100+ datasets found
  1. GIS Data Management Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). GIS Data Management Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-gis-data-management-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    GIS Data Management Market Outlook



    The global GIS Data Management market size is projected to grow from USD 12.5 billion in 2023 to USD 25.6 billion by 2032, exhibiting a CAGR of 8.4% during the forecast period. This impressive growth is driven by the increasing adoption of geographic information systems (GIS) across various sectors such as urban planning, disaster management, and agriculture. The rising need for effective data management systems to handle the vast amounts of spatial data generated daily also significantly contributes to the market's expansion.



    One of the primary growth factors for the GIS Data Management market is the burgeoning demand for spatial data analytics. Businesses and governments are increasingly leveraging GIS data to make informed decisions and strategize operational efficiencies. With the rapid urbanization and industrialization worldwide, there's an unprecedented need to manage and analyze geographic data to plan infrastructure, monitor environmental changes, and optimize resource allocation. Consequently, the integration of GIS with advanced technologies like artificial intelligence and machine learning is becoming more prominent, further fueling market growth.



    Another significant factor propelling the market is the advancement in GIS technology itself. The development of sophisticated software and hardware solutions for GIS data management is making it easier for organizations to capture, store, analyze, and visualize geographic data. Innovations such as 3D GIS, real-time data processing, and cloud-based GIS solutions are transforming the landscape of geographic data management. These advancements are not only enhancing the capabilities of GIS systems but also making them more accessible to a broader range of users, from small enterprises to large governmental agencies.



    The growing implementation of GIS in disaster management and emergency response activities is also a critical factor driving market growth. GIS systems play a crucial role in disaster preparedness, response, and recovery by providing accurate and timely geographic data. This data helps in assessing risks, coordinating response activities, and planning resource deployment. With the increasing frequency and intensity of natural disasters, the reliance on GIS data management systems is expected to grow, resulting in higher demand for GIS solutions across the globe.



    Geospatial Solutions are becoming increasingly integral to the GIS Data Management landscape, offering enhanced capabilities for spatial data analysis and visualization. These solutions provide a comprehensive framework for integrating various data sources, enabling users to gain deeper insights into geographic patterns and trends. As organizations strive to optimize their operations and decision-making processes, the demand for robust geospatial solutions is on the rise. These solutions not only facilitate the efficient management of spatial data but also support advanced analytics and real-time data processing. By leveraging geospatial solutions, businesses and governments can improve their strategic planning, resource allocation, and environmental monitoring efforts, thereby driving the overall growth of the GIS Data Management market.



    Regionally, North America holds a significant share of the GIS Data Management market, driven by high technology adoption rates and substantial investments in GIS technologies by government and private sectors. However, Asia Pacific is anticipated to witness the highest growth rate during the forecast period. The rapid urbanization, economic development, and increasing adoption of advanced technologies in countries like China and India are major contributors to this growth. Governments in this region are also focusing on smart city projects and infrastructure development, which further boosts the demand for GIS data management solutions.



    Component Analysis



    The GIS Data Management market is segmented by component into software, hardware, and services. The software segment is the largest and fastest-growing segment, driven by the continuous advancements in GIS software capabilities. GIS software applications enable users to analyze spatial data, create maps, and manage geographic information efficiently. The integration of GIS software with other enterprise systems and the development of user-friendly interfaces are key factors propelling the growth of this segment. Furthermore, the rise of mobile GIS applications, which allow field data collectio

  2. BSEE Data Center - Geographic Mapping Data in Digital Format

    • s.cnmilf.com
    • catalog.data.gov
    Updated Apr 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Safety and Environmental Enforcement (2025). BSEE Data Center - Geographic Mapping Data in Digital Format [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/bsee-data-center-geographic-mapping-data-in-digital-format
    Explore at:
    Dataset updated
    Apr 4, 2025
    Dataset provided by
    Bureau of Safety and Environmental Enforcementhttp://www.bsee.gov/
    Description

    The geographic data are built from the Technical Information Management System (TIMS). TIMS consists of two separate databases: an attribute database and a spatial database. The attribute information for offshore activities is stored in the TIMS database. The spatial database is a combination of the ARC/INFO and FINDER databases and contains all the coordinates and topology information for geographic features. The attribute and spatial databases are interconnected through the use of common data elements in both databases, thereby creating the spatial datasets. The data in the mapping files are made up of straight-line segments. If an arc existed in the original data, it has been replaced with a series of straight lines that approximate the arc. The Gulf of America OCS Region stores all its mapping data in longitude and latitude format. All coordinates are in NAD 27. Data can be obtained in three types of digital formats: INTERACTIVE MAP: The ArcGIS web maps are an interactive display of geographic information, containing a basemap, a set of data layers (many of which include interactive pop-up windows with information about the data), an extent, navigation tools to pan and zoom, and additional tools for geospatial analysis. SHP: A Shapefile is a digital vector (non-topological) storage format for storing geometric _location and associated attribute information. Shapefiles can support point, line, and area features with attributes held in a dBASE format file. GEODATABASE: An ArcGIS geodatabase is a collection of geographic datasets of various types held in a common file system folder, a Microsoft Access database, or a multiuser relational DBMS (such as Oracle, Microsoft SQL Server, PostgreSQL, Informix, or IBM DB2). The geodatabase is the native data structure for ArcGIS and is the primary data format used for editing and data management.

