100+ datasets found
  1. Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN

    • ckan.americaview.org
    Updated Sep 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2022). Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN [Dataset]. https://ckan.americaview.org/dataset/open-source-spatial-analytics-r
    Explore at:
    Dataset updated
    Sep 10, 2022
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.

  2. n

    LANDISVIEW 2.0 : Free Spatial Data Analysis

    • cmr.earthdata.nasa.gov
    Updated Mar 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). LANDISVIEW 2.0 : Free Spatial Data Analysis [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214586381-SCIOPS
    Explore at:
    Dataset updated
    Mar 5, 2021
    Time period covered
    Jan 1, 1970 - Present
    Description

    LANDISVIEW is a tool, developed at the Knowledge Engineering Laboratory at Texas A&M University, to visualize and animate 8-bit/16-bit ERDAS GIS format (e.g., LANDIS and LANDIS-II output maps). It can also convert 8-bit/16-bit ERDAS GIS format into ASCII and batch files. LANDISVIEW provides two major functions: 1) File Viewer: Files can be viewed sequentially and an output can be generated as a movie file or as an image file. 2) File converter: It will convert the loaded files for compatibility with 3rd party software, such as Fragstats, a widely used spatial analysis tool. Some available features of LANDISVIEW include: 1) Display cell coordinates and values. 2) Apply user-defined color palette to visualize files. 3) Save maps as pictures and animations as video files (*.avi). 4) Convert ERDAS files into ASCII grids for compatibility with Fragstats. (Source: http://kelab.tamu.edu/)

  3. r

    Geospatial Analytics Market Size & Share Report, 2035

    • rootsanalysis.com
    Updated Nov 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roots Analysis (2025). Geospatial Analytics Market Size & Share Report, 2035 [Dataset]. https://www.rootsanalysis.com/geospatial-analytics-market
    Explore at:
    Dataset updated
    Nov 18, 2025
    Dataset authored and provided by
    Roots Analysis
    License

    https://www.rootsanalysis.com/privacy.htmlhttps://www.rootsanalysis.com/privacy.html

    Description

    The geospatial analytics market size is predicted to rise from $93.49 billion in 2024 to $362.45 billion by 2035, growing at a CAGR of 13.1% from 2024 to 2035

  4. Geospatial Analytics Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Apr 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Geospatial Analytics Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Italy, and UK), APAC (China, India, and Japan), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/geospatial-analytics-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Apr 26, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    Canada, Brazil, France, United Kingdom, United States, Germany
    Description

    Snapshot img

    Geospatial Analytics Market Size 2025-2029

    The geospatial analytics market size is forecast to increase by USD 178.6 billion, at a CAGR of 21.4% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing adoption of geospatial analytics in sectors such as healthcare and insurance. This trend is fueled by the ability of geospatial analytics to provide valuable insights from location-based data, leading to improved operational efficiency and decision-making. Additionally, emerging methods in data collection and generation, including the use of drones and satellite imagery, are expanding the scope and potential of geospatial analytics. However, the market faces challenges, including data privacy and security concerns. With the vast amounts of sensitive location data being collected and analyzed, ensuring its protection is crucial for companies to maintain trust with their customers and avoid regulatory penalties. Navigating these challenges and capitalizing on the opportunities presented by the growing adoption of geospatial analytics requires a strategic approach from industry players. Companies must prioritize data security, invest in advanced analytics technologies, and collaborate with stakeholders to build trust and transparency. By addressing these challenges and leveraging the power of geospatial analytics, businesses can gain a competitive edge and unlock new opportunities in various industries.

    What will be the Size of the Geospatial Analytics Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the increasing demand for location-specific insights across various sectors. Urban planning relies on geospatial optimization and data enrichment to enhance city designs and improve infrastructure. Cloud-based geospatial solutions facilitate real-time data access, enabling location intelligence for public safety and resource management. Spatial data standards ensure interoperability among different systems, while geospatial software and data visualization tools provide valuable insights from satellite imagery and aerial photography. Geospatial services offer data integration, spatial data accuracy, and advanced analytics capabilities, including 3D visualization, route optimization, and data cleansing. Precision agriculture and environmental monitoring leverage geospatial data to optimize resource usage and monitor ecosystem health. Infrastructure management and real estate industries rely on geospatial data for asset tracking and market analysis. Spatial statistics and disaster management applications help mitigate risks and respond effectively to crises. Geospatial data management and quality remain critical as the volume and complexity of data grow. Geospatial modeling and interoperability enable seamless data sharing and collaboration. Sensor networks and geospatial data acquisition technologies expand the reach of geospatial analytics, while AI-powered geospatial analytics offer new opportunities for predictive analysis and automation. The ongoing development of geospatial technologies and applications underscores the market's continuous dynamism, providing valuable insights and solutions for businesses and organizations worldwide.

