What is NAIP?The National Agriculture Imagery Program (NAIP) acquires aerial imagery during the agricultural growing seasons in the contiguous U.S. A primary goal of the NAIP program is to make digital ortho photography available to governmental agencies and the public within a year of acquisition.NAIP is administered by the USDA's Farm Production and Conservation Business Center through the Aerial Photography Field Office in Salt Lake City. The APFO as of August 16, 2020 has transitioned to the USDA FPAC-BC's Geospatial Enterprise Operations Branch (GEO). This "leaf-on" imagery is used as a base layer for GIS programs in FSA's County Service Centers, and is used to maintain the Common Land Unit (CLU) boundaries.How can I Access NAIP?On the web GEO (APFO) public image services can be accessed through the REST endpoint here. Compressed County Mosaics (CCMs) are available to the general public through the USDA Geospatial Data Gateway. All years of available imagery may be downloaded as 1/2, 1, or 2 meter CCMs depending on the original spatial resolution. CCMs with a file size larger than 8 GB are not able to be downloaded from the Gateway. Full resolution 4 band quarter quads (DOQQs) are available for purchase from FPAC GEO. Contact the GEO Customer Service Section for information on pricing for DOQQs and how to obtain CCMs larger than 8 GB. A NAIP image service is also available on ArcGIS Online through an organizational subscription.How can NAIP be used?NAIP is used by many non-FSA public and private sector customers for a wide variety of projects. A detailed study is available in the Qualitative and Quantitative Synopsis on NAIP Usage from 2004 -2008: Click here for a list of NAIP Information and Distribution Nodes.When is NAIP acquired?NAIP projects are contracted each year based upon available funding and the FSA imagery acquisition cycle. Beginning in 2003, NAIP was acquired on a 5-year cycle. 2008 was a transition year, a three-year cycle began in 2009, NAIP was on a two-year cycle until 2016, currently NAIP is on a 3 year refresh cycle. Click here >> for an interactive PDF status map of NAIP acquisitions from 2002 - 2018. 2021 acquisition status dashboard is available here.What are NAIP Specifications?NAIP imagery is currently acquired at 60cm ground sample distance (GSD) with a horizontal accuracy that matches within four meters of photo-identifiable ground control points.The default spectral resolution beginning in 2010 is four bands: Red, Green, Blue and Near Infrared.Contractually, every attempt will be made to comply with the specification of no more than 10% cloud cover per quarter quad tile, weather conditions permitting.All imagery is inspected for horizontal accuracy and tonal quality. Make Comments/Observations about current NAIP imagery.If you use NAIP imagery and have comments or find a problem with the imagery please use the NAIP Imagery Feedback Map to let us know what you find or how you are using NAIP imagery. Click here to access the map.**The documentation below is in reference to this items placement in the NM Supply Chain Data Hub. The documentation is of use to understanding the source of this item, and how to reproduce it for updates**Title: National Agriculture Imagery Program (NAIP) History 2002-2021Item Type: Web Mapping Application URL Summary: Story map depicting the highlights and changes throughout the National Agriculture Imagery Program (NAIP) from 2002-2021.Notes: Prepared by: Uploaded by EMcRae_NMCDCSource: URL referencing this original map product: https://nmcdc.maps.arcgis.com/home/item.html?id=445e3dfd16c4401f95f78ad5905a4cceFeature Service: https://nmcdc.maps.arcgis.com/home/item.html?id=8eb6c5e7adc54ec889dd6fc9cc2c14c4UID: 26Data Requested: Ag CensusMethod of Acquisition: Living AtlasDate Acquired: May 2022Priority rank as Identified in 2022 (scale of 1 being the highest priority, to 11 being the lowest priority): 8Tags: PENDING
Dr. Kevin Bronson provides a unique nitrogen and water management in cotton agricultural research dataset for compute, including notation of field events and operations, an intermediate analysis mega-table of correlated and calculated parameters, and laboratory analysis results generated during the experimentation, plus high-resolution plot level intermediate data analysis tables of SAS process output, as well as the complete raw data sensor recorded logger outputs. This data was collected using a Hamby rig as a high-throughput proximal plant phenotyping platform. The Hamby 6000 rig Ellis W. Chenault, & Allen F. Wiese. (1989). Construction of a High-Clearance Plot Sprayer. Weed Technology, 3(4), 659–662. http://www.jstor.org/stable/3987560 Dr. Bronson modified an old high-clearance Hamby 6000 rig, adding a tank and pump with a rear boom, to perform precision liquid N applications. A Raven control unit with GPS supplied variable rate delivery options. The 12 volt Holland Scientific GeoScoutX data recorder and associated CropCircle ACS-470 sensors with GPS signal, was