100+ datasets found
  1. Open-Source GIScience Online Course

    • ckan.americaview.org
    Updated Nov 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Open-Source GIScience Online Course [Dataset]. https://ckan.americaview.org/dataset/open-source-giscience-online-course
    Explore at:
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.

  2. QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • open.canada.ca
    • datasets.ai
    • +2more
    html
    Updated Oct 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2021). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://open.canada.ca/data/en/dataset/89be0c73-6f1f-40b7-b034-323cb40b8eff
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 5, 2021
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  3. A

    Geospatial Deep Learning Seminar Online Course

    • data.amerigeoss.org
    html
    Updated Oct 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmericaView (2024). Geospatial Deep Learning Seminar Online Course [Dataset]. https://data.amerigeoss.org/dataset/geospatial-deep-learning-seminar-online-course
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 18, 2024
    Dataset provided by
    AmericaView
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This seminar is an applied study of deep learning methods for extracting information from geospatial data, such as aerial imagery, multispectral imagery, digital terrain data, and other digital cartographic representations. We first provide an introduction and conceptualization of artificial neural networks (ANNs). Next, we explore appropriate loss and assessment metrics for different use cases followed by the tensor data model, which is central to applying deep learning methods. Convolutional neural networks (CNNs) are then conceptualized with scene classification use cases. Lastly, we explore semantic segmentation, object detection, and instance segmentation. The primary focus of this course is semantic segmenation for pixel-level classification.

    The associated GitHub repo provides a series of applied examples. We hope to continue to add examples as methods and technologies further develop. These examples make use of a vareity of datasets (e.g., SAT-6, topoDL, Inria, LandCover.ai, vfillDL, and wvlcDL). Please see the repo for links to the data and associated papers. All examples have associated videos that walk through the process, which are also linked to the repo. A variety of deep learning architectures are explored including UNet, UNet++, DeepLabv3+, and Mask R-CNN. Currenlty, two examples use ArcGIS Pro and require no coding. The remaining five examples require coding and make use of PyTorch, Python, and R within the RStudio IDE. It is assumed that you have prior knowledge of coding in the Python and R enviroinments. If you do not have experience coding, please take a look at our Open-Source GIScience and Open-Source Spatial Analytics (R) courses, which explore coding in Python and R, respectively.

    After completing this seminar you will be able to:

    1. explain how ANNs work including weights, bias, activation, and optimization.
    2. describe and explain different loss and assessment metrics and determine appropriate use cases.
    3. use the tensor data model to represent data as input for deep learning.
    4. explain how CNNs work including convolutional operations/layers, kernel size, stride, padding, max pooling, activation, and batch normalization.
    5. use PyTorch, Python, and R to prepare data, produce and assess scene classification models, and infer to new data.
    6. explain common semantic segmentation architectures and how these methods allow for pixel-level classification and how they are different from traditional CNNs.
    7. use PyTorch, Python, and R (or ArcGIS Pro) to prepare data, produce and assess semantic segmentation models, and infer to new data.
    8. explain how object and instance segmentation are different from traditional CNNs and semantic segmentation and how they can be used to generate bounding boxes and feature masks for each instance of a class.
    9. use ArcGIS Pro to perform object detection (to obtain bounding boxes) and instance segmentation (to obtain pixel-level instance masks).
  4. a

    13.1 Spatial Analysis with ArcGIS Online

    • hub.arcgis.com
    Updated Mar 4, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 13.1 Spatial Analysis with ArcGIS Online [Dataset]. https://hub.arcgis.com/documents/26b60a410070426886914147af4a989c
    Explore at:
    Dataset updated
    Mar 4, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this seminar, you will learn about the spatial analysis tools built directly into the ArcGIS.com map viewer. You will learn of the spatial analysis capabilities in ArcGIS Online for Organizations, whether for analyzing your own data, data that's publicly available on ArcGIS Online, or a combination of both. You will learn the overall features and benefits of ArcGIS Online Analysis, how to get started, and how to choose the right approach in order to solve a specific spatial problem.

  5. q

    Data management and introduction to QGIS and RStudio for spatial analysis

    • qubeshub.org
    Updated May 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Meghan MacLean (2020). Data management and introduction to QGIS and RStudio for spatial analysis [Dataset]. http://doi.org/10.25334/48G8-6Y44
    Explore at:
    Dataset updated
    May 22, 2020
    Dataset provided by
    QUBES
    Authors
    Meghan MacLean
    Description

    Students learn about the importance of good data management and begin to explore QGIS and RStudio for spatial analysis purposes. Students will explore National Land Cover Database raster data and made-up vector point data on both platforms.

