Facebook
Twitterhttps://www.ycharts.com/termshttps://www.ycharts.com/terms
View quarterly updates and historical trends for S&P 500 Earnings Per Share. from United States. Source: Standard and Poor's. Track economic data with YCh…
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Company: Ticker
Major index membership: Index
Market capitalization: Market Cap
Income (ttm): Income
Revenue (ttm): Sales
Book value per share (mrq): Book/sh
Cash per share (mrq): Cash/sh
Dividend (annual): Dividend
Dividend yield (annual): Dividend %
Full time employees: Employees
Stock has options trading on a market exchange: Optionable
Stock available to sell short: Shortable
Analysts' mean recommendation (1=Buy 5=Sell): Recom
Price-to-Earnings (ttm): P/E
Forward Price-to-Earnings (next fiscal year): Forward P/E
Price-to-Earnings-to-Growth: PEG
Price-to-Sales (ttm): P/S
Price-to-Book (mrq): P/B
Price to cash per share (mrq): P/C
Price to Free Cash Flow (ttm): P/FCF
Quick Ratio (mrq): Quick Ratio
Current Ratio (mrq): Current Ratio
Total Debt to Equity (mrq): Debt/Eq
Long Term Debt to Equity (mrq): LT Debt/Eq
Distance from 20-Day Simple Moving Average: SMA20
Diluted EPS (ttm): EPS (ttm)
EPS estimate for next year: EPS next Y
EPS estimate for next quarter: EPS next Q
EPS growth this year: EPS this Y
EPS growth next year: EPS next Y
Long term annual growth estimate (5 years): EPS next 5Y
Annual EPS growth past 5 years: EPS past 5Y
Annual sales growth past 5 years: Sales past 5Y
Quarterly revenue growth (yoy): Sales Q/Q
Quarterly earnings growth (yoy): EPS Q/Q
Earnings date
BMO = Before Market Open
AMC = After Market Close: Earnings
Distance from 50-Day Simple Moving Average: SMA50
Insider ownership: Insider Own
Insider transactions (6-Month change in Insider Ownership): Insider Trans
Institutional ownership: Inst Own
Institutional transactions (3-Month change in Institutional Ownership): Inst Trans
Return on Assets (ttm): ROA
Return on Equity (ttm): ROE
Return on Investment (ttm): ROI
Gross Margin (ttm): Gross Margin
Operating Margin (ttm): Oper. Margin
Net Profit Margin (ttm): Profit Margin
Dividend Payout Ratio (ttm): Payout
Distance from 200-Day Simple Moving Average: SMA200
Shares outstanding: Shs Outstand
Shares float: Shs Float
Short interest share: Short Float
Short interest ratio: Short Ratio
Analysts' mean target price: Target Price
52-Week trading range: 52W Range
Distance from 52-Week High: 52W High
Distance from 52-Week Low: 52W Low
Relative Strength Index: RSI (14)
Relative volume: Rel Volume
Average volume (3 month): Avg Volume
Volume: Volume
Performance (Week): Perf Week
Performance (Month): Perf Month
Performance (Quarter): Perf Quarter
Performance (Half Year): Perf Half Y
Performance (Year): Perf Year
Performance (Year To Date): Perf YTD
Beta: Beta
Average True Range (14): ATR
Volatility (Week, Month): Volatility
Previous close: Prev Close
Current stock price: Price
Performance (today): Change
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Corporate Profits in the United States increased to 3259.41 USD Billion in the second quarter of 2025 from 3252.44 USD Billion in the first quarter of 2025. This dataset provides the latest reported value for - United States Corporate Profits - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
Twitterhttps://www.ycharts.com/termshttps://www.ycharts.com/terms
View quarterly updates and historical trends for S&P 500 P/E Ratio. from United States. Source: Standard and Poor's. Track economic data with YCharts anal…
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Corporate Profits After Tax (without IVA and CCAdj) (CP) from Q1 1947 to Q2 2025 about CCADJ, IVA, corporate profits, tax, corporate, GDP, and USA.
Facebook
Twitterhttps://www.lseg.com/en/policies/website-disclaimerhttps://www.lseg.com/en/policies/website-disclaimer
Browse LSEG's I/B/E/S Estimates, discover our range of data, indices & benchmarks. Our Data Catalogue offers unrivalled data and delivery mechanisms.
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
Twitterhttps://www.ycharts.com/termshttps://www.ycharts.com/terms
View monthly updates and historical trends for S&P 500 5 Year Return. from United States. Source: Standard and Poor's. Track economic data with YCharts an…
Facebook
Twitterhttps://www.ycharts.com/termshttps://www.ycharts.com/terms
View monthly updates and historical trends for S&P 500 Monthly Return. from United States. Source: Standard and Poor's. Track economic data with YCharts a…
Facebook
Twitterhttps://www.ycharts.com/termshttps://www.ycharts.com/terms
View quarterly updates and historical trends for S&P 500 P/E Ratio Forward Estimate. from United States. Source: Standard and Poor's. Track economic data …
Facebook
Twitterhttps://www.ycharts.com/termshttps://www.ycharts.com/terms
View monthly updates and historical trends for S&P 500. from United States. Source: Standard and Poor's. Track economic data with YCharts analytics.
Facebook
Twitterhttps://www.ycharts.com/termshttps://www.ycharts.com/terms
View quarterly updates and historical trends for S&P 500 Health Care Earnings Per Share. from United States. Source: Standard and Poor's. Track economic d…
Facebook
Twitterhttps://www.ycharts.com/termshttps://www.ycharts.com/terms
View monthly updates and historical trends for S&P 500 3 Year Return. from United States. Source: Standard and Poor's. Track economic data with YCharts an…
Facebook
Twitterhttps://www.ycharts.com/termshttps://www.ycharts.com/terms
View quarterly updates and historical trends for S&P 500 Sales Per Share. from United States. Source: Standard and Poor's. Track economic data with YChart…
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
Twitterhttps://www.ycharts.com/termshttps://www.ycharts.com/terms
View quarterly updates and historical trends for S&P 500 Earnings Per Share. from United States. Source: Standard and Poor's. Track economic data with YCh…