    How is this Geospatial Analytics Industry segmented?

    The geospatial analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. TechnologyGPSGISRemote sensingOthersEnd-userDefence and securityGovernmentEnvironmental monitoringMining and manufacturingOthersApplicationSurveyingMedicine and public safetyMilitary intelligenceDisaster risk reduction and managementOthersTypeSurface and field analyticsGeovisualizationNetwork and location analyticsOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyItalyUKAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW)

    By Technology Insights

    The gps segment is estimated to witness significant growth during the forecast period.The market encompasses various applications and technologies, including geospatial optimization, data enrichment, location-based services (LBS), spatial data standards, public safety, geospatial software, resource management, location intelligence, geospatial data visualization, geospatial services, data integration, 3D visualization, satellite imagery, remote sensing, GIS platforms, spatial data infrastructure, aerial photography, route optimization, data cleansing, precision agriculture, spatial interpolation, geospatial databases, transportation planning, spatial data accuracy, spatial analysis, map projections, interactive maps, marketing analytics, data storytelling, geospati

  5. S

    Spatial Analysis Software Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Spatial Analysis Software Report [Dataset]. https://www.marketreportanalytics.com/reports/spatial-analysis-software-53687
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Discover the booming Spatial Analysis Software market! Our in-depth analysis reveals a $5 billion market projected to reach $12.4 billion by 2033, driven by AI, cloud computing, and rising geospatial data. Learn about key trends, regional insights, and leading companies shaping this dynamic sector.

  6. f

    Data from: Geographic Information Systems, spatial analysis, and HIV in...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated May 3, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Berman, Amanda; Holzman, Samuel B.; Grabowski, M. Kathyrn; Chang, Larry W.; Boyda, Danielle C. (2019). Geographic Information Systems, spatial analysis, and HIV in Africa: A scoping review [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000171624
    Explore at:
    Dataset updated
    May 3, 2019
    Authors
    Berman, Amanda; Holzman, Samuel B.; Grabowski, M. Kathyrn; Chang, Larry W.; Boyda, Danielle C.
    Description

    IntroductionGeographic Information Systems (GIS) and spatial analysis are emerging tools for global health, but it is unclear to what extent they have been applied to HIV research in Africa. To help inform researchers and program implementers, this scoping review documents the range and depth of published HIV-related GIS and spatial analysis research studies conducted in Africa.MethodsA systematic literature search for articles related to GIS and spatial analysis was conducted through PubMed, EMBASE, and Web of Science databases. Using pre-specified inclusion criteria, articles were screened and key data were abstracted. Grounded, inductive analysis was conducted to organize studies into meaningful thematic areas.Results and discussionThe search returned 773 unique articles, of which 65 were included in the final review. 15 different countries were represented. Over half of the included studies were published after 2014. Articles were categorized into the following non-mutually exclusive themes: (a) HIV geography, (b) HIV risk factors, and (c) HIV service implementation. Studies demonstrated a broad range of GIS and spatial analysis applications including characterizing geographic distribution of HIV, evaluating risk factors for HIV, and assessing and improving access to HIV care services.ConclusionsGIS and spatial analysis have been widely applied to HIV-related research in Africa. The current literature reveals a diversity of themes and methodologies and a relatively young, but rapidly growing, evidence base.

  7. f

    fdata-02-00044_Parallel Processing Strategies for Big Geospatial Data.pdf

    • frontiersin.figshare.com
    pdf
    Updated Jun 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Werner (2023). fdata-02-00044_Parallel Processing Strategies for Big Geospatial Data.pdf [Dataset]. http://doi.org/10.3389/fdata.2019.00044.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    Frontiers
    Authors
    Martin Werner
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This paper provides an abstract analysis of parallel processing strategies for spatial and spatio-temporal data. It isolates aspects such as data locality and computational locality as well as redundancy and locally sequential access as central elements of parallel algorithm design for spatial data. Furthermore, the paper gives some examples from simple and advanced GIS and spatial data analysis highlighting both that big data systems have been around long before the current hype of big data and that they follow some design principles which are inevitable for spatial data including distributed data structures and messaging, which are, however, incompatible with the popular MapReduce paradigm. Throughout this discussion, the need for a replacement or extension of the MapReduce paradigm for spatial data is derived. This paradigm should be able to deal with the imperfect data locality inherent to spatial data hindering full independence of non-trivial computational tasks. We conclude that more research is needed and that spatial big data systems should pick up more concepts like graphs, shortest paths, raster data, events, and streams at the same time instead of solving exactly the set of spatially separable problems such as line simplifications or range queries in manydifferent ways.