easy to mount and run on the vehicle as an attached rugged data acquisition module, and allowed the measuring of plants using custom proximal active optical reflectance sensing. The HS data logger was positioned near the operator, and sensors were positioned in front of the rig, on forward protruding armature attached to a hydraulic front boom assembly, facing downward in nadir view 1 m above the average canopy height. A 34-size class AGM battery sat under the operator and provided the data system electrical power supply. Data suffered reduced input from Conley. Although every effort was afforded to capture adequate quality across all metrics, experiment exterior considerations were such that canopy temperature data is absent, and canopy height is weak due to technical underperformance. Thankfully, reflectance data quality was maintained or improved through the implementation of new hardware by Bronson. See included README file for operational details and further description of the measured data signals. Summary: Active optical proximal cotton canopy sensing spatial data and including few additional related metrics and weak low-frequency ultrasonic derived height are presented. Agronomic nitrogen and irrigation management related field operations are listed. Unique research experimentation intermediate analysis table is made available, along with raw data. The raw data recordings, and annotated table outputs with calculated VIs are made available. Plot polygon coordinate designations allow a re-intersection spatial analysis. Data was collected in the 2014 season at Maricopa Agricultural Center, Arizona, USA. High throughput proximal plant phenotyping via electronic sampling and data processing method approach is exampled using a modified high-clearance Hamby spray-rig. Acquired data conforms to _location standard methodologies of the plant phenotyping. SAS and GIS compute processing output tables, including Excel formatted examples are presented, where data tabulation and analysis is available. Additional ultrasonic data signal explanation is offered as annotated time-series charts. The weekly proximal sensing data collected include the primary canopy reflectance at six wavelengths. Lint and seed yields, first open boll biomass, and nitrogen uptake were also determined. Soil profile nitrate to 1.8 m depth was determined in 30-cm increments, before planting and after harvest. Nitrous oxide emissions were determined with 1-L vented chambers (samples taken at 0, 12, and 24 minutes). Nitrous oxide was determined by gas chromatography (electron detection detector).
Gap Analysis Project (GAP) habitat maps are predictions of the spatial distribution of suitable environmental and land cover conditions within the United States for individual species. Mapped areas represent places where the environment is suitable for the species to occur (i.e. suitable to support one or more life history requirements for breeding, resting, or foraging), while areas not included in the map are those predicted to be unsuitable for the species. While the actual distributions of many species are likely to be habitat limited, suitable habitat will not always be occupied because of population dynamics and species interactions. Furthermore, these maps correspond to midscale characterizations of landscapes, but individual animals may deem areas to be unsuitable because of presence or absence of fine-scale features and characteristics that are not represented in our models (e.g. snags, vernal pools, shrubby undergrowth). These maps are intended to be used at a 1:100,000 or smaller map scale.These habitat maps are created by applying a deductive habitat model to remotely-sensed data layers within a species’ range. The deductive habitat models are built by compiling information on species’ habitat associations and entering it into a relational database. Information is compiled from the best available characterizations of species’ habitat, which included species accounts in books and databases, primary peer-reviewed literature. The literature references for each species are included in the "Species Habitat Model Report" and "Machine Readable Habitat Database Parameters" files attached to each habitat map item in the repository. For all species, the compiled habitat information is used by a biologist to determine which of the ecological systems and land use classes represented in the National Gap Analysis Project’s (GAP) Land Cover Map Ver. 1.0 that species is associated with. The name of the biologist who conducted the literature review and assembled the modeling parameters is shown as the "editor" type contact for each habitat map item in the repository.For many species, information on other mapped factors that define the environment that is suitable is also entered into the database. These factors included elevation (i.e. minimum, maximum), proximity to water features, proximity to wetlands, level of human development, forest ecotone width, and forest edge; and