  3. BLM Alaska Public Land Survey System (PLSS) Cadastral National Spatial Data...

    • gis.data.alaska.gov
    • catalog.data.gov
    • +2more
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Land Management (2025). BLM Alaska Public Land Survey System (PLSS) Cadastral National Spatial Data Infrastructure (CadNSDI) [Dataset]. https://gis.data.alaska.gov/maps/b656d43688c441e4ba445d617ffb0181
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset authored and provided by
    Bureau of Land Managementhttp://www.blm.gov/
    Area covered
    Description

    BLM Alaska PLSS Intersected: This dataset represents the GIS Version of the Public Land Survey System including both rectangular and non-rectangular surveys. The primary source for the data is cadastral survey records housed by the BLM supplemented with local records and geographic control coordinates from states, counties as well as other federal agencies such as the USGS and USFS. The data has been converted from source documents to digital form and transferred into a GIS format that is compliant with FGDC Cadastral Data Content Standards and Guidelines for publication. This data is optimized for data publication and sharing rather than for specific "production" or operation and maintenance. This data set includes the following: PLSS Fully Intersected (all of the PLSS feature at the atomic or smallest polygon level), PLSS Townships, First Divisions and Second Divisions (the hierarchical break down of the PLSS Rectangular surveys) PLSS Special surveys (non rectangular components of the PLSS) Meandered Water, Corners and Conflicted Areas (known areas of gaps or overlaps between Townships or state boundaries). The Entity-Attribute section of this metadata describes these components in greater detail.

  4. e

    Geodatabase for the Baltimore Ecosystem Study Spatial Data

    • portal.edirepository.org
    • search.dataone.org
    application/vnd.rar
    Updated May 4, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jarlath O'Neal-Dunne; Morgan Grove (2012). Geodatabase for the Baltimore Ecosystem Study Spatial Data [Dataset]. http://doi.org/10.6073/pasta/377da686246f06554f7e517de596cd2b
    Explore at:
    application/vnd.rar(29574980 kilobyte)Available download formats
    Dataset updated
    May 4, 2012
    Dataset provided by
    EDI
    Authors
    Jarlath O'Neal-Dunne; Morgan Grove
    Time period covered
    Jan 1, 1999 - Jun 1, 2014
    Area covered
    Description

    The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making.

       BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions.
    
    
       Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself.
    
    
       For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise.
    
    
       Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. 
    
    
       This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery.
    
    
       See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt
    
    
       See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
    
  5. Z

    Data from: PaleoRiada: A New Integrated Spatial Database of Palaeofloods in...

    • data.niaid.nih.gov
    • produccioncientifica.ucm.es
    • +2more
    Updated Nov 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mateos, Rosa María (2024). PaleoRiada: A New Integrated Spatial Database of Palaeofloods in Spain [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_13219936
    Explore at:
    Dataset updated
    Nov 19, 2024
    Dataset provided by
    Díez Herrero, Andrés
    Sandoval-Rincón, Kelly Patricia
    Garrote, Julio
    Ballesteros-Cánovas, Juan
    Cervel, Silvia
    Lopez Vinielles, Juan
    Mateos, Rosa María
    Benito, Gerardo
    Hernández, José Román
    Vázquez Tarrío, Daniel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Spain
    Description

    PaleoRiada is the first national geographic database that compiles data on palaeoflood records published in scientific journals, book chapters, conference presentations, and publicly accessible scientific-technical reports. This database has been implemented through a Database Management System (Microsoft Access).

    Funding:

    Grants 2022-2023 and 2023-2026, signed between the Spanish General Directorate for Water (DGA-MITERD) and the Spanish Research Council (CSIC-MCIU), which include actions 20223TE003 and 20233TE012 (Tarquín project in IGME-CSIC).

    Community of Madrid (Predoctoral research grant PIPF-2022/ECO-24879)

  6. Geospatial Analytics Software Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Geospatial Analytics Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-geospatial-analytics-software-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geospatial Analytics Software Market Outlook



    The global geospatial analytics software market size is projected to grow from USD 50.1 billion in 2023 to USD 114.5 billion by 2032, reflecting a robust compound annual growth rate (CAGR) of 9.5%. This remarkable growth is largely driven by the increasing adoption of geospatial technologies across various sectors, including urban planning, agriculture, transportation, and disaster management. The surge in the utilization of geospatial data for strategic decision-making, coupled with advancements in technology such as artificial intelligence (AI) and big data analytics, plays a pivotal role in propelling market growth.



    One of the key growth factors of the geospatial analytics software market is the rapid digital transformation occurring globally. Governments and enterprises are increasingly recognizing the value of geospatial data in enhancing operational efficiency and strategic planning. The rise in smart city initiatives across the world has bolstered the demand for geospatial analytics, as cities leverage these technologies to optimize infrastructure, manage resources, and improve public services. Additionally, the integration of AI and machine learning with geospatial analytics has enhanced the accuracy and predictive capabilities of these systems, further driving their adoption.



    Another significant driver is the growing need for disaster management and climate change adaptation. As the frequency and intensity of natural disasters increase due to climate change, there is a heightened demand for geospatial analytics to predict, monitor, and mitigate the impact of such events. Geospatial software aids in mapping hazard zones, planning evacuation routes, and assessing damage post-disaster. This capability is crucial for governments and organizations involved in disaster management and mitigation, thereby boosting the market growth.



    The transportation and logistics sector is also a major contributor to the growth of the geospatial analytics software market. The advent of autonomous vehicles and the continuous evolution of logistics and supply chain management have heightened the need for precise geospatial data. Geospatial analytics enables real-time tracking, route optimization, and efficient fleet management, which are critical for the smooth operation of transportation systems. This trend is expected to continue, driving the demand for geospatial analytics solutions in transportation and logistics.