  8. e

    Spatial Data Analysis

    • paper.erudition.co.in
    html
    Updated May 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Einetic (2023). Spatial Data Analysis [Dataset]. https://paper.erudition.co.in/makaut/btech-in-civil-engineering/8/gis-and-remote-sensing
    Explore at:
    htmlAvailable download formats
    Dataset updated
    May 11, 2023
    Dataset authored and provided by
    Einetic
    License

    https://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms

    Description

    Question Paper Solutions of chapter Spatial Data Analysis of GIS & Remote Sensing, 8th Semester , Civil Engineering

  9. United States Geospatial Analytics Market Forecasts to 2030

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Jan 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). United States Geospatial Analytics Market Forecasts to 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/united-states-geospatial-analytics
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jan 28, 2025
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    United States
    Description

    The United States Geospatial Analytics Market is Segmented by Type (Surface Analysis, Network Analysis, Geovisualization), by End User Vertical ( Agriculture, Utility and Communication, Defense and Intelligence, Government, Mining and Natural Resources, Automotive and Transportation, Healthcare, Real Estate and Construction). The Market Sizes and Forecasts are Provided in Terms of Value (USD) for all the Above Segments.

  10. i

    Data from: A novel spatial prediction method integrating Exploratory Spatial...

    • ieee-dataport.org
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bingbo Gao (2025). A novel spatial prediction method integrating Exploratory Spatial Data Analysis into Random Forest for large scale daily air temperature mapping [Dataset]. https://ieee-dataport.org/documents/novel-spatial-prediction-method-integrating-exploratory-spatial-data-analysis-random
    Explore at:
    Dataset updated
    Mar 19, 2025
    Authors
    Bingbo Gao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    environmental management

  11. North America Geographic Information System Market Analysis - Size and...

    • technavio.com
    pdf
    Updated Feb 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). North America Geographic Information System Market Analysis - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/north-america-gis-market-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    North America
    Description

    Snapshot img

    North America Geographic Information System Market Size 2025-2029

    The geographic information system market size in North America is forecast to increase by USD 11.4 billion at a CAGR of 23.7% between 2024 and 2029.

    The market is experiencing significant growth due to the increasing adoption of advanced technologies such as artificial intelligence, satellite imagery, and sensors in various industries. In fleet management, GIS software is being used to optimize routes and improve operational efficiency. In the context of smart cities, GIS solutions are being utilized for content delivery, public safety, and building information modeling. The demand for miniaturization of technologies is also driving the market, allowing for the integration of GIS into smaller devices and applications. However, data security concerns remain a challenge, as the collection and storage of sensitive information requires robust security measures. The insurance industry is also leveraging GIS for telematics and risk assessment, while the construction sector uses GIS for server-based project management and planning. Overall, the GIS market is poised for continued growth as these trends and applications continue to evolve.
    

    What will be the Size of the market During the Forecast Period?

    Request Free Sample

    The Geographic Information System (GIS) market encompasses a range of technologies and applications that enable the collection, management, analysis, and visualization of spatial data. Key industries driving market growth include transportation, infrastructure planning, urban planning, and environmental monitoring. Remote sensing technologies, such as satellite imaging and aerial photography, play a significant role in data collection. Artificial intelligence and the Internet of Things (IoT) are increasingly integrated into GIS solutions for real-time location data processing and operational efficiency.
    Applications span various sectors, including agriculture, natural resources, construction, and smart cities. GIS is essential for infrastructure analysis, disaster management, and land management. Geospatial technology enables spatial data integration, providing valuable insights for decision-making and optimization. Market size is substantial and growing, fueled by increasing demand for efficient urban planning, improved infrastructure, and environmental sustainability. Geospatial startups continue to emerge, innovating in areas such as telematics, natural disasters, and smart city development.
    

