63 datasets found
  1. Geospatial data for the Vegetation Mapping Inventory Project of Theodore...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Theodore Roosevelt National Park [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-theodore-roosevelt-nationa
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. An ArcInfo (copyright ESRI) GIS database was designed for THRO using the National Park GIS Database Design, Layout, and Procedures created by RSGIG. This was created through Arc Macro Language (AML) scripts that helped automate the transfer process and ensure that all spatial and attribute data was consistent and stored properly. Actual transfer of information from the interpreted aerial photographs to a digital, geo-referenced format involved two techniques, scanning (for the vegetation classes) and on-screen digitizing (for the land-use classes). Transferred information used to create vegetation polygon coverages and linear coverages in ArcInfo were based on quarter-quad borders. Attribute information including vegetation map unit, location, and aerial photo number was subsequently entered for all polygons. In addition, the spatial database has an FGDC-compliant metadata file.

  2. Geospatial data for the Vegetation Mapping Inventory Project of Wind Cave...

    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • catalog.data.gov
    • +1more
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Wind Cave National Park [Dataset]. https://res1catalogd-o-tdatad-o-tgov.vcapture.xyz/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-wind-cave-national-park
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. An ArcInfo(tm) (ESRI) GIS database was designed for WICA using the National Park GIS Database Design, Layout, and Procedures created by the BOR. This was created through Arc Macro Language (AML) scripts that helped automate the transfer process and ensure that all spatial and attribute data was consistent and stored properly. Actual transfer of information from the interpreted aerial photographs to a digital, geo-referenced format involved two techniques, scanning (for the vegetation classes) and on-screen digitizing (for the land-use classes). Both techniques required the use of 14 digital black-and-white orthophoto quarter quadrangles (DOQQ's) covering the study area. Transferred information was used to create vegetation polygon coverages and ancillary linear coverages in ArcInfo(tm) for each WICA DOQQ. Attribute information including vegetation map unit, location, and aerial photo number was subsequently entered for all polygons.

  3. A

    Data from: Indoor GIS Solution for Space Use Assessment

    • data.amerigeoss.org
    • ckan.americaview.org
    1843526
    Updated Oct 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmericaView (2024). Indoor GIS Solution for Space Use Assessment [Dataset]. https://data.amerigeoss.org/dataset/indoor-gis-solution-for-space-use-assessment
    Explore at:
    1843526Available download formats
    Dataset updated
    Oct 18, 2024
    Dataset provided by
    AmericaView
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    As GIS and computing technologies advanced rapidly, many indoor space studies began to adopt GIS technology, data models, and analysis methods. However, even with a considerable amount of research on indoor GIS and various indoor systems developed for different applications, there has not been much attention devoted to adopting indoor GIS for the evaluation space usage. Applying indoor GIS for space usage assessment can not only provide a map-based interface for data collection, but also brings spatial analysis and reporting capabilities for this purpose. This study aims to explore best practice of using an indoor GIS platform to assess space usage and design a complete indoor GIS solution to facilitate and streamline the data collection, a management and reporting workflow. The design has a user-friendly interface for data collectors and an automated mechanism to aggregate and visualize the space usage statistics. A case study was carried out at the Purdue University Libraries to assess study space usage. The system is efficient and effective in collecting student counts and activities and generating reports to interested parties in a timely manner. The analysis results of the collected data provide insights into the user preferences in terms of space usage. This study demonstrates the advantages of applying an indoor GIS solution to evaluate space usage as well as providing a framework to design and implement such a system. The system can be easily extended and applied to other buildings for space usage assessment purposes with minimal development efforts.

  4. c

    Dariusz Gotlib - Person - POLAR-PL Catalog

    • polar.cenagis.edu.pl
    Updated Apr 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Dariusz Gotlib - Person - POLAR-PL Catalog [Dataset]. https://polar.cenagis.edu.pl/dataset/dariusz-gotlib
    Explore at:
    Dataset updated
    Apr 15, 2025
    Description