each of these factors corresponded to a data layer that is available during the map production. The individual datasets used in the modeling process with these parameters are also made available in the ScienceBase Repository (see the end of this Summary section for details). The "Machine Readable Habitat Database Parameters" JSON file attached to each species habitat map item has an "input_layers" object that contains the specific parameter names and references (via Digital Object Identifier) to the input data used with that parameter. The specific parameters for each species were output from the database used in the modeling and mapping process to the "Species Habitat Model Report" and "Machine Readable Habitat Database Parameters" files attached to each habitat map item in the repository.The maps are generated using a python script that queries the model parameters in the database; reclassifies the GAP Land Cover Ver 1.0 and ancillary data layers within the species’ range; and combines the reclassified layers to produce the final 30m resolution habitat map. Map output is, therefore, not only a reflection of the ecological systems that are selected in the habitat model, but also any other constraints in the model that are represented by the ancillary data layers.Modeling regions were used to stratify the conterminous U.S. into six regions (Northwest, Southwest, Great Plains, Upper Midwest, Southeast, and Northeast). These regions allowed for efficient processing of the species distribution models on smaller, ecologically homogenous extents.The 2008 start date for the models represents the shift in focus from state and regional project efforts to a national one. At that point all of the datasets needed to be standardized across the national extent and the species list derived based on the current understanding of the taxonomy. The end date for the individual models represents when the species model was considered complete, and therefore reflects the current knowledge related to that species concept and the habitat requirements for the species.Versioning, Naming Conventions and Codes: A composite version code is employed to allow the user to track the spatial extent, the date of the ground conditions, and the iteration of the data set for that extent/date. For example, CONUS_2001v1 represents the spatial extent of the conterminous US (CONUS), the ground condition year of 2001, and the first iteration (v1) for that extent/date. In many cases, a GAP species code is used in conjunction with the version code to identify specific data sets or files (i.e. Cooper’s Hawk Habitat Map named bCOHAx_CONUS_2001v1_HabMap).This collection represents the first complete compilation of terrestrial vertebrate species models for the conterminous U.S. based on 2001 ground conditions.The taxonomic concept for the species model being presented is identified through the Integrated Taxonomic Information System – Taxonomic Serial Number. To provide a link to the NatureServe species information the NatureServe Element Code is provided for each species. The identifiers included for each species habitat map item in the repository include references to a vocabulary system in ScienceBase where definitions can be found for each type of identifier.Input Datasets Used in Species Habitat Modeling: Links to the input datasets can be found in the Related External Resources section of this item. Please see the ScienceBase item for each input dataset for further explanation of its use in the modeling process. Each individual species habitat map in this collection includes the specific input layers and modeling parameters used for that model in its parameters file.USER CONSTRAINTS: It is strongly recommended that these data are directly acquired from the U.S. Geological Survey and not indirectly through other sources, which may have modified the data in some way. The Digital Object Identifiers for each species habitat map provide the persistent reference that should be used to obtain the maps for use. While these data were produced in support of the National Gap Analysis Project, it is expected that they would be used for other applications; therefore, we list below both appropriate and inappropriate uses. For many uses, it is unlikely that this dataset will provide the only data needed, and for uses with a regulatory outcome, field surveys should be conducted to verify the result. These models represent predictions of the locations of suitable habitat for the species and are not models of species occupancy. There are many reasons why a habitat may not be occupied at a particular point in time. Additionally, these maps should not necessarily supersede existing distribution models for species of management concern. This includes smaller scale, regional maps for populations of species modeled by USGS.Appropriate uses of the data: Primarily as a coarse map for a large area such as a state or to provide context for finer-level maps. A general list of possible applications