    How is this market segmented and which is the largest segment?

    The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Component
    
      Software
      Data
      Services
    
    
    Deployment
    
      On-premise
      Cloud
    
    
    Geography
    
      North America
    
        Canada
        Mexico
        US
    

    By Component Insights

    The software segment is estimated to witness significant growth during the forecast period.
    

    The Geographic Information System (GIS) market encompasses desktop, mobile, cloud, and server software for managing and analyzing spatial data. In North America, industry-specific GIS software dominates, with some commercial entities providing open-source alternatives for limited functions like routing and geocoding. Despite this, counterfeit products pose a threat, making open-source software a viable option for smaller applications. Market trends indicate a shift towards cloud-based GIS solutions for enhanced operational efficiency and real-time location data. Spatial data applications span various sectors, including transportation infrastructure planning, urban planning, natural resources management, environmental monitoring, agriculture, and disaster management. Technological innovations, such as artificial intelligence, the Internet of Things (IoT), and satellite imagery, are revolutionizing GIS solutions.

    Cloud-based GIS solutions, IoT integration, and augmented reality are emerging trends. Geospatial technology is essential for smart city projects, climate monitoring, intelligent transportation systems, and land management. Industry statistics indicate steady growth, with key players focusing on product innovation, infrastructure optimization, and geospatial utility solutions.

    Get a glance at the market report of share of various segments Request Free Sample

    Market Dynamics

    Our North America Geographic Information System Market researchers analyzed the data with 2024 as the base year, along with the key drivers, trends, and challenges. A holistic analysis of drivers will help companies refine their marketing strategies to gain a competitive advantage.

    What are the key market drivers leading to the rise in the adoption of the North America Geographic Information System Market?

    Rising applications of geographic

  12. Geo Spatial Data Analysis Nepal

    • kaggle.com
    zip
    Updated May 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Viz On (2025). Geo Spatial Data Analysis Nepal [Dataset]. https://www.kaggle.com/datasets/vizon15/geo-spatial-data-analysis-nepal
    Explore at:
    zip(220774924 bytes)Available download formats
    Dataset updated
    May 22, 2025
    Authors
    Viz On
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Nepal
    Description

    Dataset

    This dataset was created by Viz On

    Released under MIT

    Contents

  13. G

    Geospatial Analytics Market Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Jan 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Geospatial Analytics Market Report [Dataset]. https://www.marketresearchforecast.com/reports/geospatial-analytics-market-1650
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Jan 10, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geospatial Analytics Marketsize was valued at USD 79.06 USD billion in 2023 and is projected to reach USD 202.74 USD billion by 2032, exhibiting a CAGR of 14.4 % during the forecast period. Recent developments include: February 2024: Placer.ai and Esri, a Geographic Information System (GIS) technology provider, partnered to empower customers with enhanced analytics capabilities, integrating consumer behavior analysis. Additionally, the agreement will foster collaborations to unlock further features by synergizing our respective product offerings., December 2023: CKS and Esri India Technologies Pvt Ltd teamed up to introduce the 'MMGEIS' program, focusing on students from 8th grade to undergraduates, to position India as a global leader in geospatial technology through skill development and innovation., December 2023: In collaboration with Bayanat, the UAE Space Agency revealed the initiation of the operational phase of the Geospatial Analytics Platform during its participation in organizing the Space at COP28 initiatives., November 2023: USAID unveiled its inaugural Geospatial Strategy, designed to harness geospatial data and technology for more targeted international program delivery. The strategy foresees a future where geographic methods enhance the effectiveness of USAID's efforts by pinpointing development needs, monitoring program implementation, and evaluating outcomes based on location., May 2023: TomTom International BV, a geolocation technology specialist, expanded its partnership with Alteryx, Inc. Through this partnership, Alteryx will use TomTom’s Maps APIs and location data to integrate spatial data into Alteryx’s products and location insights packages, such as Alteryx Designer., May 2023: Oracle Corporation announced the launch of Oracle Spatial Studio 23.1, available in the Oracle Cloud Infrastructure (OCI) marketplace and for on-premises deployment. Users can browse, explore, and analyze geographic data stored in and managed by Oracle using a no-code mapping tool., May 2023: CAPE Analytics, a property intelligence company, announced an enhanced insurance offering by leveraging Google geospatial data. Google’s geospatial data can help CAPE create appropriate solutions for insurance carriers., February 2023: HERE Global B.V. announced a collaboration with Cognizant, an information technology, services, and consulting company, to offer digital customer experience using location data. In this partnership, Cognizant will utilize the HERE location platform’s real-time traffic data, weather, and road attribute data to develop spatial intelligent solutions for its customers., July 2022: Athenium Analytics, a climate risk analytics company, launched a comprehensive tornado data set on the Esri ArcGIS Marketplace. This offering, which included the last 25 years of tornado insights from Athenium Analytics, would extend its Bronze partner relationship with Esri. . Key drivers for this market are: Advancements in Technologies to Fuel Market Growth. Potential restraints include: Lack of Standardization Coupled with Shortage of Skilled Workforce to Limit Market Growth. Notable trends are: Rise of Web-based GIS Platforms Will Transform Market.