    On a regional level, North America is anticipated to dominate the geospatial analytics software market, driven by technological advancements and substantial investments in geospatial technologies. The presence of major market players and the high adoption rate of advanced technologies in sectors such as defense, agriculture, and urban planning contribute to this dominance. However, the Asia Pacific region is expected to witness the highest growth rate, fueled by rapid urbanization, government initiatives for smart cities, and increasing investments in infrastructure development.



    GIS Software plays a crucial role in the geospatial analytics software market, offering powerful tools for data visualization, spatial analysis, and geographic mapping. As organizations across various sectors increasingly rely on geospatial data for strategic decision-making, GIS Software provides the necessary infrastructure to manage, analyze, and interpret this data effectively. Its integration with other technologies such as AI and machine learning enhances its capabilities, enabling more accurate predictions and insights. This makes GIS Software an indispensable component for industries like urban planning, agriculture, and transportation, where spatial data is pivotal for optimizing operations and improving outcomes. The growing demand for GIS Software is a testament to its importance in driving the geospatial analytics market forward.



    Component Analysis



    The geospatial analytics software market is segmented into software and services when considering components. The software segment includes comprehensive solutions that integrate various geospatial data types and provide analytical tools for mapping, visualization, and data processing. This segment is expected to hold the largest market share due to the increasing adoption of these solutions in various industries for efficient data management and decision-making. The continuous advancements in software capabilities, such as the inclusion of AI and machine learning algorithms

  7. NSW Foundation Spatial Data Framework - Positioning - Survey Control...

    • data.nsw.gov.au
    pdf
    Updated Oct 19, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Customer Service (2018). NSW Foundation Spatial Data Framework - Positioning - Survey Control Information Management System (SCIMS) [Dataset]. https://data.nsw.gov.au/data/dataset/nsw-foundation-spatial-data-framework-positioning-survey-control-information-management-system-scims
    Explore at:
    pdf(1291812)Available download formats
    Dataset updated
    Oct 19, 2018
    Dataset provided by
    Department of Customer Service of New South Waleshttp://nsw.gov.au/customer-service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New South Wales
    Description

    The Survey Control Information Management System (SCIMS) is a database that contains all of the coordinates, heights and related information for NSW survey marks that form the official State Survey Control Network.

    The network is represented physically by over 250,000 survey marks positioned at varying densities across NSW. Each survey mark is assigned a horizontal and vertical spatial position and a class and order, according to accuracy, monument and other factors. Detailed metadata information is also recorded. SCIMS data is supplied to the surveying and spatial industries through the SCIMS online internet product.

  8. G

    Geographic Information System Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Geographic Information System Report [Dataset]. https://www.datainsightsmarket.com/reports/geographic-information-system-1364410
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    May 16, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geographic Information System (GIS) market is experiencing robust growth, projected to reach $2979.7 million in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 5.5% from 2025 to 2033. This expansion is driven by several key factors. Increasing urbanization and infrastructure development necessitate sophisticated spatial data management and analysis, fueling demand for GIS solutions across various sectors. The construction industry, for instance, leverages GIS for project planning, site surveying, and resource management, while utilities companies use it for network optimization and asset management. Furthermore, the growing adoption of cloud-based GIS platforms enhances accessibility, scalability, and cost-effectiveness, attracting a wider user base. Precision agriculture, another significant driver, utilizes GIS for efficient land management, crop monitoring, and yield optimization. Technological advancements, particularly in areas like sensor technology (imaging sensors, LIDAR), GNSS/GPS, and improved data analytics capabilities, continuously enhance GIS functionalities and expand its applications. Competitive landscape includes major players like Esri, Hexagon, and Autodesk, driving innovation and fostering market competitiveness. However, the market faces some challenges. The high initial investment required for implementing GIS solutions, along with the need for specialized technical expertise, can be barriers to entry, particularly for smaller businesses. Data security and privacy concerns also remain a significant factor influencing market growth. Despite these restraints, the long-term outlook for the GIS market remains positive, driven by continued technological progress, increasing data availability, and growing awareness of the benefits of spatial data analysis across diverse industries. The market is expected to witness substantial growth in regions like Asia Pacific and North America owing to high adoption rates and increasing investment in infrastructure projects. The consistent improvements in accuracy and cost-effectiveness of GIS technology will continue to open up new application areas, further fueling market expansion throughout the forecast period.

  9. BLM National SMA Surface Management Agency Area Polygons

    • catalog.data.gov
    • datasets.ai
    • +4more
    Updated May 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Land Management (2025). BLM National SMA Surface Management Agency Area Polygons [Dataset]. https://catalog.data.gov/dataset/blm-natl-sma-surface-management-agency-area-polygons-national-geospatial-data-asset-ngda
    Explore at:
    Dataset updated
    May 31, 2025
    Dataset provided by
    Bureau of Land Managementhttp://www.blm.gov/
    Description