include:National, regional or statewide biodiversity planningNational, Regional or state habitat conservation planningLarge-area resource management planningCoarse-filter evaluation of potential impacts or benefits of major projects or plan initiatives on biodiversity, such as utility or transportation corridors, wilderness proposals, habitat connectivity proposals, climate change adaptation proposals, regional open space and recreation proposals, etc.Determining relative amounts of management responsibility for specific biological resources among land stewards to facilitate cooperative management and planningBasic research on regional distributions of plants and animals and to help target both specific species and geographic areas for needed researchEnvironmental impact assessment for large projects or military activitiesEstimation of potential economic impacts from loss of biological resource-based activitiesEducation at all levels and for both students and citizensInappropriate Uses: Examples include:Using the data to map small areas (less than thousands of hectares), typically requiring mapping at 1:24,000 scale and using aerial photographs or ground surveysCombining these data with other data finer than 1:100,000 scale to produce new hybrid maps or answer queriesEstablishing exact boundaries for regulation or acquisitionEstablishing definite occurrence or non-occurrence of a species for an exact geographic areaDetermining abundance, health, or condition of a speciesEstablishing a measure of accuracy of other species models by comparison with the Gap Analysis Project species distribution modelsUsing the data without acquiring and reviewing the metadata
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Dr. Bronson modified an old high-clearance Hamby 6000 rig, adding a tank and pump with a rear boom, to perform precision liquid N applications. A Raven control unit with GPS supplied variable rate delivery options. The 12 volt Holland Scientific GeoScoutX data recorder and associated CropCircle ACS-470 sensors with GPS signal, was easy to mount and run on the vehicle as an attached rugged data acquisition module, and allowed the measuring of plants using custom proximal active optical reflectance sensing. The HS data logger was positioned near the operator, and sensors were positioned in front of the rig, on forward protruding armature attached to a hydraulic front boom assembly, facing downward in nadir view 1 m above the average canopy height. A 34-size class AGM battery sat under the operator and provided the data system electrical power supply. Data suffered reduced input from Conley. Although every effort was afforded to capture adequate quality across all metrics, experiment exterior considerations were such that canopy temperature data is absent, and canopy height is weak due to technical underperformance. Thankfully, reflectance data quality was maintained or improved through the implementation of new hardware by Bronson. See included README file for operational details and further description of the measured data signals. Summary: Active optical proximal cotton canopy sensing spatial data and including few additional related metrics and weak low-frequency ultrasonic derived height are presented. Agronomic nitrogen and irrigation management related field operations are listed. Unique research experimentation intermediate analysis table is made available, along with raw data. The raw data recordings, and annotated table outputs with calculated VIs are made available. Plot polygon coordinate designations allow a re-intersection spatial analysis. Data was collected in the 2014 season at Maricopa Agricultural Center, Arizona, USA. High throughput proximal plant phenotyping via electronic sampling and data processing method approach is exampled using a modified high-clearance Hamby spray-rig. Acquired data conforms to location standard methodologies of the plant phenotyping. SAS and GIS compute processing output tables, including Excel formatted examples are presented, where data tabulation and analysis is available. Additional ultrasonic data signal explanation is offered as annotated time-series charts. The weekly proximal sensing data collected include the primary canopy reflectance at six wavelengths. Lint and seed yields, first open boll biomass, and nitrogen uptake were also determined. Soil profile nitrate to 1.8 m depth was determined in 30-cm increments, before planting and after harvest. Nitrous oxide emissions were determined with 1-L vented chambers (samples taken at 0, 12, and 24 minutes). Nitrous oxide was determined by gas chromatography (electron detection detector).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wave exposure index at the surface in the Baltic Sea and part of the North Sea (Kattegat strait). Produced by Aquabiota as an input layer for the EUSeaMap broad-scale habitat models. Data acquired from Aquabiota fetch based model with a spatial resolution of a 25m, model run for the period 2002-2007.