  6. D

    Geospatial Analytics Software Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Geospatial Analytics Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-geospatial-analytics-software-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geospatial Analytics Software Market Outlook



    The global geospatial analytics software market size is projected to grow from USD 50.1 billion in 2023 to USD 114.5 billion by 2032, reflecting a robust compound annual growth rate (CAGR) of 9.5%. This remarkable growth is largely driven by the increasing adoption of geospatial technologies across various sectors, including urban planning, agriculture, transportation, and disaster management. The surge in the utilization of geospatial data for strategic decision-making, coupled with advancements in technology such as artificial intelligence (AI) and big data analytics, plays a pivotal role in propelling market growth.



    One of the key growth factors of the geospatial analytics software market is the rapid digital transformation occurring globally. Governments and enterprises are increasingly recognizing the value of geospatial data in enhancing operational efficiency and strategic planning. The rise in smart city initiatives across the world has bolstered the demand for geospatial analytics, as cities leverage these technologies to optimize infrastructure, manage resources, and improve public services. Additionally, the integration of AI and machine learning with geospatial analytics has enhanced the accuracy and predictive capabilities of these systems, further driving their adoption.



    Another significant driver is the growing need for disaster management and climate change adaptation. As the frequency and intensity of natural disasters increase due to climate change, there is a heightened demand for geospatial analytics to predict, monitor, and mitigate the impact of such events. Geospatial software aids in mapping hazard zones, planning evacuation routes, and assessing damage post-disaster. This capability is crucial for governments and organizations involved in disaster management and mitigation, thereby boosting the market growth.



    The transportation and logistics sector is also a major contributor to the growth of the geospatial analytics software market. The advent of autonomous vehicles and the continuous evolution of logistics and supply chain management have heightened the need for precise geospatial data. Geospatial analytics enables real-time tracking, route optimization, and efficient fleet management, which are critical for the smooth operation of transportation systems. This trend is expected to continue, driving the demand for geospatial analytics solutions in transportation and logistics.



    On a regional level, North America is anticipated to dominate the geospatial analytics software market, driven by technological advancements and substantial investments in geospatial technologies. The presence of major market players and the high adoption rate of advanced technologies in sectors such as defense, agriculture, and urban planning contribute to this dominance. However, the Asia Pacific region is expected to witness the highest growth rate, fueled by rapid urbanization, government initiatives for smart cities, and increasing investments in infrastructure development.



    GIS Software plays a crucial role in the geospatial analytics software market, offering powerful tools for data visualization, spatial analysis, and geographic mapping. As organizations across various sectors increasingly rely on geospatial data for strategic decision-making, GIS Software provides the necessary infrastructure to manage, analyze, and interpret this data effectively. Its integration with other technologies such as AI and machine learning enhances its capabilities, enabling more accurate predictions and insights. This makes GIS Software an indispensable component for industries like urban planning, agriculture, and transportation, where spatial data is pivotal for optimizing operations and improving outcomes. The growing demand for GIS Software is a testament to its importance in driving the geospatial analytics market forward.



    Component Analysis



    The geospatial analytics software market is segmented into software and services when considering components. The software segment includes comprehensive solutions that integrate various geospatial data types and provide analytical tools for mapping, visualization, and data processing. This segment is expected to hold the largest market share due to the increasing adoption of these solutions in various industries for efficient data management and decision-making. The continuous advancements in software capabilities, such as the inclusion of AI and machine learning algorithms

  7. a

    13.0 Approaches to Spatial Analysis

    • training-iowadot.opendata.arcgis.com
    • hub.arcgis.com
    Updated Mar 4, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 13.0 Approaches to Spatial Analysis [Dataset]. https://training-iowadot.opendata.arcgis.com/datasets/13-0-approaches-to-spatial-analysis
    Explore at:
    Dataset updated
    Mar 4, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Discover a simple method and approach that guides everything you do with spatial analysis. Learn best practices, explore case studies, and get workflows to help you more successfully analyze your data.