    The Surface Management Agency (SMA) Geographic Information System (GIS) dataset depicts Federal land for the United States and classifies this land by its active Federal surface managing agency. The SMA feature class covers the continental United States, Alaska, Hawaii, Puerto Rico, Guam, American Samoa and the Virgin Islands. A Federal SMA agency refers to a Federal agency with administrative jurisdiction over the surface of Federal lands. Jurisdiction over the land is defined when the land is either: Withdrawn by some administrative or legislative action, or Acquired or Exchanged by a Federal Agency. This layer is a dynamic assembly of spatial data layers maintained at various federal and local government offices. The GIS data contained in this dataset represents the polygon features that show the boundaries for Surface Management Agency and the surface extent of each Federal agency’s surface administrative jurisdiction. SMA data depicts current withdrawn areas for a particular agency and (when appropriate) includes land that was acquired or exchanged and is located outside of a withdrawal area for that agency. The SMA data do not illustrate land status ownership pattern boundaries or contain land ownership attribute details. The SMA Withdrawals feature class covers the continental United States, Alaska, Hawaii, Puerto Rico, Guam, American Samoa and the Virgin Islands. A Federal SMA Withdrawal is defined by formal actions that set aside, withhold, or reserve Federal land by statute or administrative order for public purposes. A withdrawal creates a title encumbrance on the land. Withdrawals must accomplish one or more of the following: A. Transfer total or partial jurisdiction of Federal land between Federal agencies. B. Close (segregate) Federal land to operation of all or some of the public land laws and/or mineral laws. C. Dedicate Federal land to a specific public purpose. There are four major categories of formal withdrawals: (1) Administrative, (2) Presidential Proclamations, (3) Congressional, and (4) Federal Power Act (FPA) or Federal Energy Regulatory Commission (FERC) Withdrawals. These SMA Withdrawals will include the present total extent of withdrawn areas rather than all of the individual withdrawal actions that created them over time. A Federal SMA agency refers to a Federal agency with administrative jurisdiction over the surface of Federal lands. Jurisdiction over the land is defined when the land is either: Withdrawn by some administrative or legislative action, or Acquired or Exchanged by a Federal Agency. This layer is a dynamic assembly of spatial data layers maintained at various federal and local government offices. The GIS data contained in this dataset represents the polygon features that show the boundaries for Surface Management Agency and the surface extent of each Federal agency’s surface administrative jurisdiction. SMA data depicts current withdrawn areas for a particular agency and (when appropriate) includes land that was acquired or exchanged and is located outside of a withdrawal area for that agency. The SMA data do not illustrate land status ownership pattern boundaries or contain land ownership attribute details.

  10. m

    Correction workflow and spatial database model of Aquopts - A Hydrological...

    • data.mendeley.com
    • narcis.nl
    Updated Mar 27, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alisson Carmo (2019). Correction workflow and spatial database model of Aquopts - A Hydrological Optical Data Processing System [Dataset]. http://doi.org/10.17632/f2tz548v2c.1
    Explore at:
    Dataset updated
    Mar 27, 2019
    Authors
    Alisson Carmo
    License

    http://www.gnu.org/licenses/gpl-3.0.en.htmlhttp://www.gnu.org/licenses/gpl-3.0.en.html

    Description

    In order to improve the capacity of storage, exploration and processing of sensor data, a spatial DBMS was used and the Aquopts system was implemented.

    In field surveys using different sensors on the aquatic environment, the existence of spatial attributes in the dataset is common, motivating the adoption of PostgreSQL and its spatial extension PostGIS. To enable the insertion of new data sets as well as new devices and sensing equipment, the database was modeled to support updates and provide structures for storing all the data collected in the field campaigns in conjunction with other possible future data sources. The database model provides resources to manage spatial and temporal data and allows flexibility to select and filter the dataset.

    The data model ensures the storage integrity of the information related to the samplings performed during the field survey in an architecture that benefits the organization and management of the data. However, in addition to the storage specified on the data model, there are several procedures that need to be applied to the data to prepare it for analysis. Some validations are important to identify spurious data that may represent important sources of information about data quality. Other corrections are essential to tweak the data and eliminate undesirable effects. Some equations can be used to produce other factors that can be obtained from the combination of attributes. In general, the processing steps comprise a cycle of important operations that are directly related to the characteristics of the data set. Considering the data of the sensors stored in the database, an interactive prototype system, named Aquopts, was developed to perform the necessary standardization and basic corrections and produce useful data for analysis, according to the correction methods known in the literature.

    The system provides resources for the analyst to automate the process of reading, inserting, integrating, interpolating, correcting, and other calculations that are always repeated after exporting field campaign data and producing new data sets. All operations and processing required for data integration and correction have been implemented from the PHP and Python language and are available from a Web interface, which can be accessed from any computer connected to the internet. The data access cab be access online (http://sertie.fct.unesp.br/aquopts), but the resources are restricted by registration and permissions for each user. After their identification, the system evaluates the access permissions and makes available the options of insertion of new datasets.

    The source-code of the entire Aquopts system are available at: https://github.com/carmoafc/aquopts

    The system and additional results were described on the official paper (under review)

  11. NPS - Points of Interest (POIs) - Geographic Coordinate System

    • public-nps.opendata.arcgis.com
    • mapdirect-fdep.opendata.arcgis.com
    • +2more
    Updated Mar 29, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2018). NPS - Points of Interest (POIs) - Geographic Coordinate System [Dataset]. https://public-nps.opendata.arcgis.com/items/9e828162f2ee47ab820cfdee94fbbf7e
    Explore at:
    Dataset updated
    Mar 29, 2018
    Dataset authored and provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Description

    The purpose of creating and utilizing a spatial data standard is to consolidate spatial data and integrate the existing feature attribute information into a national database for reporting, planning, analysis and sharing purposes.