  14. n

    Data from: A new digital method of data collection for spatial point pattern...

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Jul 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chao Jiang; Xinting Wang (2021). A new digital method of data collection for spatial point pattern analysis in grassland communities [Dataset]. http://doi.org/10.5061/dryad.brv15dv70
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 6, 2021
    Dataset provided by
    Chinese Academy of Agricultural Sciences
    Inner Mongolia University of Technology
    Authors
    Chao Jiang; Xinting Wang
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    A major objective of plant ecology research is to determine the underlying processes responsible for the observed spatial distribution patterns of plant species. Plants can be approximated as points in space for this purpose, and thus, spatial point pattern analysis has become increasingly popular in ecological research. The basic piece of data for point pattern analysis is a point location of an ecological object in some study region. Therefore, point pattern analysis can only be performed if data can be collected. However, due to the lack of a convenient sampling method, a few previous studies have used point pattern analysis to examine the spatial patterns of grassland species. This is unfortunate because being able to explore point patterns in grassland systems has widespread implications for population dynamics, community-level patterns and ecological processes. In this study, we develop a new method to measure individual coordinates of species in grassland communities. This method records plant growing positions via digital picture samples that have been sub-blocked within a geographical information system (GIS). Here, we tested out the new method by measuring the individual coordinates of Stipa grandis in grazed and ungrazed S. grandis communities in a temperate steppe ecosystem in China. Furthermore, we analyzed the pattern of S. grandis by using the pair correlation function g(r) with both a homogeneous Poisson process and a heterogeneous Poisson process. Our results showed that individuals of S. grandis were overdispersed according to the homogeneous Poisson process at 0-0.16 m in the ungrazed community, while they were clustered at 0.19 m according to the homogeneous and heterogeneous Poisson processes in the grazed community. These results suggest that competitive interactions dominated the ungrazed community, while facilitative interactions dominated the grazed community. In sum, we successfully executed a new sampling method, using digital photography and a Geographical Information System, to collect experimental data on the spatial point patterns for the populations in this grassland community.

    Methods 1. Data collection using digital photographs and GIS

    A flat 5 m x 5 m sampling block was chosen in a study grassland community and divided with bamboo chopsticks into 100 sub-blocks of 50 cm x 50 cm (Fig. 1). A digital camera was then mounted to a telescoping stake and positioned in the center of each sub-block to photograph vegetation within a 0.25 m2 area. Pictures were taken 1.75 m above the ground at an approximate downward angle of 90° (Fig. 2). Automatic camera settings were used for focus, lighting and shutter speed. After photographing the plot as a whole, photographs were taken of each individual plant in each sub-block. In order to identify each individual plant from the digital images, each plant was uniquely marked before the pictures were taken (Fig. 2 B).

    Digital images were imported into a computer as JPEG files, and the position of each plant in the pictures was determined using GIS. This involved four steps: 1) A reference frame (Fig. 3) was established using R2V software to designate control points, or the four vertexes of each sub-block (Appendix S1), so that all plants in each sub-block were within the same reference frame. The parallax and optical distortion in the raster images was then geometrically corrected based on these selected control points; 2) Maps, or layers in GIS terminology, were set up for each species as PROJECT files (Appendix S2), and all individuals in each sub-block were digitized using R2V software (Appendix S3). For accuracy, the digitization of plant individual locations was performed manually; 3) Each plant species layer was exported from a PROJECT file to a SHAPE file in R2V software (Appendix S4); 4) Finally each species layer was opened in Arc GIS software in the SHAPE file format, and attribute data from each species layer was exported into Arc GIS to obtain the precise coordinates for each species. This last phase involved four steps of its own, from adding the data (Appendix S5), to opening the attribute table (Appendix S6), to adding new x and y coordinate fields (Appendix S7) and to obtaining the x and y coordinates and filling in the new fields (Appendix S8).

