Additionally, the use of nearest node, nearest stop, and correction of ‘unrealistically small areas’ was implemented in a small fraction of cases only. This culminates in no data being available for 8 out of 239,768 Output/Small Areas.Data is only available in ESRI shape file format (.zip) at this release.https://www.openstreetmap.org/copyright
https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
This data is experimental, see the ‘Access Constraints or User Limitations’ section for more details. This dataset has been generalised to 10 metre resolution where it is still but the space needed for downloads will be improved.A set of UK wide estimated travel area geometries (isochrones), from Output Area (across England, Scotland, and Wales) and Small Area (across Northern Ireland) population-weighted centroids. The modes used in the isochrone calculations are limited to public transport and walking. Generated using Open Trip Planner routing software in combination with Open Street Maps and open public transport schedule data (UK and Ireland).The geometries provide an estimate of reachable areas by public transport and on foot between 7:15am and 9:15am for a range of maximum travel durations (15, 30, 45 and 60 minutes). For England, Scotland and Wales, these estimates were generated using public transport schedule data for Tuesday 15th November 2022. For Northern Ireland, the date used is Tuesday 6th December 2022.The data is made available as a set of ESRI shape files, in .zip format. This corresponds to a total of 18 files; one for Northern Ireland, one for Wales, twelve for England (one per English region, where London, South East and North West have been split into two files each) and four for Scotland (one per NUTS2 region, where the ‘North-East’ and ‘Highlands and Islands’ have been combined into one shape file, and South West Scotland has been split into two files).The shape files contain the following attributes. For further details, see the ‘Access Constraints or User Limitations’ section:AttributeDescriptionOA21CD or SA2011 or OA11CDEngland and Wales: The 2021 Output Area code.Northern Ireland: The 2011 Small Area code.Scotland: The 2011 Output Area code.centre_latThe population-weighted centroid latitude.centre_lonThe population-weighted centroid longitude.node_latThe latitude of the nearest Open Street Map “highway” node to the population-weighted centroid.node_lonThe longitude of the nearest Open Street Map “highway” node to the population-weighted centroid.node_distThe distance, in meters, between the population-weighted centroid and the nearest Open Street Map “highway” node.stop_latThe latitude of the nearest public transport stop to the population-weighted centroid.stop_lonThe longitude of the nearest public transport stop to the population-weighted centroid.stop_distThe distance, in metres, between the population-weighted centroid and the nearest public transport stop.centre_inBinary value (0 or 1), where 1 signifies the population-weighted centroid lies within the Output Area/Small Area boundary. 0 indicates the population-weighted centroid lies outside the boundary.node_inBinary value (0 or 1), where 1 signifies the nearest Open Street Map “highway” node lies within the Output Area/Small Area boundary. 0 indicates the nearest Open Street Map node lies outside the boundary.stop_inBinary value (0 or 1), where 1 signifies the nearest public transport stop lies within the Output Area/Small Area boundary. 0 indicates the nearest transport stop lies outside the boundary.iso_cutoffThe maximum travel time, in seconds, to construct the reachable area/isochrone. Values are either 900, 1800, 2700, or 3600 which correspond to 15, 30, 45, and 60 minute limits respectively.iso_dateThe date for which the isochrones were estimated, in YYYY-MM-DD format.iso_typeThe start point from which the estimated isochrone was calculated. Valid values are:from_centroid: calculated using population weighted centroid.from_node: calculated using the nearest Open Street Map “highway” node.from_stop: calculated using the nearest public transport stop.no_trip_found: no isochrone was calculated.geometryThe isochrone geometry.iso_hectarThe area of the isochrone, in hectares.Access constraints or user limitations.These data are experimental and will potentially have a wider degree of uncertainty. They remain subject to testing of quality, volatility, and ability to meet user needs. The methodologies used to generate them are still subject to modification and further evaluation.These experimental data have been published with specific caveats outlined in this section. The data are shared with the analytical community with the purpose of benefitting from the community's scrutiny and in improving the quality and demand of potential future releases. There may be potential modification following user feedback on both its quality and suitability.For England and Wales, where possible, the latest census 2021 Output Area population weighted centroids were used as the starting point from which isochrones were calculated.For Northern Ireland, 2011 Small Area population weighted centroids were used as the starting point from which isochrones were calculated. Small Areas and Output Areas contain a similar number of households within their boundaries. 2011 data was used because this was the most up-to-date data available at the time of generating this dataset. Population weighted centroids for Northern Ireland were calculated internally but may be subject to change - in the future we aim to update these data to be consistent with Census 2021 across the UK.For Scotland, 2011 Output Area population-weighted centroids were used as the starting point from which isochrones were calculated. 