    The primary benefit of using a spatial data standard remains the organization and documentation of data to allow users to share spatial data between parks, regions, programs, other federal agencies, and the public, at the national level.

    Ultimately, the point of interest container will go through a formal data standard development process. This will lead to wider use and more comprehensive access to all of our available point of interest data and provide a more integrated approach to point of interest data management across the NPS and at all levels: park, region, program, and national. Until then, the point of interest spatial data container will serve as a pseudo-standard and enable data stewards to begin standardizing point of interest data.

  12. G

    Geographic Information System Analytics Market Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Geographic Information System Analytics Market Report [Dataset]. https://www.marketreportanalytics.com/reports/geographic-information-system-analytics-market-10612
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 18, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geographic Information System (GIS) Analytics market is experiencing robust growth, projected to reach $15.10 billion in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 12.41% from 2025 to 2033. This expansion is fueled by several key drivers. Increasing adoption of cloud-based GIS solutions enhances accessibility and scalability for diverse industries. The growing need for data-driven decision-making across sectors like retail, real estate, government, and telecommunications is a significant catalyst. Furthermore, advancements in artificial intelligence (AI) and machine learning (ML) integrated with GIS analytics are revolutionizing spatial data analysis, enabling more sophisticated predictive modeling and insightful interpretations. The market's segmentation reflects this broad adoption, with retail and real estate, government and utilities, and telecommunications representing key end-user segments, each leveraging GIS analytics for distinct applications such as location optimization, infrastructure management, and network planning. Competitive pressures are shaping the market landscape, with established players like Esri, Trimble, and Autodesk innovating alongside emerging tech companies focusing on AI and specialized solutions. The North American market currently holds a significant share, driven by early adoption and technological advancements. However, Asia-Pacific is expected to witness substantial growth due to rapid urbanization and increasing investment in infrastructure projects. Market restraints primarily involve the high cost of implementation and maintenance of advanced GIS analytics solutions and the need for skilled professionals to effectively utilize these technologies. However, the overall outlook remains extremely positive, driven by continuous technological innovation and escalating demand across multiple sectors. The future trajectory of the GIS analytics market hinges on several factors. Continued investment in research and development, especially in AI and ML integration, will be crucial for unlocking new possibilities. Furthermore, the simplification of GIS analytics software and the development of user-friendly interfaces will broaden accessibility beyond specialized technical experts. Growing data volumes from various sources (IoT, remote sensing) present both opportunities and challenges; efficient data management and analytics techniques will be paramount. The market's success also depends on addressing cybersecurity concerns related to sensitive geospatial data. Strong partnerships between technology providers and end-users will be vital in optimizing solution implementation and maximizing return on investment. Government initiatives promoting the use of GIS technology for smart city development and infrastructure planning will also play a significant role in market expansion. Overall, the GIS analytics market is poised for sustained growth, driven by technological advancements, increasing data availability, and heightened demand for location-based intelligence across a wide range of industries.

  13. GIS Asset Management Softwares Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). GIS Asset Management Softwares Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-gis-asset-management-softwares-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    GIS Asset Management Software Market Outlook



    The global GIS Asset Management Software market size was valued at approximately USD 3.5 billion in 2023 and is forecasted to reach an estimated USD 7.8 billion by 2032, growing at a CAGR of 9.2% over the forecast period. The significant growth factor behind this trend is the increasing adoption of GIS technology across various industries to enhance operational efficiency and decision-making capabilities.



    One of the primary growth drivers for the GIS Asset Management Software market is the rising need for efficient asset management solutions across multiple sectors, such as utilities, transportation, and government. The ability of GIS technology to provide real-time data and spatial analysis helps organizations better manage their assets, reduce operational costs, and improve service delivery. Additionally, the integration of advanced technologies like IoT and AI with GIS platforms is further enhancing the capabilities of these systems, making them indispensable tools for modern asset management.



    Another crucial factor contributing to the market's growth is the increasing investment in infrastructure development worldwide. Governments and private organizations are heavily investing in constructing new infrastructure and upgrading existing ones. GIS Asset Management Software plays a vital role in planning, monitoring, and maintaining infrastructure projects, thereby ensuring their longevity and optimal performance. The growing emphasis on smart city initiatives is also driving the demand for GIS solutions as they help in efficient urban planning and management.



    The rising awareness about the benefits of GIS technology among small and medium enterprises (SMEs) is also fueling market growth. Previously dominated by large enterprises, the market is now witnessing increased adoption among SMEs due to the availability of cost-effective and scalable GIS solutions. These software systems are helping SMEs streamline their operations, optimize resource utilization, and gain a competitive edge in the market. Additionally, the shift towards cloud-based solutions is making GIS technology more accessible and affordable for smaller organizations.



    From a regional perspective, North America is expected to hold the largest market share due to the early adoption of advanced technologies and the presence of major GIS software providers. However, the Asia Pacific region is anticipated to witness the highest growth rate over the forecast period, driven by rapid urbanization, infrastructure development, and increasing government initiatives to modernize asset management practices. Europe, Latin America, and the Middle East & Africa are also expected to contribute significantly to the market growth, with varying degrees of adoption and investment in GIS technology.



    Component Analysis



    Software



    The software segment holds a significant share in the GIS Asset Management Software market due to the essential role that GIS software plays in managing and analyzing spatial data. GIS software provides organizations with the tools needed to capture, store, manipulate, analyze, manage, and present geographic data. This functionality is crucial for managing assets spread across large geographic areas, such as utilities and transportation networks. The continuous development of new features and capabilities, such as 3D visualization, real-time data integration, and advanced analytics, is further driving the adoption of GIS software across various industries.