  8. Geospatial Analytics Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    Updated Apr 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Geospatial Analytics Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Italy, and UK), APAC (China, India, and Japan), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/geospatial-analytics-market-industry-analysis
    Explore at:
    Dataset updated
    Apr 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global, Germany, Canada, United States, United Kingdom
    Description

    Snapshot img

    Geospatial Analytics Market Size 2025-2029

    The geospatial analytics market size is forecast to increase by USD 178.6 billion, at a CAGR of 21.4% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing adoption of geospatial analytics in sectors such as healthcare and insurance. This trend is fueled by the ability of geospatial analytics to provide valuable insights from location-based data, leading to improved operational efficiency and decision-making. Additionally, emerging methods in data collection and generation, including the use of drones and satellite imagery, are expanding the scope and potential of geospatial analytics. However, the market faces challenges, including data privacy and security concerns. With the vast amounts of sensitive location data being collected and analyzed, ensuring its protection is crucial for companies to maintain trust with their customers and avoid regulatory penalties. Navigating these challenges and capitalizing on the opportunities presented by the growing adoption of geospatial analytics requires a strategic approach from industry players. Companies must prioritize data security, invest in advanced analytics technologies, and collaborate with stakeholders to build trust and transparency. By addressing these challenges and leveraging the power of geospatial analytics, businesses can gain a competitive edge and unlock new opportunities in various industries.

    What will be the Size of the Geospatial Analytics Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the increasing demand for location-specific insights across various sectors. Urban planning relies on geospatial optimization and data enrichment to enhance city designs and improve infrastructure. Cloud-based geospatial solutions facilitate real-time data access, enabling location intelligence for public safety and resource management. Spatial data standards ensure interoperability among different systems, while geospatial software and data visualization tools provide valuable insights from satellite imagery and aerial photography. Geospatial services offer data integration, spatial data accuracy, and advanced analytics capabilities, including 3D visualization, route optimization, and data cleansing. Precision agriculture and environmental monitoring leverage geospatial data to optimize resource usage and monitor ecosystem health. Infrastructure management and real estate industries rely on geospatial data for asset tracking and market analysis. Spatial statistics and disaster management applications help mitigate risks and respond effectively to crises. Geospatial data management and quality remain critical as the volume and complexity of data grow. Geospatial modeling and interoperability enable seamless data sharing and collaboration. Sensor networks and geospatial data acquisition technologies expand the reach of geospatial analytics, while AI-powered geospatial analytics offer new opportunities for predictive analysis and automation. The ongoing development of geospatial technologies and applications underscores the market's continuous dynamism, providing valuable insights and solutions for businesses and organizations worldwide.

    How is this Geospatial Analytics Industry segmented?

    The geospatial analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. TechnologyGPSGISRemote sensingOthersEnd-userDefence and securityGovernmentEnvironmental monitoringMining and manufacturingOthersApplicationSurveyingMedicine and public safetyMilitary intelligenceDisaster risk reduction and managementOthersTypeSurface and field analyticsGeovisualizationNetwork and location analyticsOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyItalyUKAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW)

    By Technology Insights

    The gps segment is estimated to witness significant growth during the forecast period.The market encompasses various applications and technologies, including geospatial optimization, data enrichment, location-based services (LBS), spatial data standards, public safety, geospatial software, resource management, location intelligence, geospatial data visualization, geospatial services, data integration, 3D visualization, satellite imagery, remote sensing, GIS platforms, spatial data infrastructure, aerial photography, route optimization, data cleansing, precision agriculture, spatial interpolation, geospatial databases, transportation planning, spatial data accuracy, spatial analysis, map projections, interactive maps, marketing analytics, d

  9. S

    Spatial Analysis Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Spatial Analysis Software Report [Dataset]. https://www.datainsightsmarket.com/reports/spatial-analysis-software-529883
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    May 11, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Spatial Analysis Software market is experiencing robust growth, driven by the increasing adoption of cloud-based solutions, the expanding use of drones and other data acquisition technologies for precise geographic data collection, and the rising demand for advanced analytics across diverse sectors. The market's expansion is fueled by the need for efficient geospatial data processing and interpretation in applications such as urban planning, infrastructure development, environmental monitoring, and precision agriculture. Key trends include the integration of Artificial Intelligence (AI) and Machine Learning (ML) for automating analysis and improving accuracy, the proliferation of readily available satellite imagery and sensor data, and the growing adoption of 3D modeling and visualization techniques. While data security concerns and the high initial investment costs for advanced software solutions pose some restraints, the overall market outlook remains positive, with a projected compound annual growth rate (CAGR) exceeding 10% (a reasonable estimate based on the rapid technological advancements and market penetration observed in related sectors). This growth is expected to be particularly strong in the North American and Asia-Pacific regions, driven by substantial government investments in infrastructure projects and burgeoning private sector adoption. The segmentation by application (architecture, engineering, and other sectors) reflects the versatility of spatial analysis software, enabling its use across various industries. Similarly, the choice between cloud-based and locally deployed solutions caters to specific organizational needs and technical capabilities. The competitive landscape is characterized by both established players and emerging technology companies, showcasing the dynamic nature of the market. Major players like Autodesk, Bentley Systems, and Trimble are leveraging their existing portfolios to integrate advanced spatial analysis capabilities, while smaller companies are focusing on niche applications and innovative analytical techniques. The ongoing advancements in both hardware and software, coupled with increasing data availability and affordability, are set to further fuel the market's growth in the coming years. The historical period (2019-2024) likely witnessed moderate growth as the market matured, laying the foundation for the accelerated expansion expected during the forecast period (2025-2033). Continued innovation and industry convergence will be key drivers shaping the future trajectory of the Spatial Analysis Software market.

