19 datasets found
  1. y

    S&P 500 Earnings Per Share

    • ycharts.com
    html
    Updated Oct 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Standard and Poor's (2025). S&P 500 Earnings Per Share [Dataset]. https://ycharts.com/indicators/sp_500_eps
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 9, 2025
    Dataset provided by
    YCharts
    Authors
    Standard and Poor's
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Mar 31, 1988 - Jun 30, 2025
    Area covered
    United States
    Variables measured
    S&P 500 Earnings Per Share
    Description

    View quarterly updates and historical trends for S&P 500 Earnings Per Share. from United States. Source: Standard and Poor's. Track economic data with YCh…

  2. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Dec 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 1, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  3. [Video] S&P 500: Bull or Bear? (Forecast)

    • kappasignal.com
    Updated Apr 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). [Video] S&P 500: Bull or Bear? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/video-s-500-bull-or-bear.html
    Explore at:
    Dataset updated
    Apr 8, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    [Video] S&P 500: Bull or Bear?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  4. Financial Performance of Companies from S&P500

    • kaggle.com
    zip
    Updated Mar 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Right Goose (2023). Financial Performance of Companies from S&P500 [Dataset]. https://www.kaggle.com/datasets/ilyaryabov/financial-performance-of-companies-from-sp500/code
    Explore at:
    zip(97838 bytes)Available download formats
    Dataset updated
    Mar 9, 2023
    Authors
    Right Goose
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Content

    Company: Ticker Major index membership: Index Market capitalization: Market Cap Income (ttm): Income Revenue (ttm): Sales Book value per share (mrq): Book/sh Cash per share (mrq): Cash/sh Dividend (annual): Dividend Dividend yield (annual): Dividend % Full time employees: Employees Stock has options trading on a market exchange: Optionable Stock available to sell short: Shortable Analysts' mean recommendation (1=Buy 5=Sell): Recom Price-to-Earnings (ttm): P/E Forward Price-to-Earnings (next fiscal year): Forward P/E Price-to-Earnings-to-Growth: PEG Price-to-Sales (ttm): P/S Price-to-Book (mrq): P/B Price to cash per share (mrq): P/C Price to Free Cash Flow (ttm): P/FCF Quick Ratio (mrq): Quick Ratio Current Ratio (mrq): Current Ratio Total Debt to Equity (mrq): Debt/Eq Long Term Debt to Equity (mrq): LT Debt/Eq Distance from 20-Day Simple Moving Average: SMA20 Diluted EPS (ttm): EPS (ttm) EPS estimate for next year: EPS next Y EPS estimate for next quarter: EPS next Q EPS growth this year: EPS this Y EPS growth next year: EPS next Y Long term annual growth estimate (5 years): EPS next 5Y Annual EPS growth past 5 years: EPS past 5Y Annual sales growth past 5 years: Sales past 5Y Quarterly revenue growth (yoy): Sales Q/Q Quarterly earnings growth (yoy): EPS Q/Q Earnings date

    BMO = Before Market Open
    AMC = After Market Close
    : Earnings Distance from 50-Day Simple Moving Average: SMA50 Insider ownership: Insider Own Insider transactions (6-Month change in Insider Ownership): Insider Trans Institutional ownership: Inst Own Institutional transactions (3-Month change in Institutional Ownership): Inst Trans Return on Assets (ttm): ROA Return on Equity (ttm): ROE Return on Investment (ttm): ROI Gross Margin (ttm): Gross Margin Operating Margin (ttm): Oper. Margin Net Profit Margin (ttm): Profit Margin Dividend Payout Ratio (ttm): Payout Distance from 200-Day Simple Moving Average: SMA200 Shares outstanding: Shs Outstand Shares float: Shs Float Short interest share: Short Float Short interest ratio: Short Ratio Analysts' mean target price: Target Price 52-Week trading range: 52W Range Distance from 52-Week High: 52W High Distance from 52-Week Low: 52W Low Relative Strength Index: RSI (14) Relative volume: Rel Volume Average volume (3 month): Avg Volume Volume: Volume Performance (Week): Perf Week Performance (Month): Perf Month Performance (Quarter): Perf Quarter Performance (Half Year): Perf Half Y Performance (Year): Perf Year Performance (Year To Date): Perf YTD Beta: Beta Average True Range (14): ATR Volatility (Week, Month): Volatility Previous close: Prev Close Current stock price: Price Performance (today): Change

  5. T

    United States Corporate Profits

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Sep 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Corporate Profits [Dataset]. https://tradingeconomics.com/united-states/corporate-profits
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Sep 25, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1947 - Jun 30, 2025
    Area covered
    United States
    Description

    Corporate Profits in the United States increased to 3259.41 USD Billion in the second quarter of 2025 from 3252.44 USD Billion in the first quarter of 2025. This dataset provides the latest reported value for - United States Corporate Profits - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  6. An In-depth Analysis of the S&P 500 Index: Performance, Composition, and...