    1. Data reliability assessment

    To determine the accuracy of our new method, we measured the individual locations of Leymus chinensis, a perennial rhizome grass, in representative community blocks 5 m x 5 m in size in typical steppe habitat in the Inner Mongolia Autonomous Region of China in July 2010 (Fig. 4 A). As our standard for comparison, we used a ruler to measure the individual coordinates of L. chinensis. We tested for significant differences between (1) the coordinates of L. chinensis, as measured with our new method and with the ruler, and (2) the pair correlation function g of L. chinensis, as measured with our new method and with the ruler (see section 3.2 Data Analysis). If (1) the coordinates of L. chinensis, as measured with our new method and with the ruler, and (2) the pair correlation function g of L. chinensis, as measured with our new method and with the ruler, did not differ significantly, then we could conclude that our new method of measuring the coordinates of L. chinensis was reliable.

    We compared the results using a t-test (Table 1). We found no significant differences in either (1) the coordinates of L. chinensis or (2) the pair correlation function g of L. chinensis. Further, we compared the pattern characteristics of L. chinensis when measured by our new method against the ruler measurements using a null model. We found that the two pattern characteristics of L. chinensis did not differ significantly based on the homogenous Poisson process or complete spatial randomness (Fig. 4 B). Thus, we concluded that the data obtained using our new method was reliable enough to perform point pattern analysis with a null model in grassland communities.

  15. Spatial Analysis and Big Data: Challenges and Opportunities

    • figshare.com
    pdf
    Updated Jan 11, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sergio Rey (2016). Spatial Analysis and Big Data: Challenges and Opportunities [Dataset]. http://doi.org/10.6084/m9.figshare.645349.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jan 11, 2016
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Sergio Rey
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    SIAM 2013 Presentation

  16. f

    Summary of spatial statistical analyses.

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    Updated Nov 14, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Momm, Henrique G.; Gochfeld, Deborah J.; Olson, Julie B.; Slattery, Marc; Easson, Cole G.; Thacker, Robert W. (2013). Summary of spatial statistical analyses. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001688212
    Explore at:
    Dataset updated
    Nov 14, 2013
    Authors
    Momm, Henrique G.; Gochfeld, Deborah J.; Olson, Julie B.; Slattery, Marc; Easson, Cole G.; Thacker, Robert W.
    Description

    Comparison of the results of spatial statistics associated with disease of Aplysina cauliformis two populations at different time points. Each statistic tests for slightly different spatial characteristics. Contact connectedness was best able to explain clustering patterns within the study grids. The results of the Moran’s Index best represented individual connections shown by direct contact join-counts for ARBS infected sponges. *Range represents scale of significant clustering for the Ripley’s K statistic. Clusters and Outliers are individual Thiessen polygons in the grids that exhibited significant values for the Getis-Ord General G and the Moran’s Index Statistics. BP = Big Point, RG = Rainbow Gardens.

  17. d

    Protected Areas Database of the United States (PAD-US) 3.0 Spatial Analysis...

    • catalog.data.gov
    • data.usgs.gov
    Updated Oct 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Protected Areas Database of the United States (PAD-US) 3.0 Spatial Analysis and Statistics [Dataset]. https://catalog.data.gov/dataset/protected-areas-database-of-the-united-states-pad-us-3-0-spatial-analysis-and-statistics
    Explore at:
    Dataset updated
    Oct 22, 2025
    Dataset provided by
    U.S. Geological Survey
    Area covered
    United States
    Description