  10. d

    Global 3D Maps | Spatial Models Training Data | 125K Locations | Machine...

    • datarade.ai
    .bin, .json, .csv
    Updated May 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Over The Reality (2025). Global 3D Maps | Spatial Models Training Data | 125K Locations | Machine Learning Data | 35TB Raw Images [Dataset]. https://datarade.ai/data-products/global-3d-maps-spatial-models-training-data-125k-location-over-the-reality
    Explore at:
    .bin, .json, .csvAvailable download formats
    Dataset updated
    May 21, 2025
    Dataset authored and provided by
    Over The Reality
    Area covered
    Curaçao, Latvia, Thailand, Saudi Arabia, Cambodia, Virgin Islands (British), Norway, Denmark, San Marino, Sao Tome and Principe
    Description

    Our dataset delivers unprecedented scale and diversity for geospatial AI training:

    🌍 Massive scale: 125,000 unique 3D map sequences and locations, 57,500,000 images, 35 TB of Data, orders of magnitude larger than datasets currently used for SOTA Vision/Spatial Models.

    ⏱️ Constantly growing dataset: 12k new 3D Map sequences and locations monthly.

    📷 Full-frame, high-res captures: OVER retains full-resolution, dynamic aspect-ratio images with complete Exif metadata (GPS, timestamp, device orientation), multiple resolutions 1920x1080 - 3840x2880, pre-computed COLMAP poses.

    🧭 Global diversity: Environments span urban, suburban, rural, and natural settings across 120+ countries, capturing architectural, infrastructural, and environmental variety.

    📐 Rich metadata: Per-image geolocation (±3 m accuracy), timestamps, device pose, COLMAP pose; per-map calibration data (camera intrinsics/extrinsics).

    🧠 Applications: Spatial Models Training, Multi-view stereo & NeRF/3DGS training, semantic segmentation, novel view synthesis, 3D object detection, geolocation, urban planning, AR/VR, autonomous navigation.

  11. S

    Spatial Analysis Software Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Spatial Analysis Software Report [Dataset]. https://www.marketreportanalytics.com/reports/spatial-analysis-software-53687
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global spatial analysis software market is experiencing robust growth, driven by increasing adoption across diverse sectors. The market, currently valued at approximately $5 billion (estimated based on typical market sizes for similar software segments), is projected to witness a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033. This expansion is fueled by several key factors. The rising availability of geospatial data, coupled with advancements in cloud computing and artificial intelligence (AI), is enabling more sophisticated and accessible spatial analysis capabilities. Industries such as urban planning, environmental management, logistics, and retail are leveraging these advancements for optimized resource allocation, improved decision-making, and enhanced operational efficiency. The integration of spatial analysis tools into Geographic Information Systems (GIS) platforms further enhances market penetration, streamlining workflows and facilitating comprehensive data analysis. Demand for predictive modeling and location intelligence solutions is also a major growth driver, particularly among businesses seeking to understand customer behavior, optimize supply chains, and mitigate risks. However, market growth is not without its challenges. The high cost of implementation and maintenance of advanced spatial analysis software can be a barrier to entry for smaller organizations. Furthermore, the complexity of these tools requires skilled professionals, leading to a shortage of trained personnel in some regions. Despite these restraints, the long-term outlook for the spatial analysis software market remains positive, with continued innovation and wider adoption expected across various applications and geographic locations. Specific segments like those focused on 3D spatial analysis and real-time data processing are anticipated to experience particularly strong growth in the coming years. The increasing prevalence of big data and the need for effective data visualization are key elements underpinning this dynamic market.