    • kappasignal.com
    Updated May 24, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). An In-depth Analysis of the S&P 500 Index: Performance, Composition, and Implications (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/an-in-depth-analysis-of-s-500-index.html
    Explore at:
    Dataset updated
    May 24, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    An In-depth Analysis of the S&P 500 Index: Performance, Composition, and Implications

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  7. Will the S&P 500 Index Reach New Heights? (Forecast)

    • kappasignal.com
    Updated Sep 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Will the S&P 500 Index Reach New Heights? (Forecast) [Dataset]. https://www.kappasignal.com/2024/09/will-s-500-index-reach-new-heights.html
    Explore at:
    Dataset updated
    Sep 28, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Will the S&P 500 Index Reach New Heights?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  8. y

    S&P 500 P/E Ratio

    • ycharts.com
    html
    Updated Oct 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Standard and Poor's (2025). S&P 500 P/E Ratio [Dataset]. https://ycharts.com/indicators/sp_500_pe_ratio
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 9, 2025
    Dataset provided by
    YCharts
    Authors
    Standard and Poor's
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Dec 31, 1988 - Jun 30, 2025
    Area covered
    United States
    Variables measured
    S&P 500 P/E Ratio
    Description

    View quarterly updates and historical trends for S&P 500 P/E Ratio. from United States. Source: Standard and Poor's. Track economic data with YCharts anal…

  9. F

    Corporate Profits After Tax (without IVA and CCAdj)

    • fred.stlouisfed.org
    json
    Updated Sep 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Corporate Profits After Tax (without IVA and CCAdj) [Dataset]. https://fred.stlouisfed.org/series/CP
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 25, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Corporate Profits After Tax (without IVA and CCAdj) (CP) from Q1 1947 to Q2 2025 about CCADJ, IVA, corporate profits, tax, corporate, GDP, and USA.

  10. I/B/E/S Estimates | Company Data

    • lseg.com
    Updated Jun 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LSEG (2025). I/B/E/S Estimates | Company Data [Dataset]. https://www.lseg.com/en/data-analytics/financial-data/company-data/ibes-estimates
    Explore at:
    csv,html,json,pdf,python,sql,text,user interface,xmlAvailable download formats
    Dataset updated
    Jun 2, 2025
    Dataset provided by
    London Stock Exchange Grouphttp://www.londonstockexchangegroup.com/
    Authors
    LSEG
    License

    https://www.lseg.com/en/policies/website-disclaimerhttps://www.lseg.com/en/policies/website-disclaimer

    Description

    Browse LSEG's I/B/E/S Estimates, discover our range of data, indices & benchmarks. Our Data Catalogue offers unrivalled data and delivery mechanisms.

  11. Is the S&P 500 VIX Index Signaling Market Volatility? (Forecast)

    • kappasignal.com
    Updated Oct 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Is the S&P 500 VIX Index Signaling Market Volatility? (Forecast) [Dataset]. https://www.kappasignal.com/2024/10/is-s-500-vix-index-signaling-market.html
    Explore at:
    Dataset updated
    Oct 18, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Is the S&P 500 VIX Index Signaling Market Volatility?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  12. How do you decide buy or sell a stock? (S&P 500 Index Stock Forecast)...

    • kappasignal.com
    Updated Nov 22, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). How do you decide buy or sell a stock? (S&P 500 Index Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/how-do-you-decide-buy-or-sell-stock-s.html
    Explore at:
    Dataset updated
    Nov 22, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    How do you decide buy or sell a stock? (S&P 500 Index Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  13. y

    S&P 500 5 Year Return

    • ycharts.com
    html
    Updated Nov 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Standard and Poor's (2025). S&P 500 5 Year Return [Dataset]. https://ycharts.com/indicators/sp_500_5_year_return
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Nov 5, 2025
    Dataset provided by
    YCharts
    Authors
    Standard and Poor's
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Nov 30, 1999 - Oct 31, 2025
    Area covered
    United States
    Variables measured
    S&P 500 5 Year Return
    Description

    View monthly updates and historical trends for S&P 500 5 Year Return. from United States. Source: Standard and Poor's. Track economic data with YCharts an…