    Cartographer and GIS expert. Proven track of commercial experience. Since 2001, the leader of teams specializing in designing and maintaining spatial databases for navigation systems and modeling topographical data. Knowledge of Polish Spatial Data Infrastructure. Polish National Topographical Database model designer. Directly involved in the design and implementation of the Spatial Data Infrastructure in Poland. Vice-dean for Science and Development at the Faculty of Geodesy and Cartography at Warsaw University of Technology (2012-2016). Vice-Dean for Development and Cooperation with the Economy at the Faculty of Geodesy and Cartography at Warsaw University of Technology (2020-2024). Originator and project manager of the creation of the Center for Geospatial Analysis and Satellite Computing (CENAGIS). Advisor (expert) to the Head Office of Geodesy and Cartography in Poland (from 1999) in the SDI area. The initiator of the establishment of the Laboratory of Mobile Cartography and author of the teaching program in the field of Geoinformatics at Warsaw University of Technology. More than ten years of experience in managing the work of GIS department and GIS Database Operation Department (Director) in the capital group of PPWK/Mobile Internet Technology (joint-stock company) (among many tasks, several years of cooperation with Google Company - delivering of spatial dataset for the Polish territory). Membership of professional bodies (selected): • The Polish National Committe for International Cartographic Association (from 2004) • The Association of Polish Cartographers (from 1999, from 2013 Member of the Board) • The Geoinformatics Commision of the Polish Academy of Arts and Sciences (from 2016) • The Committee on Geodesy of the Polish Academy of Sciences, The Chair of Geoinformation Section (from 2016) • The Scientific Council of Polish Polar Consortium (2014-2022) • The Chairman of The Working Group "Smart networks and geoinformation technologies" (The Polish Smart Specialization) at the Ministry of Development (2015-2022) • V-Ce Chairman Of National Council For Spatial Information In Poland (From 2018) (inter-ministeral committee)

  5. e

    FIMS database - supplementary files - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Jun 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). FIMS database - supplementary files - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/45af07e7-e0f5-56ba-afb3-0c1a4e49ae8d
    Explore at:
    Dataset updated
    Jun 22, 2018
    Description

    Problem: Often spreadsheets are used as pseudo-databases for the storage of plot-based survey data, but they have major limitations in scalability, concurrent access and data retrieval. Paper-based surveys require time-consuming data entry. They contain potential inconsistencies (e.g. miss-spellings, abbreviations, missing values), particularly if coming from different observers due to unenforceable data standards.Methods: We analysed more than 30 years of data collected in the Northern Jarrah Forest (NJF) of south-western Australia, comprising c. 31,000 plots (c. 550,000 species records) and associated environmental variables stored across multiple spreadsheets in the development of our free and open source floristic information management system (FIMS). Data dictionaries were developed for each spreadsheet before being combined into a unified standard. OpenRefine software was used to ensure adherence to the standard, including correcting inconsistent field order in different files, removal of redundant or irrelevant fields, abolishing synonyms and abbreviations, and deleting incomplete rows. Database design and normalisation rules ensured the removal of repeating groups and the provision of fields for each retained attribute. Geometry was stored using spatial objects available in PostGIS whilst maintaining an otherwise relational database using PostgreSQL.Results: FIMS provides a spatial database system for storing, accessing and retrieving floristic survey data. FIMS includes a mobile data collection module for use on tablet technology with autonomous database synchronisation and one-step data entry to eliminate transcription and associated errors. Spatial data types enable the retrieval of data for viewing and analysis within most Geographic Information Systems and statistical software. It promotes portability and adaption to other locations and studies via the provision of all necessary code.

  6. a

    Cascades to Coast Landscape Collaborative Spatial Design Database v 1 Map...

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Jun 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish & Wildlife Service (2020). Cascades to Coast Landscape Collaborative Spatial Design Database v 1 Map WFL1 [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/fe0ed5ce462447c58f4cac49b2478b36
    Explore at:
    Dataset updated
    Jun 10, 2020
    Dataset authored and provided by
    U.S. Fish & Wildlife Service
    Area covered
    Description

    ◦Overview: A key principle of Landscape Conservation Design is that “Stakeholders design landscape configurations that promote resilient and sustainable social-ecological systems” (Campellone et al, 2018). From Campellone et al: (2018): “A beneficial aspect of stakeholder engagement in spatial design is the development of a deeper trust that the models used to identify priorities integrate their interests with other information and knowledge, which furthers social learning and collective agreement on resource allocation and landscape objectives” (Melillo et al., 2014). Overall, the co-development of a spatial design helps organize landscape elements while maintaining and improving stakeholder buy-in” (De Groot, Alkemade, Braat, Hein, & Willemen, 2009; Melillo et al., 2014).”◦Analytical Question: Create a prototype landscape design (blueprint) that integrates multiple values on the landscape including wildlife conservation, forest and agriculture production, recreation, cultural and human health. The prototype will be created based upon readily available data.This analysis will be used to understand landscape-scale conservation and working landscape priorities, while incorporating other important values.The blueprint will be used to represent a sustainable landscape in the future.◦Desired Outcome: A map or maps that represents a balance of multiple values on the landscape, with a focus on conservation and working landscape values.