Detailed information is found in the EMODnet Seabed Habitats technical report: Populus J. et al 2017. EUSeaMap, a European broad-scale seabed habitat map. Ifremer.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
What is NAIP?The National Agriculture Imagery Program (NAIP) acquires aerial imagery during the agricultural growing seasons in the contiguous U.S. A primary goal of the NAIP program is to make digital ortho photography available to governmental agencies and the public within a year of acquisition.NAIP is administered by the USDA's Farm Production and Conservation Business Center through the Aerial Photography Field Office in Salt Lake City. The APFO as of August 16, 2020 has transitioned to the USDA FPAC-BC's Geospatial Enterprise Operations Branch (GEO). This "leaf-on" imagery is used as a base layer for GIS programs in FSA's County Service Centers, and is used to maintain the Common Land Unit (CLU) boundaries.How can I Access NAIP?On the web GEO (APFO) public image services can be accessed through the REST endpoint here. Compressed County Mosaics (CCMs) are available to the general public through the USDA Geospatial Data Gateway. All years of available imagery may be downloaded as 1/2, 1, or 2 meter CCMs depending on the original spatial resolution. CCMs with a file size larger than 8 GB are not able to be downloaded from the Gateway. Full resolution 4 band quarter quads (DOQQs) are available for purchase from FPAC GEO. Contact the GEO Customer Service Section for information on pricing for DOQQs and how to obtain CCMs larger than 8 GB. A NAIP image service is also available on ArcGIS Online through an organizational subscription.How can NAIP be used?NAIP is used by many non-FSA public and private sector customers for a wide variety of projects. A detailed study is available in the Qualitative and Quantitative Synopsis on NAIP Usage from 2004 -2008: Click here for a list of NAIP Information and Distribution Nodes.When is NAIP acquired?NAIP projects are contracted each year based upon available funding and the FSA imagery acquisition cycle. Beginning in 2003, NAIP was acquired on a 5-year cycle. 2008 was a transition year, a three-year cycle began in 2009, NAIP was on a two-year cycle until 2016, currently NAIP is on a 3 year refresh cycle. Click here >> for an interactive PDF status map of NAIP acquisitions from 2002 - 2018. 2021 acquisition status dashboard is available here.What are NAIP Specifications?NAIP imagery is currently acquired at 60cm ground sample distance (GSD) with a horizontal accuracy that matches within four meters of photo-identifiable ground control points.The default spectral resolution beginning in 2010 is four bands: Red, Green, Blue and Near Infrared.Contractually, every attempt will be made to comply with the specification of no more than 10% cloud cover per quarter quad tile, weather conditions permitting.All imagery is inspected for horizontal accuracy and tonal quality. Make Comments/Observations about current NAIP imagery.If you use NAIP imagery and have comments or find a problem with the imagery please use the NAIP Imagery Feedback Map to let us know what you find or how you are using NAIP imagery. Click here to access the map.**The documentation below is in reference to this items placement in the NM Supply Chain Data Hub. The documentation is of use to understanding the source of this item, and how to reproduce it for updates**Title: National Agriculture Imagery Program (NAIP) History 2002-2021Item Type: Web Mapping Application URL Summary: Story map depicting the highlights and changes throughout the National Agriculture Imagery Program (NAIP) from 2002-2021.Notes: Prepared by: Uploaded by EMcRae_NMCDCSource: URL referencing this original map product: https://nmcdc.maps.arcgis.com/home/item.html?id=445e3dfd16c4401f95f78ad5905a4cceFeature Service: https://nmcdc.maps.arcgis.com/home/item.html?id=8eb6c5e7adc54ec889dd6fc9cc2c14c4UID: 26Data Requested: Ag CensusMethod of Acquisition: Living AtlasDate Acquired: May 2022Priority rank as Identified in 2022 (scale of 1 being the highest priority, to 11 being the lowest priority): 8Tags: PENDING