    Spatial analysis and statistical summaries of the Protected Areas Database of the United States (PAD-US) provide land managers and decision makers with a general assessment of management intent for biodiversity protection, natural resource management, and outdoor recreation access across the nation. This data release presents results from statistical summaries of the PAD-US 3.0 protection status (by GAP Status Code) and public access status for various land unit boundaries (Protected Areas Database of the United States 3.0 Vector Analysis and Summary Statistics). Summary statistics are also available to explore and download (Comma-separated Table [CSV], Microsoft Excel Workbook (.xlsx), Portable Document Format [.pdf] Report) from the PAD-US Lands and Inland Water Statistics Dashboard ( https://www.usgs.gov/programs/gap-analysis-project/science/pad-us-statistics ). The vector GIS analysis file, source data used to summarize statistics for areas of interest to stakeholders (National, State, Department of the Interior Region, Congressional District, County, EcoRegions I-IV, Urban Areas, Landscape Conservation Cooperative), and complete Summary Statistics Tabular Data (CSV) are included in this data release. Raster GIS analysis files are also available for combination with other raster data (Protected Areas Database of the United States (PAD-US) 3.0 Raster Analysis). The PAD-US 3.0 Combined Fee, Designation, Easement feature class in the full inventory, with Military Lands and Tribal Areas from the Proclamation and Other Planning Boundaries feature class (Protected Areas Database of the United States (PAD-US) 3.0, https://doi.org/10.5066/P9Q9LQ4B), was modified to prioritize and remove overlapping management designations, limiting overestimation in protection status or public access statistics and to support user needs for vector and raster analysis data. Analysis files in this data release were clipped to the Census State boundary file to define the extent and fill in areas (largely private land) outside the PAD-US, providing a common denominator for statistical summaries.

  18. d

    Protected Areas Database of the United States (PAD-US) 4.1 Spatial Analysis...

    • catalog.data.gov
    • data.usgs.gov
    Updated Nov 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Protected Areas Database of the United States (PAD-US) 4.1 Spatial Analysis and Statistics [Dataset]. https://catalog.data.gov/dataset/protected-areas-database-of-the-united-states-pad-us-4-0-spatial-analysis-and-statistics
    Explore at:
    Dataset updated
    Nov 13, 2025
    Dataset provided by
    U.S. Geological Survey
    Area covered
    United States
    Description

    Spatial analysis and statistical summaries of the Protected Areas Database of the United States (PAD-US) provide land managers and decision makers with a general assessment of management intent for biodiversity protection, natural resource management, and outdoor recreation access across the nation. This data release (PAD-US 4.1 Vector Analysis and Summary Statistics) presents results from statistical summaries of the PAD-US 4.1 protection status (by GAP Status Code) and public access status for various land unit boundaries. Summary statistics are also available to explore and download from the PAD-US Statistics Dashboard ( https://www.usgs.gov/programs/gap-analysis-project/science/pad-us-statistics ). The vector GIS analysis file, source data used to summarize statistics for areas of interest to stakeholders (National, State, Department of the Interior Region, Congressional District, County, EcoRegions I-IV, Urban Areas, Landscape Conservation Cooperative), and complete Summary Statistics Tabular Data (CSV) are included in this data release. Raster analysis files are also available for combination with other raster data (PAD-US 4.1 Raster Analysis child item). The PAD-US Combined Fee, Designation, Easement feature class in the Full Inventory Database, with Military Lands and Tribal Areas from the Proclamation and Other Planning Boundaries feature class, was modified to prioritize and remove overlapping management designations, limiting overestimation in protection status or public access statistics and to support user needs for vector and raster analysis data. Analysis files in this data release were clipped to the Census State boundary file to define the extent and fill in areas (largely private land) outside the PAD-US, providing a common denominator for statistical summaries.

  19. c

    Geospatial Analytics Artificial Intelligence Market Will Grow at a CAGR of...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research, Geospatial Analytics Artificial Intelligence Market Will Grow at a CAGR of 28.60% from 2024 to 2031. [Dataset]. https://www.cognitivemarketresearch.com/geospatial-analytics-artificial-intelligence-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global geospatial analytics artificial intelligence market size is USD 100.5 million in 2024 and will expand at a compound annual growth rate (CAGR) of 28.60% from 2024 to 2031.

    North America held the major market of more than 40% of the global revenue with a market size of USD 40.20 million in 2024 and will grow at a compound annual growth rate (CAGR) of 26.8% from 2024 to 2031.
    Europe accounted for a share of over 30% of the global market size of USD 30.15 million.
    Asia Pacific held the market of around 23% of the global revenue with a market size of USD 23.12 million in 2024 and will grow at a compound annual growth rate (CAGR) of 30.6% from 2024 to 2031.
    Latin America market of more than 5% of the global revenue with a market size of USD 5.03 million in 2024 and will grow at a compound annual growth rate (CAGR) of 28.0% from 2024 to 2031.
    Middle East and Africa held the major market of around 2% of the global revenue with a market size of USD 2.01 million in 2024 and will grow at a compound annual growth rate (CAGR) of 28.3% from 2024 to 2031.
    The remote sensing held the highest geospatial analytics artificial intelligence market revenue share in 2024.
    