  7. d

    GAL Impact and Risk Analysis Database v01

    • data.gov.au
    • researchdata.edu.au
    Updated Nov 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2019). GAL Impact and Risk Analysis Database v01 [Dataset]. https://data.gov.au/data/dataset/groups/3dbb5380-2956-4f40-a535-cbdcda129045
    Explore at:
    Dataset updated
    Nov 20, 2019
    Dataset provided by
    Bioregional Assessment Program
    Description

    Abstract

    The Galilee Impact and Risk Analysis Database (Analysis Database) is a fit-for-purpose geospatial information system developed for the Impact and Risk Analysis (Component 3-4) products of the Bioregional Assessment Technical Programme (BATP). The Analysis Database brings together many of the data sets of the scientific disciplines of the Programme and includes modelling results from hydrogeology and hydrology, landscape classes and economic, sociocultural and ecological assets. These data sets are listed in the Data Register for each subregion and can be found on the Bioregional Assessments web site (http://www.bioregionalassessments.gov.au/).

    An Analysis Database of common design and schema was implemented for each individual subregion where a full Impact and Risk Analysis was completed. To populate each database, input datasets were transformed, normalised and inserted into their respective Analysis Database in accord with the common design and schema. The approach enabled the universal treatment of data analysis across all bioregions despite data being of a different specification and origin.

    The Analysis Database provided for this subregion is an exact replica of the original used for the assessment of the subregion with the exception that a few spatial data for individual Assets subject to restrictions have been removed before publication. The restrictions are typically for threatened species spatial data but occasionally, restrictive licencing conditions imposed by some custodians prevented publication of some data. The database is constructed using the Open Source platform PostgreSQL coupled with PostGIS. This technology was considered to better enable the provenance and transparency requirements of the Programme. The files provided here have been prepared using the PostgreSQL version 9.5 SQL Dump function - pg_dump.

    A detailed description of the Analysis Database, its design, structure and application is provided in the supporting documentation: http://data.bioregionalassessments.gov.au/dataset/05e851cf-57a5-4127-948a-1b41732d538c

    Purpose

    The Galilee Impact and Risk Analysis Database (Analysis Database) is the geospatial database for completing the Impact and Risk Analysis component of a Bioregional Assessment. This includes the creating of results, tables and maps that appear in the relevant Products of each assessment. The database also manages the data used by the BA Explorer.

    An individual instance of the Analysis Database was developed for each subregion where a component 3-4 Impact and Risks Assessment was conducted. With the exception of the subregion-specific data contained within it and the removal of restricted data records, each analysis database is of identical design and structure.

    Dataset History

    This Analysis Database is an instance of PostgreSQL version 9.5 hosted on Linux Red Hat Enterprise Linux version 4.8.5-4. PostgreSQL geospatial capabilities are provided by POSTGIS version 2.2.

    Data pre-processing and upload into each PostgreSQL database was completed using FME Desktop (Oracle Edition) version 2016.1.2.1. Analysis data and results are provided to users and systems via the geospatial services of Geoserver version 2.9.1. Scientific analysis and mapping was undertaken by connecting a range of data using a combination of Microsoft Excel, QGIS and ArcMap systems.

    During the Programme and for its working life, the Analysis Database was hosted and managed on instances of Amazon Web Services managed by Geoscience Australia and the Bureau of Meteorology.

    Dataset Citation

    Bioregional Assessment Programme (2018) GAL Impact and Risk Analysis Database v01. Bioregional Assessment Derived Dataset. Viewed 12 December 2018, http://data.bioregionalassessments.gov.au/dataset/3dbb5380-2956-4f40-a535-cbdcda129045.

    Dataset Ancestors

    *

  8. f

    Data from: Virtualization in CyberGIS instruction: lessons learned...