    Moreover, the rise of customized GIS software solutions tailored to specific industry needs is another factor contributing to the growth of the software segment. For instance, utilities require software that can handle complex network data, whereas natural resource management might need tools for environmental monitoring and analysis. Customized solutions enhance the usability and effectiveness of GIS software, making it more appealing to organizations with unique requirements. Additionally, the integration of GIS software with other enterprise systems, such as ERP and CRM, is streamlining operations and improving overall efficiency.



    The increasing adoption of cloud-based GIS software is also shaping the market dynamics. Cloud-based solutions offer several advantages, such as reduced IT infrastructure costs, scalability, and remote accessibility, which are particularly beneficial for SMEs. These solutions are making GIS technology more accessible to a broader range of organizations, thereby expanding the marke

  14. d

    Geographic Information System (GIS) Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Geographic Information System (GIS) Report [Dataset]. https://www.datainsightsmarket.com/reports/geographic-information-system-gis-1445358
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    May 19, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geographic Information System (GIS) market, currently valued at approximately $10.88 billion (2025), is poised for robust growth, projected to expand at a Compound Annual Growth Rate (CAGR) of 5.8% from 2025 to 2033. This expansion is driven by several key factors. Increasing urbanization and infrastructure development necessitate advanced spatial data management and analysis capabilities offered by GIS. The rising adoption of cloud-based GIS solutions, providing scalability and cost-effectiveness, further fuels market growth. Furthermore, the integration of GIS with other technologies like IoT (Internet of Things) and AI (Artificial Intelligence) is unlocking new applications across diverse sectors, enhancing decision-making processes and improving operational efficiency. The oil and gas, construction, mining, and transportation industries are major contributors to market demand, leveraging GIS for asset management, resource exploration, and infrastructure planning. The market segmentation reveals a dynamic landscape. Hardware components, including GIS collectors, total stations, and LIDAR systems, constitute a significant portion of the market, alongside the rapidly expanding software segment. While North America currently holds a substantial market share, driven by early adoption and technological advancements, the Asia-Pacific region exhibits significant growth potential, fuelled by rapid infrastructure development and increasing government investments in digital technologies. Competition is intense, with established players like Hexagon, Topcon, Trimble, and Autodesk vying for market dominance alongside emerging players. While challenges exist, such as the high initial investment costs for implementing GIS solutions and the need for skilled professionals, the overall market trajectory indicates continued expansion and innovation in the coming years. The ongoing evolution of GIS technology, coupled with the expanding range of applications, ensures its continued relevance across diverse industries.

  15. S

    Spatial Information Service Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Spatial Information Service Report [Dataset]. https://www.marketreportanalytics.com/reports/spatial-information-service-72358
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Apr 9, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Spatial Information Service market is experiencing robust growth, projected to reach $3360 million in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 12.8% from 2025 to 2033. This expansion is fueled by several key factors. Increased urbanization and the need for efficient city planning and management are driving demand for sophisticated spatial data solutions in both city and rural applications. The rising adoption of cloud-based solutions offers scalability and cost-effectiveness, further boosting market growth. Furthermore, advancements in technologies like AI and machine learning are enhancing the analytical capabilities of spatial information services, leading to better decision-making across various sectors, including transportation, agriculture, and environmental monitoring. The market's segmentation reflects this diverse application landscape, with cloud-based services gaining traction over on-premise solutions due to their flexibility and accessibility. Major players like Esri, Hexagon AB, and Trimble are strategically investing in R&D and acquisitions to strengthen their market positions and cater to the evolving needs of diverse user segments. Growth is expected to be geographically diverse, with North America and Europe maintaining significant market shares. However, rapid infrastructure development and increasing digitalization in regions like Asia Pacific and the Middle East & Africa are expected to drive substantial growth in these markets over the forecast period. While the market presents significant opportunities, potential restraints include data security and privacy concerns, the high initial investment costs for certain solutions, and the need for skilled professionals to manage and interpret complex spatial data. The ongoing evolution of relevant technologies and the integration of spatial data with other information systems will be critical factors shaping the market’s trajectory in the coming years. The market is expected to see consolidation among key players, with mergers and acquisitions driving growth and innovation.

  16. BLM - National Invasive Species Information Management System - Plants

    • gbif.org
    Updated Mar 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Reitsma; John Reitsma (2023). BLM - National Invasive Species Information Management System - Plants [Dataset]. http://doi.org/10.15468/y4xndh
    Explore at:
    Dataset updated
    Mar 1, 2023
    Dataset provided by
    Global Biodiversity Information Facilityhttps://www.gbif.org/
    United States Geological Survey
    Authors
    John Reitsma; John Reitsma
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    Dec 31, 2012 - Jan 30, 2019
    Area covered
    Description

    The Bureau of Land Management's National Invasive Species Information Management System (NISIMS) is designed to collect field data and store it in a standard database to allow for data sharing and reporting at the local, state and national levels. At this time, the system reports and tracks weed infestations only, Future versions of the system will report and track infestations by all taxa including weeds, birds, fish, and algae. The system also reports and tracks treatments of these invasive weed species infestations on public lands.

    The tools are based on the use of the BLM system of Enterprise Geographic Information System (EGIS) Architecture approved nationally in 2003. It also depends on the Geospatial Services Strategic Plan approved nationally by BLM management in 2008. It is the first BLM system with seamless tools to collect scientific data in remote locations throughout all BLM lands and to feed that data regularly into national, official BLM geospatial database.