  14. y

    S&P 500 Monthly Return

    • ycharts.com
    html
    Updated Nov 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Standard and Poor's (2025). S&P 500 Monthly Return [Dataset]. https://ycharts.com/indicators/sp_500_monthly_return
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Nov 5, 2025
    Dataset provided by
    YCharts
    Authors
    Standard and Poor's
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Nov 30, 1999 - Oct 31, 2025
    Area covered
    United States
    Variables measured
    S&P 500 Monthly Return
    Description

    View monthly updates and historical trends for S&P 500 Monthly Return. from United States. Source: Standard and Poor's. Track economic data with YCharts a…

  15. y

    S&P 500 P/E Ratio Forward Estimate

    • ycharts.com
    html
    Updated Nov 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Standard and Poor's (2025). S&P 500 P/E Ratio Forward Estimate [Dataset]. https://ycharts.com/indicators/sp_500_pe_ratio_forward_estimate
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Nov 6, 2025
    Dataset provided by
    YCharts
    Authors
    Standard and Poor's
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Mar 31, 2021 - Dec 31, 2026
    Area covered
    United States
    Variables measured
    S&P 500 P/E Ratio Forward Estimate
    Description

    View quarterly updates and historical trends for S&P 500 P/E Ratio Forward Estimate. from United States. Source: Standard and Poor's. Track economic data …

  16. y

    S&P 500

    • ycharts.com
    html
    Updated Nov 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Standard and Poor's (2025). S&P 500 [Dataset]. https://ycharts.com/indicators/sp_500
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Nov 5, 2025
    Dataset provided by
    YCharts
    Authors
    Standard and Poor's
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Nov 30, 1999 - Oct 31, 2025
    Area covered
    United States
    Variables measured
    S&P 500
    Description

    View monthly updates and historical trends for S&P 500. from United States. Source: Standard and Poor's. Track economic data with YCharts analytics.

  17. y

    S&P 500 Health Care Earnings Per Share

    • ycharts.com
    html
    Updated Sep 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Standard and Poor's (2025). S&P 500 Health Care Earnings Per Share [Dataset]. https://ycharts.com/indicators/sandp_500_health_care_earnings_per_share
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Sep 18, 2025
    Dataset provided by
    YCharts
    Authors
    Standard and Poor's
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Mar 31, 2008 - Jun 30, 2025
    Area covered
    United States
    Variables measured
    S&P 500 Health Care Earnings Per Share
    Description

    View quarterly updates and historical trends for S&P 500 Health Care Earnings Per Share. from United States. Source: Standard and Poor's. Track economic d…

  18. y

    S&P 500 3 Year Return

    • ycharts.com
    html
    Updated Nov 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Standard and Poor's (2025). S&P 500 3 Year Return [Dataset]. https://ycharts.com/indicators/sp_500_3_year_return
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Nov 5, 2025
    Dataset provided by
    YCharts
    Authors
    Standard and Poor's
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Nov 30, 1999 - Oct 31, 2025
    Area covered
    United States
    Variables measured
    S&P 500 3 Year Return
    Description

    View monthly updates and historical trends for S&P 500 3 Year Return. from United States. Source: Standard and Poor's. Track economic data with YCharts an…

  19. y

    S&P 500 Sales Per Share

    • ycharts.com
    html
    Updated Oct 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Standard and Poor's (2025). S&P 500 Sales Per Share [Dataset]. https://ycharts.com/indicators/sp_500_sales_per_share
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 8, 2025
    Dataset provided by
    YCharts
    Authors
    Standard and Poor's
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Mar 31, 2000 - Jun 30, 2025
    Area covered
    United States
    Variables measured
    S&P 500 Sales Per Share
    Description

    View quarterly updates and historical trends for S&P 500 Sales Per Share. from United States. Source: Standard and Poor's. Track economic data with YChart…

  20. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Standard and Poor's (2025). S&P 500 Earnings Per Share [Dataset]. https://ycharts.com/indicators/sp_500_eps

S&P 500 Earnings Per Share

Explore at:
38 scholarly articles cite this dataset (View in Google Scholar)
htmlAvailable download formats
Dataset updated
Oct 9, 2025
Dataset provided by
YCharts
Authors
Standard and Poor's
License

https://www.ycharts.com/termshttps://www.ycharts.com/terms

Time period covered
Mar 31, 1988 - Jun 30, 2025
Area covered
United States
Variables measured
S&P 500 Earnings Per Share
Description

View quarterly updates and historical trends for S&P 500 Earnings Per Share. from United States. Source: Standard and Poor's. Track economic data with YCh…

Search
Clear search
Close search
Google apps
Main menu