    • tandf.figshare.com
    xlsx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniel W. Goldberg; Forrest J. Bowlick; Paul E. Stein (2023). Virtualization in CyberGIS instruction: lessons learned constructing a private cloud to support development and delivery of a WebGIS course [Dataset]. http://doi.org/10.6084/m9.figshare.12848309.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Daniel W. Goldberg; Forrest J. Bowlick; Paul E. Stein
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Students in geographic information systems and science (GIS) require significant experience outside of spatial analysis, cartography, and other traditional geographic topics. Computer science knowledge, skills, and practices exist as essential components of GIS practice, but coursework in this area is not universally offered in geography or GIS degrees. To support those interested in developing such courses, this paper describes the design and implementation of a server-focused course in WebGIS at University Texas A&M University. We provide an in-depth discussion of the equipment and resources required to build and operate an on-premise CyberGIS server infrastructure suitable for supporting such classes, providing comparisons with an equivalent solution built on Amazon Web Services (AWS). We consider the comparative costs of these systems, including benefits and drawbacks of each. In comparing these deployment options, we outline the technical expertise, monetary investments, operational expenses, and organizational strategies necessary to run server-based CyberGIS courses. Finally, we reflect on assignments and feedback from students and consider their experiences in a course of this nature. This article provides a resource for GIS instructors, academic departments, or other academic units to consider during infrastructure investment, curriculum redesign, the addition of courses in degree plans, or for the development of CyberGIS components.

  9. I

    Interactive Map Creation Tools Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Interactive Map Creation Tools Report [Dataset]. https://www.marketresearchforecast.com/reports/interactive-map-creation-tools-35432
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The interactive map creation tools market is experiencing robust growth, driven by increasing demand for visually engaging data representation across diverse sectors. The market, estimated at $2.5 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $8 billion by 2033. This expansion is fueled by several key factors. The rising adoption of cloud-based solutions and the proliferation of readily available geospatial data are lowering the barrier to entry for both individual and corporate users. Furthermore, advancements in mapping technologies, such as 3D mapping capabilities and improved user interfaces, are enhancing the overall user experience and driving wider adoption. The increasing need for effective data visualization in fields like real estate, urban planning, environmental monitoring, and marketing is further bolstering market growth. Segmentation reveals a significant portion of the market is attributed to paid use licenses, reflecting the advanced features and support provided by premium tools. However, the free-use segment is also growing rapidly, driven by the availability of user-friendly open-source tools and freemium models offered by major players. Corporate users constitute a larger portion of the market compared to individual users, primarily due to their higher budget allocations for data visualization and analysis tools. Geographic distribution reveals a concentration of market share in North America and Europe, largely due to higher technological adoption and a well-established digital infrastructure. However, rapid growth is anticipated in Asia Pacific regions like China and India, driven by increasing urbanization and government initiatives promoting digital transformation. Market restraints include the high cost of advanced mapping software, the need for specialized technical skills for complex projects, and the potential for data security and privacy concerns. Nevertheless, ongoing technological innovation, coupled with the increasing accessibility of data and analytical tools, is anticipated to mitigate these challenges and continue to drive significant market expansion throughout the forecast period. Key players like Mapbox, ArcGIS StoryMaps, and Google are actively shaping the market landscape through continuous product development and strategic partnerships, fostering innovation and competitive pricing strategies.

  10. a

    USFS CA MT Units Priority shp

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Mar 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adventure Scientists (2023). USFS CA MT Units Priority shp [Dataset]. https://hub.arcgis.com/datasets/AdvSci::usfs-ca-mt-units-priority-shp?uiVersion=content-views
    Explore at:
    Dataset updated
    Mar 26, 2023
    Dataset authored and provided by
    Adventure Scientists
    Area covered
    Description