    Though the infestation data included here represents a snapshot of actual infestations of the individual species, it doesn't represent the total infestations of the particular species. Only a fraction of the lands the BLM administers has been inventoried, and not all of that data has been brought into NISIMS.

  17. G

    GIS Mapping Tools Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). GIS Mapping Tools Report [Dataset]. https://www.datainsightsmarket.com/reports/gis-mapping-tools-533095
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    May 21, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global GIS mapping tools market is experiencing robust growth, driven by increasing demand across diverse sectors. The market, estimated at $15 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 10% from 2025 to 2033, reaching approximately $39 billion by 2033. This expansion is fueled by several key factors. Firstly, the rising adoption of cloud-based GIS solutions offers enhanced accessibility, scalability, and cost-effectiveness, particularly appealing to smaller organizations. Secondly, the burgeoning need for precise spatial data analysis in various applications, including urban planning, geological exploration, and water resource management, significantly contributes to market growth. Thirdly, advancements in technologies such as AI and machine learning are integrating into GIS tools, leading to more sophisticated analytical capabilities and improved decision-making. Finally, the increasing availability of high-resolution satellite imagery and other geospatial data further fuels market expansion. However, market growth is not without challenges. High initial investment costs associated with implementing and maintaining sophisticated GIS systems can pose a barrier to entry for smaller businesses. Furthermore, the complexity of GIS software and the need for specialized skills to operate and interpret data effectively can limit widespread adoption. Despite these restraints, the market’s overall trajectory remains positive, with the cloud-based segment projected to maintain a dominant market share due to its inherent advantages. Growth will be geographically diverse, with North America and Europe continuing to be significant markets, while Asia-Pacific is expected to experience the fastest growth due to rapid urbanization and infrastructure development. The continued development of user-friendly interfaces and increased integration with other business intelligence tools will further accelerate market expansion in the coming years.

  18. G

    Geographic Information Systems Platform Report

    • archivemarketresearch.com
    doc, pdf
    Updated Mar 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Geographic Information Systems Platform Report [Dataset]. https://www.archivemarketresearch.com/reports/geographic-information-systems-platform-54047
    Explore at:
    doc, pdfAvailable download formats
    Dataset updated
    Mar 8, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geographic Information Systems (GIS) Platform market is experiencing robust growth, projected to reach a market size of $4078.2 million in 2025. While the provided CAGR is missing, considering the widespread adoption of GIS across various sectors like government, utilities, and commercial businesses, coupled with advancements in cloud-based GIS and increasing demand for spatial analytics, a conservative estimate of the Compound Annual Growth Rate (CAGR) between 2025 and 2033 would be around 7-9%. This suggests a significant expansion of the market over the forecast period. Key drivers include the rising need for efficient resource management, improved infrastructure planning, precise location-based services, and the growing adoption of big data analytics combined with location intelligence. The market is segmented by type (Desktop GIS, Web Map Service GIS, Others) and application (Government & Utilities, Commercial Use), reflecting the diverse applications of GIS technology. Leading players like Environmental Systems Research Institute (Esri), Hexagon, Pitney Bowes, and SuperMap are shaping the market landscape through continuous innovation and strategic partnerships. The North American market currently holds a significant share due to high technology adoption and substantial investments in GIS infrastructure, but rapid growth is anticipated in Asia Pacific regions like China and India driven by urbanization and infrastructure development. The increasing availability of affordable high-resolution imagery and data fuels further expansion. The continued integration of GIS with other technologies like AI and IoT is expected to unlock new applications and further drive market growth. Challenges include the high initial investment costs for sophisticated GIS solutions, the need for skilled professionals to manage and interpret data, and ensuring data security and privacy. However, the benefits of improved decision-making, optimized resource allocation, and enhanced operational efficiency are expected to outweigh these challenges, contributing to the sustained expansion of the GIS Platform market throughout the forecast period. The market's future trajectory remains positive, fueled by technological advancements and the increasing reliance on location intelligence across various industries.

  19. S

    Spatial Analysis Software Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Spatial Analysis Software Report [Dataset]. https://www.marketreportanalytics.com/reports/spatial-analysis-software-53687
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global spatial analysis software market is experiencing robust growth, driven by increasing adoption across diverse sectors. The market, currently valued at approximately $5 billion (estimated based on typical market sizes for similar software segments), is projected to witness a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033. This expansion is fueled by several key factors. The rising availability of geospatial data, coupled with advancements in cloud computing and artificial intelligence (AI), is enabling more sophisticated and accessible spatial analysis capabilities. Industries such as urban planning, environmental management, logistics, and retail are leveraging these advancements for optimized resource allocation, improved decision-making, and enhanced operational efficiency. The integration of spatial analysis tools into Geographic Information Systems (GIS) platforms further enhances market penetration, streamlining workflows and facilitating comprehensive data analysis. Demand for predictive modeling and location intelligence solutions is also a major growth driver, particularly among businesses seeking to understand customer behavior, optimize supply chains, and mitigate risks. However, market growth is not without its challenges. The high cost of implementation and maintenance of advanced spatial analysis software can be a barrier to entry for smaller organizations. Furthermore, the complexity of these tools requires skilled professionals, leading to a shortage of trained personnel in some regions. Despite these restraints, the long-term outlook for the spatial analysis software market remains positive, with continued innovation and wider adoption expected across various applications and geographic locations. Specific segments like those focused on 3D spatial analysis and real-time data processing are anticipated to experience particularly strong growth in the coming years. The increasing prevalence of big data and the need for effective data visualization are key elements underpinning this dynamic market.