    Market Dynamics of Geospatial analytics artificial intelligence Market

    Key Drivers for Geospatial analytics artificial intelligence Market

    Advancements in AI and Machine Learning to Increase the Demand Globally

    The global demand for geospatial analytics is significantly driven by advancements in AI and machine learning, technologies that are revolutionizing how spatial data is analyzed and interpreted. As AI models become more sophisticated, they enhance the capability to automate complex geospatial data processing tasks, leading to more accurate and insightful analyses. Machine learning, particularly, enables systems to improve their accuracy over time by learning from vast datasets of geospatial information, including satellite imagery and sensor data. This leads to more precise predictions and better decision-making across multiple sectors such as environmental management, urban planning, and disaster response. The integration of AI with geospatial technologies not only improves efficiency but also opens up new possibilities for innovation, making it a critical driver for increased global demand in the geospatial analytics market.

    Government Initiatives and Support for Smart Cities to Propel Market Growth

    Government initiatives supporting the development of smart cities are propelling the growth of the geospatial analytics market. As urban areas around the world transform into smart cities, there is a significant increase in demand for advanced technologies that can analyze and interpret geospatial data to enhance urban planning, infrastructure management, and public safety. Geospatial analytics, powered by AI, plays a crucial role in these projects by enabling real-time data processing and insights for traffic control, utility management, and emergency services coordination. These technologies ensure more efficient resource allocation and improved quality of urban life. Government funding and policy support not only validate the importance of geospatial analytics but also stimulate innovation, attract investments, and foster public-private partnerships, thus driving the market forward and enhancing the capabilities of smart city initiatives globally.

    Restraint Factor for the Geospatial analytics artificial intelligence Market

    Complexity of Data Integration to Limit the Sales

    The complexity of data integration poses a significant barrier to the adoption and effectiveness of geospatial analytics AI systems, potentially limiting sales in this market. Geospatial data, inherently diverse and sourced from various collection methods like satellites, UAVs, and ground sensors, comes in multiple formats and resolutions. Integrating such disparate data into a cohesive, usable format for AI analysis is a challenging process that requires advanced data processing tools and expertise. This complexity not only increases the time and costs associated with project implementation but also raises the risk of errors and inefficiencies in data analysis. Furthermore, the difficulty in achieving seamless integration can deter organizations, particularly those with limited IT capabilities, from investing in geospatial analytics solutions. Overcoming these integration challenges is crucial for enabl...

  20. G

    Geospatial Data Analytics Market Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Geospatial Data Analytics Market Report [Dataset]. https://www.marketreportanalytics.com/reports/geospatial-data-analytics-market-88892
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Apr 19, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Discover the explosive growth of the Geospatial Data Analytics market, projected to reach [estimated 2033 market size] by 2033 with a CAGR of 12.81%. This comprehensive analysis explores key drivers, trends, and market segmentation, featuring leading companies like ESRI and Hexagon. Learn about regional market shares and future opportunities in this lucrative sector. Recent developments include: June 2023: Intermap Technologies leveraged its high-resolution elevation data access to perform imagery correction services for a national government organization to support the development projects in El Salvador and Honduras in Central America. In partnership with GeoSolutions, Intermap enables the creation of precision maps that are invaluable resources in supporting community safety and resiliency., March 2023: Mach9, the company building the fastest technologies for geospatial production, introduced its first product. The new product leverages computer vision and AI to produce faster 2D and 3D CAD and GIS engineering deliverables. This product launch comes amidst Mach9's pivot to a software-first business model, which is a move that is primarily driven by the rising demand for tools that accelerate geospatial data processing and analysis for infrastructure management.. Key drivers for this market are: Increase in Adoption of Smart City Development, Introduction of 5G to Boost Market Growth. Potential restraints include: Increase in Adoption of Smart City Development, Introduction of 5G to Boost Market Growth. Notable trends are: Defense and Intelligence to be the Largest End-user Industry.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ckan.americaview.org (2022). Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN [Dataset]. https://ckan.americaview.org/dataset/open-source-spatial-analytics-r
Organization logo

Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN

Explore at:
Dataset updated
Sep 10, 2022
Dataset provided by
CKANhttps://ckan.org/
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.

Search
Clear search
Close search
Google apps
Main menu