    The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public land and voluntarily provided private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastre Theme (https://communities.geoplatform.gov/ngda-cadastre/). The PAD-US is an ongoing project with several published versions of a spatial database including areas dedicated to the preservation of biological diversity, and other natural (including extraction), recreational, or cultural uses, managed for these purposes through legal or other effective means. The database was originally designed to support biodiversity assessments; however, its scope expanded in recent years to include all public and nonprofit lands and waters. Most are public lands owned in fee (the owner of the property has full and irrevocable ownership of the land); however, long-term easements, leases, agreements, Congressional (e.g. 'Wilderness Area'), Executive (e.g. 'National Monument'), and administrative designations (e.g. 'Area of Critical Environmental Concern') documented in agency management plans are also included. The PAD-US strives to be a complete inventory of public land and other protected areas, compiling “best available” data provided by managing agencies and organizations. The PAD-US geodatabase maps and describes areas using over twenty-five attributes and five feature classes representing the U.S. protected areas network in separate feature classes: Fee (ownership parcels), Designation, Easement, Marine, Proclamation and Other Planning Boundaries. Five additional feature classes include various combinations of the primary layers (for example, Combined_Fee_Easement) to support data management, queries, web mapping services, and analyses. This PAD-US Version 2.1 dataset includes a variety of updates and new data from the previous Version 2.0 dataset (USGS, 2018 https://doi.org/10.5066/P955KPLE ), achieving the primary goal to "Complete the PAD-US Inventory by 2020" (https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/pad-us-vision) by addressing known data gaps with newly available data. The following list summarizes the integration of "best available" spatial data to ensure public lands and other protected areas from all jurisdictions are represented in PAD-US, along with continued improvements and regular maintenance of the federal theme. Completing the PAD-US Inventory: 1) Integration of over 75,000 city parks in all 50 States (and the District of Columbia) from The Trust for Public Land's (TPL) ParkServe data development initiative (https://parkserve.tpl.org/) added nearly 2.7 million acres of protected area and significantly reduced the primary known data gap in previous PAD-US versions (local government lands). 2) First-time integration of the Census American Indian/Alaskan Native Areas (AIA) dataset (https://www2.census.gov/geo/tiger/TIGER2019/AIANNH) representing the boundaries for federally recognized American Indian reservations and off-reservation trust lands across the nation (as of January 1, 2020, as reported by the federally recognized tribal governments through the Census Bureau's Boundary and Annexation Survey) addressed another major PAD-US data gap. 3) Aggregation of nearly 5,000 protected areas owned by local land trusts in 13 states, aggregated by Ducks Unlimited through data calls for easements to update the National Conservation Easement Database (https://www.conservationeasement.us/), increased PAD-US protected areas by over 350,000 acres. Maintaining regular Federal updates: 1) Major update of the Federal estate (fee ownership parcels, easement interest, and management designations), including authoritative data from 8 agencies: Bureau of Land Management (BLM), U.S. Census Bureau (Census), Department of Defense (DOD), U.S. Fish and Wildlife Service (FWS), National Park Service (NPS), Natural Resources Conservation Service (NRCS), U.S. Forest Service (USFS), National Oceanic and Atmospheric Administration (NOAA). The federal theme in PAD-US is developed in close collaboration with the Federal Geographic Data Committee (FGDC) Federal Lands Working Group (FLWG, https://communities.geoplatform.gov/ngda-govunits/federal-lands-workgroup/); 2) Complete National Marine Protected Areas (MPA) update: from the National Oceanic and Atmospheric Administration (NOAA) MPA Inventory, including conservation measure ('GAP Status Code', 'IUCN Category') review by NOAA; Other changes: 1) PAD-US field name change - The "Public Access" field name changed from 'Access' to 'Pub_Access' to avoid unintended scripting errors associated with the script command 'access'. 2) Additional field - The "Feature Class" (FeatClass) field was added to all layers within PAD-US 2.1 (only included in the "Combined" layers of PAD-US 2.0 to describe which feature class data originated from). 3) Categorical GAP Status Code default changes - National Monuments are categorically assigned GAP Status Code = 2 (previously GAP 3), in the absence of other information, to better represent biodiversity protection restrictions associated with the designation. The Bureau of Land Management Areas of Environmental Concern (ACECs) are categorically assigned GAP Status Code = 3 (previously GAP 2) as the areas are administratively protected, not permanent. More information is available upon request. 4) Agency Name (FWS) geodatabase domain description changed to U.S. Fish and Wildlife Service (previously U.S. Fish & Wildlife Service). 5) Select areas in the provisional PAD-US 2.1 Proclamation feature class were removed following a consultation with the data-steward (Census Bureau). Tribal designated statistical areas are purely a geographic area for providing Census statistics with no land base. Most affected areas are relatively small; however, 4,341,120 acres and 37 records were removed in total. Contact Mason Croft (masoncroft@boisestate) for more information about how to identify these records. For more information regarding the PAD-US dataset please visit, https://usgs.gov/gapanalysis/PAD-US/. For more information about data aggregation please review the Online PAD-US Data Manual available at https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/pad-us-data-manual .

  11. a

    National Land Cover Database (NLCD) - Oregon

    • hub.arcgis.com
    • data.oregon.gov
    • +4more
    Updated Jan 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Oregon (2019). National Land Cover Database (NLCD) - Oregon [Dataset]. https://hub.arcgis.com/documents/9bbaa64718774bbfbf5c6ade0edf86d3
    Explore at:
    Dataset updated
    Jan 1, 2019
    Dataset authored and provided by
    State of Oregon
    Area covered
    Oregon
    Description