  12. D

    Geographic Information System Analytics Market Report | Global Forecast From...

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Geographic Information System Analytics Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/geographic-information-system-analytics-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Sep 12, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geographic Information System (GIS) Analytics Market Outlook



    The global Geographic Information System (GIS) Analytics market size is projected to grow remarkably from $9.1 billion in 2023 to $21.7 billion by 2032, exhibiting a compound annual growth rate (CAGR) of 10.2% during the forecast period. This substantial growth can be attributed to several factors such as technological advancements in GIS, increasing adoption in various industry verticals, and the rising importance of spatial data for decision-making processes.



    The primary growth driver for the GIS Analytics market is the increasing need for accurate and efficient spatial data analysis to support critical decision-making processes across various industries. Governments and private sectors are investing heavily in GIS technology to enhance urban planning, disaster management, and resource allocation. With the world becoming more data-driven, the reliance on GIS for geospatial data has surged, further propelling its market growth. Additionally, the integration of artificial intelligence (AI) and machine learning (ML) with GIS is revolutionizing the analytics capabilities, offering deeper insights and predictive analytics.



    Another significant growth factor is the expanding application of GIS analytics in disaster management and emergency response. Natural disasters such as hurricanes, earthquakes, and wildfires have highlighted the importance of GIS in disaster preparedness, response, and recovery. The ability to analyze spatial data in real-time allows for quicker and more efficient allocation of resources, thus minimizing the impact of disasters. Moreover, GIS analytics plays a pivotal role in climate change studies, helping scientists and policymakers understand and mitigate the adverse effects of climate change.



    The transportation sector is also a major contributor to the growth of the GIS Analytics market. With the rapid urbanization and increasing traffic congestion in cities, there is a growing demand for effective transport management solutions. GIS analytics helps in route optimization, traffic management, and infrastructure development, thereby enhancing the overall efficiency of transportation systems. The integration of GIS with Internet of Things (IoT) devices and sensors is further enhancing the capabilities of traffic management systems, contributing to the market growth.



    Regionally, North America is the largest market for GIS analytics, driven by the high adoption rate of advanced technologies and significant investment in geospatial infrastructure by both public and private sectors. The Asia Pacific region is expected to witness the highest growth rate during the forecast period due to the rapid urbanization, infrastructural developments, and increasing government initiatives for smart city projects. Europe and Latin America are also contributing significantly to the market growth owing to the increasing use of GIS in urban planning and environmental monitoring.



    Component Analysis



    The GIS Analytics market can be segmented by component into software, hardware, and services. The software segment holds the largest market share due to the continuous advancements in GIS software solutions that offer enhanced functionalities such as data visualization, spatial analysis, and predictive modeling. The increasing adoption of cloud-based GIS software solutions, which offer scalable and cost-effective options, is further driving the growth of this segment. Additionally, open-source GIS software is gaining popularity, providing more accessible and customizable options for users.



    The hardware segment includes GIS data collection devices such as GPS units, remote sensing instruments, and other data acquisition tools. This segment is witnessing steady growth due to the increasing demand for high-precision GIS data collection equipment. Technological advancements in hardware, such as the development of LiDAR and drones for spatial data collection, are significantly enhancing the capabilities of GIS analytics. Additionally, the integration of mobile GIS devices is facilitating real-time data collection, contributing to the growth of the hardware segment.



    The services segment encompasses consulting, implementation, training, and maintenance services. This segment is expected to grow at a significant pace due to the increasing demand for professional services to manage and optimize GIS systems. Organizations are seeking expert consultants to help them leverage GIS analytics for strategic decision-making and operational efficiency. Additionally, the growing complexity o

  13. Geospatial Analytics Market Size, Insights, Trends & Share Report, 2035

    • rootsanalysis.com
    Updated Sep 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roots Analysis (2024). Geospatial Analytics Market Size, Insights, Trends & Share Report, 2035 [Dataset]. https://www.rootsanalysis.com/geospatial-analytics-market
    Explore at:
    Dataset updated
    Sep 10, 2024
    Dataset provided by
    Authors
    Roots Analysis
    License

    https://www.rootsanalysis.com/privacy.htmlhttps://www.rootsanalysis.com/privacy.html

    Time period covered
    2021 - 2031
    Area covered
    Global
    Description

    The geospatial analytics market size is predicted to rise from $93.49 billion in 2024 to $362.45 billion by 2035, growing at a CAGR of 13.1% from 2024 to 2035.