  20. G

    GIS Solution Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Apr 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). GIS Solution Report [Dataset]. https://www.archivemarketresearch.com/reports/gis-solution-558025
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Apr 15, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Geographic Information System (GIS) Solutions market is experiencing robust growth, driven by increasing adoption across diverse sectors like transportation, architecture, engineering, and construction (AEC), telecommunications, and agriculture. The market's expansion is fueled by the need for efficient spatial data management, improved decision-making capabilities, and the rising demand for location-based services. Technological advancements, such as the integration of cloud computing, AI, and IoT, are further accelerating market growth. While precise figures for market size and CAGR were not provided, based on industry reports and the listed companies’ activities, a reasonable estimate would place the 2025 market size at approximately $15 billion, with a projected Compound Annual Growth Rate (CAGR) of 8-10% over the forecast period (2025-2033). This growth reflects the continuous integration of GIS into various applications, including smart city initiatives, precision farming, and disaster management. Despite the optimistic outlook, challenges remain. High initial investment costs for software and hardware, along with the need for skilled professionals to manage and analyze complex spatial data, can act as restraints. Data security and privacy concerns, coupled with the complexity of integrating GIS solutions with existing infrastructure, also pose hurdles for market expansion. However, the continuous development of user-friendly software, affordable cloud-based solutions, and the rising availability of skilled professionals are mitigating these challenges and supporting sustained growth in the market. The segmentation of the market into software, services, and applications across different sectors highlights the multifaceted nature of the GIS solution landscape, indicating diverse growth opportunities across a broad spectrum of industries.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dataintelo (2025). GIS Data Management Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-gis-data-management-market
Organization logo

GIS Data Management Market Report | Global Forecast From 2025 To 2033

Explore at:
pptx, pdf, csvAvailable download formats
Dataset updated
Jan 7, 2025
Dataset authored and provided by
Dataintelo
License

https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

Time period covered
2024 - 2032
Area covered
Global
Description

GIS Data Management Market Outlook



The global GIS Data Management market size is projected to grow from USD 12.5 billion in 2023 to USD 25.6 billion by 2032, exhibiting a CAGR of 8.4% during the forecast period. This impressive growth is driven by the increasing adoption of geographic information systems (GIS) across various sectors such as urban planning, disaster management, and agriculture. The rising need for effective data management systems to handle the vast amounts of spatial data generated daily also significantly contributes to the market's expansion.



One of the primary growth factors for the GIS Data Management market is the burgeoning demand for spatial data analytics. Businesses and governments are increasingly leveraging GIS data to make informed decisions and strategize operational efficiencies. With the rapid urbanization and industrialization worldwide, there's an unprecedented need to manage and analyze geographic data to plan infrastructure, monitor environmental changes, and optimize resource allocation. Consequently, the integration of GIS with advanced technologies like artificial intelligence and machine learning is becoming more prominent, further fueling market growth.



Another significant factor propelling the market is the advancement in GIS technology itself. The development of sophisticated software and hardware solutions for GIS data management is making it easier for organizations to capture, store, analyze, and visualize geographic data. Innovations such as 3D GIS, real-time data processing, and cloud-based GIS solutions are transforming the landscape of geographic data management. These advancements are not only enhancing the capabilities of GIS systems but also making them more accessible to a broader range of users, from small enterprises to large governmental agencies.



The growing implementation of GIS in disaster management and emergency response activities is also a critical factor driving market growth. GIS systems play a crucial role in disaster preparedness, response, and recovery by providing accurate and timely geographic data. This data helps in assessing risks, coordinating response activities, and planning resource deployment. With the increasing frequency and intensity of natural disasters, the reliance on GIS data management systems is expected to grow, resulting in higher demand for GIS solutions across the globe.



Geospatial Solutions are becoming increasingly integral to the GIS Data Management landscape, offering enhanced capabilities for spatial data analysis and visualization. These solutions provide a comprehensive framework for integrating various data sources, enabling users to gain deeper insights into geographic patterns and trends. As organizations strive to optimize their operations and decision-making processes, the demand for robust geospatial solutions is on the rise. These solutions not only facilitate the efficient management of spatial data but also support advanced analytics and real-time data processing. By leveraging geospatial solutions, businesses and governments can improve their strategic planning, resource allocation, and environmental monitoring efforts, thereby driving the overall growth of the GIS Data Management market.



Regionally, North America holds a significant share of the GIS Data Management market, driven by high technology adoption rates and substantial investments in GIS technologies by government and private sectors. However, Asia Pacific is anticipated to witness the highest growth rate during the forecast period. The rapid urbanization, economic development, and increasing adoption of advanced technologies in countries like China and India are major contributors to this growth. Governments in this region are also focusing on smart city projects and infrastructure development, which further boosts the demand for GIS data management solutions.



Component Analysis



The GIS Data Management market is segmented by component into software, hardware, and services. The software segment is the largest and fastest-growing segment, driven by the continuous advancements in GIS software capabilities. GIS software applications enable users to analyze spatial data, create maps, and manage geographic information efficiently. The integration of GIS software with other enterprise systems and the development of user-friendly interfaces are key factors propelling the growth of this segment. Furthermore, the rise of mobile GIS applications, which allow field data collectio

Search
Clear search
Close search
Google apps
Main menu