    This is a dataset download, not a document. The Open button will start the download.This data layer is an element of the Oregon GIS Framework and has been clipped to the Oregon boundary and reprojected to Oregon Lambert (2992). The U.S. Geological Survey (USGS), in partnership with several federal agencies, has developed and released four National Land Cover Database (NLCD) products over the past two decades: NLCD 1992, 2001, 2006, and 2011. These products provide spatially explicit and reliable information on the Nation’s land cover and land cover change. To continue the legacy of NLCD and further establish a long-term monitoring capability for the Nation’s land resources, the USGS has designed a new generation of NLCD products named NLCD 2016. The NLCD 2016 design aims to provide innovative, consistent, and robust methodologies for production of a multi-temporal land cover and land cover change database from 2001 to 2016 at 2–3-year intervals. Comprehensive research was conducted and resulted in developed strategies for NLCD 2016: a streamlined process for assembling and preprocessing Landsat imagery and geospatial ancillary datasets; a multi-source integrated training data development and decision-tree based land cover classifications; a temporally, spectrally, and spatially integrated land cover change analysis strategy; a hierarchical theme-based post-classification and integration protocol for generating land cover and change products; a continuous fields biophysical parameters modeling method; and an automated scripted operational system for the NLCD 2016 production. The performance of the developed strategies and methods were tested in twenty World Reference System-2 path/row throughout the conterminous U.S. An overall agreement ranging from 71% to 97% between land cover classification and reference data was achieved for all tested area and all years. Results from this study confirm the robustness of this comprehensive and highly automated procedure for NLCD 2016 operational mapping. Questions about the NLCD 2016 land cover product can be directed to the NLCD 2016 land cover mapping team at USGS EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov. See included spatial metadata for more details.

  12. d

    Development of Interactive Data Visualization Tool for the Predictive...

    • search.dataone.org
    • borealisdata.ca
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chan, Wai Chung Wilson (2023). Development of Interactive Data Visualization Tool for the Predictive Ecosystem Mapping Project [Dataset]. http://doi.org/10.5683/SP3/7RVB70
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Chan, Wai Chung Wilson
    Description

    Biogeoclimatic Ecosystem Classification (BEC) system is the ecosystem classification adopted in the forest management within British Columbia based on vegetation, soil, and climate characteristics whereas Site Series is the smallest unit of the system. The Ministry of Forests, Lands, Natural Resource Operations and Rural Development held under the Government of British Columbia (“the Ministry”) developed a web-based tool known as BEC Map for maintaining and sharing the information of the BEC system, but the Site Series information was not included in the tool due to its quantity and complexity. In order to allow users to explore and interact with the information, this project aimed to develop a web-based tool with high data quality and flexibility to users for the Site Series classes using the “Shiny” and “Leaflet” packages in R. The project started with data classification and pre-processing of the raster images and attribute tables through identification of client requirements, spatial database design and data cleaning. After data transformation was conducted, spatial relationships among these data were developed for code development. The code development included the setting-up of web map and interactive tools for facilitating user friendliness and flexibility. The codes were further tested and enhanced to meet the requirements of the Ministry. The web-based tool provided an efficient and effective platform to present the complicated Site Series features with the use of Web Mapping System (WMS) in map rendering. Four interactive tools were developed to allow users to examine and interact with the information. The study also found that the mode filter performed well in data preservation and noise minimization but suffered from long processing time and creation of tiny sliver polygons.

  13. D

    Geographic Information System GIS Software Market Report | Global Forecast...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Geographic Information System GIS Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-geographic-information-system-gis-software-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geographic Information System (GIS) Software Market Outlook



    The global Geographic Information System (GIS) software market size is projected to grow from USD 9.1 billion in 2023 to USD 18.5 billion by 2032, reflecting a compound annual growth rate (CAGR) of 8.5% over the forecast period. This growth is driven by the increasing application of GIS software across various sectors such as agriculture, construction, transportation, and utilities, along with the rising demand for location-based services and advanced mapping solutions.



    One of the primary growth factors for the GIS software market is the widespread adoption of spatial data by various industries to enhance operational efficiency. In agriculture, for instance, GIS software plays a crucial role in precision farming by aiding in crop monitoring, soil analysis, and resource management, thereby optimizing yield and reducing costs. In the construction sector, GIS software is utilized for site selection, design and planning, and infrastructure management, making project execution more efficient and cost-effective.



    Additionally, the integration of GIS with emerging technologies such as Artificial Intelligence (AI) and the Internet of Things (IoT) is significantly enhancing the capabilities of GIS software. AI-driven data analytics and IoT-enabled sensors provide real-time data, which, when combined with spatial data, results in more accurate and actionable insights. This integration is particularly beneficial in fields like smart city planning, disaster management, and environmental monitoring, further propelling the market growth.