2011 data was used because this was the most up-to-date data available at the time of work.The data for England, Scotland and Wales are released with the projection EPSG:27700 (British National Grid).The data for Northern Ireland are released with the projection EPSG:29902 (Irish Grid).The modes used in the isochrone calculations are limited to public transport and walking. Other modes were not considered when generating this data.A maximum value of 1.5 kilometres walking distance was used when generating isochrones. This approximately represents typical walking distances during a commute (based on Department for Transport/Labour Force Survey data and Travel Survey for Northern Ireland technical reports).When generating Northern Ireland data, public transport schedule data for both Northern Ireland and Republic of Ireland were used.Isochrone geometries and calculated areas are subject to public transport schedule data accuracy, Open Trip Planner routing methods and Open Street Map accuracy. The location of the population-weighted centroid can also influence the validity of the isochrones, when this falls on land which is not possible or is difficult to traverse (e.g., private land and very remote locations).The Northern Ireland public transport data were collated from several files, and as such required additional pre-processing. Location data are missing for two bus stops. Some services run by local public transport providers may also be missing. However, the missing data should have limited impact on the isochrone output. Due to the availability of Northern Ireland public transport data, the isochrones for Northern Ireland were calculated on a comparable but slight later date of 6th December 2022. Any potential future releases are likely to contained aligned dates between all four regions of the UK.In cases where isochrones are not calculable from the population-weighted centroid, or when the calculated isochrones are unrealistically small, the nearest Open Street Map ‘highway’ node is used as an alternative starting point. If this then fails to yield a result, the nearest public transport stop is used as the isochrone origin. If this also fails to yield a result, the geometry will be ‘None’ and the ‘iso_hectar’ will be set to zero. The following information shows a further breakdown of the isochrone types for the UK as a whole:from_centroid: 99.8844%from_node: 0.0332%from_stop: 0.0734%no_trip_found: 0.0090%The term ‘unrealistically small’ in the point above refers to outlier isochrones with a significantly smaller area when compared with both their neighbouring Output/Small Areas and the entire regional distribution. These reflect a very small fraction of circumstances whereby the isochrone extent was impacted by the centroid location and/or how Open Trip Planner handled them (e.g. remote location, private roads and/or no means of traversing the land). Analysis showed these outliers were consistently below 100 hectares for 60-minute isochrones. Therefore, In these cases, the isochrone point of origin was adjusted to the nearest node or stop, as outlined above.During the quality assurance checks, the extent of the isochrones was observed to be in good agreement with other routing software and within the limitations stated within this section. Additionally, the use of nearest node, nearest stop, and correction of ‘unrealistically small areas’ was implemented in a small fraction of cases only. This culminates in no data being available for 8 out of 239,768 Output/Small Areas.Data is only available in ESRI shape file format (.zip) at this release.https://www.openstreetmap.org/copyright
https://artefacts.ceda.ac.uk/licences/specific_licences/ncaveo_lcm2000.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ncaveo_lcm2000.pdf
This dataset contains level 2 vector formatted data derived from the Centre of Ecology and Hydrology's (CEH) Land Cover Map 2000 (LCM2000) data for the Thorney Island, South Coast of England, UK, NCAVEO calibration/validation (cal/val) test site. The NERC funded Network for Calibration and Validation of EO (NCAVEO) campaign was designed to illustrate and explain the processes involved in cal/val of earth observation data.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
A PDF map showing the Rural Urban Classification (2011) of the OAs in the South East Region. (File Size - 3 MB)
The objective of this work includes the coastal scenario, risks and development of coastal paleoclimatology through landscape mapping; by highlighting the devastating climate change impacts that might result in tsunami in South-East Asian sea basin with short or no-awareness period; despite the facts that the Southeast Asia region is generally poor being encompassed by twelve countries along with the Indian and Pacific Oceans. Special payable concern to the Bay of Bengal has been paid that can dictate region’s climate to certain extent. The ecosystems’ impact due to climate change and global warming -can bring direct variables and affects in –salinity, temperature, river flow, runoff, soil characteristics, erosion, nutrition level and water quality. The landscape mapping can address the system infrastructure requirements to the SEAR’s sea basin attainable by the annual monsoons, the Southwest and the Northeast Monsoons. How recent meteorological and geodynamic-genetic events can result in adverse economical damages and significant losses of lives are also drawn. This work monitors on Sea-level rise gets projected under global warming. The most brainstorming findings from climate change issues are how the high latitudes for SEAR Sea Basins’ are likely to experience greater warming than the global mean and warming,- And how the hydrological cycle gets found responsible for bringing more floods and more droughts in- causing huge devastating changes for environmental factors in coastal zones
Maps of rural areas in the south-west region (Census 2001).
Defra statistics: rural
Email mailto:rural.statistics@defra.gov.uk">rural.statistics@defra.gov.uk
<p class="govuk-body">You can also contact us via Twitter: <a href="https://twitter.com/DefraStats" class="govuk-link">https://twitter.com/DefraStats</a></p>