  14. G

    Geospatial Data Analytics Market Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jan 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Geospatial Data Analytics Market Report [Dataset]. https://www.datainsightsmarket.com/reports/geospatial-data-analytics-market-12590
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Jan 10, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The size of the Geospatial Data Analytics market was valued at USD XXX Million in 2023 and is projected to reach USD XXX Million by 2032, with an expected CAGR of 12.81% during the forecast period.Geospatial data analytics is all about collecting data, analyzing and interpreting data tied to a geographical location. Its sources include information from GPS-enabled devices, satellites, remote sensing and social media sources. The analysis made possible by it helps businesses gain valuable insights from patterns, trends, and connections that would have otherwise been indistinguishable. Using the information to decide on everything from urban planning and resource management to marketing and logistics will be very possible. There are various reasons why the market for geospatial data analytics is highly driven by increased availability of data, technological advances, and increased business needs for data-driven decision-making. Recent developments include: June 2023: Intermap Technologies leveraged its high-resolution elevation data access to perform imagery correction services for a national government organization to support the development projects in El Salvador and Honduras in Central America. In partnership with GeoSolutions, Intermap enables the creation of precision maps that are invaluable resources in supporting community safety and resiliency., March 2023: Mach9, the company building the fastest technologies for geospatial production, introduced its first product. The new product leverages computer vision and AI to produce faster 2D and 3D CAD and GIS engineering deliverables. This product launch comes amidst Mach9's pivot to a software-first business model, which is a move that is primarily driven by the rising demand for tools that accelerate geospatial data processing and analysis for infrastructure management.. Key drivers for this market are: Increase in Adoption of Smart City Development, Introduction of 5G to Boost Market Growth. Potential restraints include: Strict government regulations, High-resolution Images Offered by Other Imaging Technologies. Notable trends are: Defense and Intelligence to be the Largest End-user Industry.

  15. n

    LANDISVIEW 2.0 : Free Spatial Data Analysis

    • cmr.earthdata.nasa.gov
    Updated Mar 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). LANDISVIEW 2.0 : Free Spatial Data Analysis [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214586381-SCIOPS
    Explore at:
    Dataset updated
    Mar 5, 2021
    Time period covered
    Jan 1, 1970 - Present
    Description

    LANDISVIEW is a tool, developed at the Knowledge Engineering Laboratory at Texas A&M University, to visualize and animate 8-bit/16-bit ERDAS GIS format (e.g., LANDIS and LANDIS-II output maps). It can also convert 8-bit/16-bit ERDAS GIS format into ASCII and batch files. LANDISVIEW provides two major functions: 1) File Viewer: Files can be viewed sequentially and an output can be generated as a movie file or as an image file. 2) File converter: It will convert the loaded files for compatibility with 3rd party software, such as Fragstats, a widely used spatial analysis tool. Some available features of LANDISVIEW include: 1) Display cell coordinates and values. 2) Apply user-defined color palette to visualize files. 3) Save maps as pictures and animations as video files (*.avi). 4) Convert ERDAS files into ASCII grids for compatibility with Fragstats. (Source: http://kelab.tamu.edu/)

  16. a

    13.1 Spatial Analysis with ArcGIS Online

    • training-iowadot.opendata.arcgis.com
    Updated Mar 4, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 13.1 Spatial Analysis with ArcGIS Online [Dataset]. https://training-iowadot.opendata.arcgis.com/datasets/13-1-spatial-analysis-with-arcgis-online
    Explore at:
    Dataset updated
    Mar 4, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this seminar, you will learn about the spatial analysis tools built directly into the ArcGIS.com map viewer. You will learn of the spatial analysis capabilities in ArcGIS Online for Organizations, whether for analyzing your own data, data that's publicly available on ArcGIS Online, or a combination of both. You will learn the overall features and benefits of ArcGIS Online Analysis, how to get started, and how to choose the right approach in order to solve a specific spatial problem.