    Another significant factor contributing to the market expansion is the increasing government initiatives and investments aimed at improving geospatial infrastructure. Governments worldwide are recognizing the importance of GIS in policy-making, urban planning, and public safety, leading to substantial investments in GIS technologies. For example, the U.S. governmentÂ’s Geospatial Data Act emphasizes the development of a cohesive national geospatial policy, which in turn is expected to create more opportunities for GIS software providers.



    Geographic Information System Analytics is becoming increasingly pivotal in transforming raw geospatial data into actionable insights. By employing sophisticated analytical tools, GIS Analytics allows organizations to visualize complex spatial relationships and patterns, enhancing decision-making processes across various sectors. For instance, in urban planning, GIS Analytics can identify optimal locations for new infrastructure projects by analyzing population density, traffic patterns, and environmental constraints. Similarly, in the utility sector, it aids in asset management by predicting maintenance needs and optimizing resource allocation. The ability to integrate GIS Analytics with other data sources, such as demographic and economic data, further amplifies its utility, making it an indispensable tool for strategic planning and operational efficiency.



    Regionally, North America holds the largest share of the GIS software market, driven by technological advancements and high adoption rates across various sectors. Europe follows closely, with significant growth attributed to the increasing use of GIS in environmental monitoring and urban planning. The Asia Pacific region is anticipated to witness the highest growth rate during the forecast period, fueled by rapid urbanization, infrastructure development, and government initiatives in countries like China and India.



    Component Analysis



    The GIS software market is segmented into software and services, each playing a vital role in meeting the diverse needs of end-users. The software segment encompasses various types of GIS software, including desktop GIS, web GIS, and mobile GIS. Desktop GIS remains the most widely used, offering comprehensive tools for spatial analysis, data management, and visualization. Web GIS, on the other hand, is gaining traction due to its accessibility and ease of use, allowing users to access GIS capabilities through a web browser without the need for extensive software installations.



    Mobile GIS is another crucial aspect of the software segment, providing field-based solutions for data collection, asset management, and real-time decision making. With the increasing use of smartphones and tablets, mobile GIS applications are becoming indispensable for sectors such as utilities, transportation, and

  14. f

    fdata-02-00044_Parallel Processing Strategies for Big Geospatial Data.pdf

    • frontiersin.figshare.com
    pdf
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Werner (2023). fdata-02-00044_Parallel Processing Strategies for Big Geospatial Data.pdf [Dataset]. http://doi.org/10.3389/fdata.2019.00044.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    Frontiers
    Authors
    Martin Werner
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This paper provides an abstract analysis of parallel processing strategies for spatial and spatio-temporal data. It isolates aspects such as data locality and computational locality as well as redundancy and locally sequential access as central elements of parallel algorithm design for spatial data. Furthermore, the paper gives some examples from simple and advanced GIS and spatial data analysis highlighting both that big data systems have been around long before the current hype of big data and that they follow some design principles which are inevitable for spatial data including distributed data structures and messaging, which are, however, incompatible with the popular MapReduce paradigm. Throughout this discussion, the need for a replacement or extension of the MapReduce paradigm for spatial data is derived. This paradigm should be able to deal with the imperfect data locality inherent to spatial data hindering full independence of non-trivial computational tasks. We conclude that more research is needed and that spatial big data systems should pick up more concepts like graphs, shortest paths, raster data, events, and streams at the same time instead of solving exactly the set of spatially separable problems such as line simplifications or range queries in manydifferent ways.

  15. v

    VPM Logical Design Summary

    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • opendata.dc.gov
    • +3more
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). VPM Logical Design Summary [Dataset]. https://res1catalogd-o-tdatad-o-tgov.vcapture.xyz/dataset/vpm-logical-design-summary
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    City of Washington, DC
    Description

    The Vector Property Geodatabase (VPG), often referred to Real Property Geodatabase (RPG), logical design describes the database design for storage of GIS layers identified in the September 23, 2002, requirements document. The logical design’s goal is to satisfy the identified requirements. The next step is to develop a physical design that implements the geodatabase on a physical platform. This design does not address maintenance issues. The project team has developed a maintenance requirements document that will guide the design enhancements for the purpose of maintenance.