  17. G

    Geographic Information Technology Services Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jul 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Geographic Information Technology Services Report [Dataset]. https://www.datainsightsmarket.com/reports/geographic-information-technology-services-1990611
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Jul 6, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geographic Information Technology (GIT) Services market is experiencing robust growth, driven by increasing adoption of location intelligence across diverse sectors. The market's expansion is fueled by the rising need for precise mapping, spatial data analysis, and improved decision-making capabilities. Factors such as urbanization, infrastructure development, and the burgeoning need for efficient resource management are significantly contributing to the market's upward trajectory. Furthermore, technological advancements, including the proliferation of high-resolution satellite imagery, drone technology, and sophisticated GIS software, are enhancing the capabilities and applications of GIT services. This is leading to wider adoption across various sectors, including urban planning, environmental management, transportation, and agriculture. We estimate the 2025 market size to be approximately $150 billion, based on observed growth trends in related technology sectors and expert analysis. A projected Compound Annual Growth Rate (CAGR) of 8% from 2025 to 2033 suggests continued expansion, potentially reaching a value exceeding $275 billion by 2033. While the market presents significant opportunities, certain challenges exist. High initial investment costs for software and hardware, coupled with the need for skilled professionals to operate and interpret the complex data, can pose barriers to entry for smaller companies. Data privacy concerns and the need for robust data security measures also represent challenges that need to be addressed. Despite these restraints, the overall outlook remains positive, driven by ongoing technological innovations and the increasing recognition of the value proposition offered by GIT services across a wide range of industries and applications. The market is segmented by service type (data acquisition, data processing, software development, etc.), industry vertical (government, utilities, etc.), and geographic region. Leading players like Esri, Hexagon, and Pitney Bowes continue to consolidate their market positions, while several regional players also contribute significantly.

  18. Geographic Information System Analytics Market Analysis, Size, and Forecast...

    • technavio.com
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). Geographic Information System Analytics Market Analysis, Size, and Forecast 2024-2028: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, South Korea), Middle East and Africa , and South America [Dataset]. https://www.technavio.com/report/geographic-information-system-analytics-market-industry-analysis
    Explore at:
    Dataset updated
    Jul 15, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    France, Germany, Canada, United States, United Kingdom, Global
    Description

    Snapshot img

    Geographic Information System Analytics Market Size 2024-2028

    The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.

    The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
    Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
    

    What will be the Size of the GIS Analytics Market during the forecast period?

    Request Free Sample

    The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
    GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
    

    How is this Geographic Information System Analytics Industry segmented?

    The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.

    End-user
    
      Retail and Real Estate
      Government
      Utilities
      Telecom
      Manufacturing and Automotive
      Agriculture
      Construction
      Mining
      Transportation
      Healthcare
      Defense and Intelligence
      Energy
      Education and Research
      BFSI
    
    
    Components
    
      Software
      Services
    
    
    Deployment Modes
    
      On-Premises
      Cloud-Based
    
    
    Applications
    
      Urban and Regional Planning
      Disaster Management
      Environmental Monitoring Asset Management
      Surveying and Mapping
      Location-Based Services
      Geospatial Business Intelligence
      Natural Resource Management
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        China
        India
        South Korea
    
    
      Middle East and Africa
    
        UAE
    
    
      South America
    
        Brazil
    
    
      Rest of World
    

    By End-user Insights

    The retail and real estate segment is estimated to witness significant growth during the forecast period.

    The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.

    The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector,

  19. D

    Location Analytics Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Location Analytics Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-location-analytics-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Authors
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Location Analytics Market Outlook



    The global location analytics market size was valued at approximately USD 18.2 billion in 2023 and is projected to reach around USD 65.4 billion by 2032, growing at a robust CAGR of 15.2% during the forecast period from 2024 to 2032. This impressive growth can be attributed to the escalating demand for spatial data and analytical solutions across various industries, aiming to enhance decision-making processes and optimize business operations.



    One of the primary growth factors driving the location analytics market is the increasing use of smartphones and the proliferation of Internet of Things (IoT) devices. These advancements have led to an explosion of location-based data, offering businesses the capability to analyze real-time information and make informed decisions. Moreover, the integration of location analytics with Geographic Information System (GIS) technologies has further enhanced the scope of applications, making it indispensable for sectors such as retail, transportation, and healthcare.



    Another significant growth driver is the rising need for businesses to gain a competitive edge through location-based insights. Companies are leveraging location analytics to understand customer behaviors, optimize supply chains, and enhance marketing strategies. For instance, retail businesses are increasingly using location analytics to determine ideal store locations, manage inventory efficiently, and provide personalized customer experiences. Similarly, in the transportation and logistics sector, location analytics is crucial for route optimization, fleet management, and reducing operational costs.



    The emergence of advanced technologies such as artificial intelligence (AI) and machine learning (ML) is also catalyzing the growth of the location analytics market. By incorporating AI and ML algorithms, location analytics solutions can offer predictive insights and trend analyses, enabling businesses to anticipate market changes and act proactively. This technological advancement is particularly beneficial for risk management and emergency response applications, where timely and accurate data is critical.



    In this context, Points-of-Interest (POI) Data Solutions have emerged as a crucial component in the location analytics ecosystem. POI data provides detailed information about specific locations, such as businesses, landmarks, and other significant places, which can be leveraged by companies to enhance their spatial analysis capabilities. By integrating POI data, businesses can gain deeper insights into consumer behavior, optimize location-based services, and improve decision-making processes. This data is particularly valuable for sectors like retail and hospitality, where understanding the proximity and accessibility of various points of interest can significantly impact customer engagement and operational efficiency. As the demand for precise and comprehensive location data continues to grow, POI Data Solutions are set to play a pivotal role in advancing the capabilities of location analytics platforms.



    Regionally, North America is expected to dominate the location analytics market due to the early adoption of advanced technologies and the presence of major market players in the region. Additionally, the Asia Pacific region is anticipated to witness significant growth, driven by the rapid urbanization, increasing smartphone penetration, and government initiatives promoting smart city projects. Europe is also poised for substantial growth, supported by stringent data regulations and the growing demand for spatial data analytics in various industries.



    Component Analysis



    The location analytics market can be segmented by component into software and services. The software segment includes tools and platforms that facilitate spatial data analysis, while the services segment encompasses consulting, integration, and maintenance services. The software segment is expected to hold a significant market share due to the increasing adoption of location analytics software solutions by enterprises to gain actionable insights from spatial data. These software solutions are designed to integrate seamlessly with existing business systems, providing users with real-time data analysis and visualization capabilities.



    Location analytics software is further categorized into desktop, mobile, and web-based platforms. Desktop solutions are traditionally used for comprehensive geospati

  20. G

    Geographic Information System Analytics Market Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Geographic Information System Analytics Market Report [Dataset]. https://www.marketreportanalytics.com/reports/geographic-information-system-analytics-market-10612
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 18, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geographic Information System (GIS) Analytics market is experiencing robust growth, projected to reach $15.10 billion in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 12.41% from 2025 to 2033. This expansion is fueled by several key drivers. Increasing adoption of cloud-based GIS solutions enhances accessibility and scalability for diverse industries. The growing need for data-driven decision-making across sectors like retail, real estate, government, and telecommunications is a significant catalyst. Furthermore, advancements in artificial intelligence (AI) and machine learning (ML) integrated with GIS analytics are revolutionizing spatial data analysis, enabling more sophisticated predictive modeling and insightful interpretations. The market's segmentation reflects this broad adoption, with retail and real estate, government and utilities, and telecommunications representing key end-user segments, each leveraging GIS analytics for distinct applications such as location optimization, infrastructure management, and network planning. Competitive pressures are shaping the market landscape, with established players like Esri, Trimble, and Autodesk innovating alongside emerging tech companies focusing on AI and specialized solutions. The North American market currently holds a significant share, driven by early adoption and technological advancements. However, Asia-Pacific is expected to witness substantial growth due to rapid urbanization and increasing investment in infrastructure projects. Market restraints primarily involve the high cost of implementation and maintenance of advanced GIS analytics solutions and the need for skilled professionals to effectively utilize these technologies. However, the overall outlook remains extremely positive, driven by continuous technological innovation and escalating demand across multiple sectors. The future trajectory of the GIS analytics market hinges on several factors. Continued investment in research and development, especially in AI and ML integration, will be crucial for unlocking new possibilities. Furthermore, the simplification of GIS analytics software and the development of user-friendly interfaces will broaden accessibility beyond specialized technical experts. Growing data volumes from various sources (IoT, remote sensing) present both opportunities and challenges; efficient data management and analytics techniques will be paramount. The market's success also depends on addressing cybersecurity concerns related to sensitive geospatial data. Strong partnerships between technology providers and end-users will be vital in optimizing solution implementation and maximizing return on investment. Government initiatives promoting the use of GIS technology for smart city development and infrastructure planning will also play a significant role in market expansion. Overall, the GIS analytics market is poised for sustained growth, driven by technological advancements, increasing data availability, and heightened demand for location-based intelligence across a wide range of industries.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ckan.americaview.org (2021). Open-Source GIScience Online Course [Dataset]. https://ckan.americaview.org/dataset/open-source-giscience-online-course
Organization logo

Open-Source GIScience Online Course

Explore at:
Dataset updated
Nov 2, 2021
Dataset provided by
CKANhttps://ckan.org/
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.

Search
Clear search
Close search
Google apps
Main menu