  16. HUN Impact and Risk Analysis Database v01

    • researchdata.edu.au
    Updated Aug 27, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2018). HUN Impact and Risk Analysis Database v01 [Dataset]. https://researchdata.edu.au/hun-impact-risk-database-v01/2986810
    Explore at:
    Dataset updated
    Aug 27, 2018
    Dataset provided by
    Data.govhttps://data.gov/
    Authors
    Bioregional Assessment Program
    Description

    Abstract

    The Hunter Impact and Risk Analysis Database (Analysis Database) is a fit-for-purpose geospatial information system developed for the Impact and Risk Analysis (Component 3-4) products of the Bioregional Assessment Technical Programme (BATP). The Analysis Database brings together many of the data sets of the scientific disciplines of the Programme and includes modelling results from hydrogeology and hydrology, landscape classes and economic, sociocultural and ecological assets. These data sets are listed in the Data Register for each subregion and can be found on the Bioregional Assessments web site (http://www.bioregionalassessments.gov.au/).

    An Analysis Database of common design and schema was implemented for each individual subregion where a full Impact and Risk Analysis was completed. To populate each database, input datasets were transformed, normalised and inserted into their respective Analysis Database in accord with the common design and schema. The approach enabled the universal treatment of data analysis across all bioregions despite data being of a different specification and origin.

    The Analysis Database provided for this subregion is an exact replica of the original used for the assessment of the subregion with the exception that a few spatial data for individual Assets subject to restrictions have been removed before publication. The restrictions are typically for threatened species spatial data but occasionally, restrictive licencing conditions imposed by some custodians prevented publication of some data. The database is constructed using the Open Source platform PostgreSQL coupled with PostGIS. This technology was considered to better enable the provenance and transparency requirements of the Programme. The files provided here have been prepared using the PostgreSQL version 9.5 SQL Dump function - pg_dump.

    A detailed description of the Analysis Database, its design, structure and application is provided in the supporting documentation: http://data.bioregionalassessments.gov.au/dataset/05e851cf-57a5-4127-948a-1b41732d538c

    Purpose

    The Hunter Impact and Risk Analysis Database (Analysis Database) is the geospatial database for completing the Impact and Risk Analysis component of a Bioregional Assessment. This includes the creating of results, tables and maps that appear in the relevant Products of each assessment. The database also manages the data used by the BA Explorer.

    An individual instance of the Analysis Database was developed for each subregion where a component 3-4 Impact and Risks Assessment was conducted. With the exception of the subregion-specific data contained within it and the removal of restricted data records, each analysis database is of identical design and structure.

    Dataset History

    This Analysis Database is an instance of PostgreSQL version 9.5 hosted on Linux Red Hat Enterprise Linux version 4.8.5-4. PostgreSQL geospatial capabilities are provided by POSTGIS version 2.2.

    Data pre-processing and upload into each PostgreSQL database was completed using FME Desktop (Oracle Edition) version 2016.1.2.1. Analysis data and results are provided to users and systems via the geospatial services of Geoserver version 2.9.1. Scientific analysis and mapping was undertaken by connecting a range of data using a combination of Microsoft Excel, QGIS and ArcMap systems.

    During the Programme and for its working life, the Analysis Database was hosted and managed on instances of Amazon Web Services managed by Geoscience Australia and the Bureau of Meteorology.

    Dataset Citation

    Bioregional Assessment Programme (2018) HUN Impact and Risk Analysis Database v01. Bioregional Assessment Derived Dataset. Viewed 28 August 2018, http://data.bioregionalassessments.gov.au/dataset/298e1f89-515c-4389-9e5d-444a5053cc19.

    Dataset Ancestors

  17. d

    Protected Areas Database of the United States (PAD-US)

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Protected Areas Database of the United States (PAD-US) [Dataset]. https://catalog.data.gov/dataset/protected-areas-database-of-the-united-states-pad-us
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    United States
    Description

    This is series-level metadata for the USGS Protected Areas Database of the United States (PAD-US) data released by the United States Geological Survey (USGS). PAD-US is the nation's inventory of protected areas, including public land and voluntarily provided private protected areas. Starting with version 1.4 PAD-US was identified as an A-16 National Geospatial Data Asset in the Cadastre Theme ( https://ngda-cadastre-geoplatform.hub.arcgis.com/ ). The PAD-US is an ongoing project with several published versions of a spatial database including areas dedicated to the preservation of biological diversity, and other natural (including extraction), recreational, or cultural uses, managed for these purposes through legal or other effective means. The database was originally designed to support biodiversity assessments; however, its scope expanded in recent years to include all open space public and nonprofit lands and waters. Most are public lands owned in fee (the owner of the property has full and irrevocable ownership of the land); however, permanent and long-term easements, leases, agreements, Congressional (e.g. 'Wilderness Area'), Executive (e.g. 'National Monument'), and administrative designations (e.g. 'Area of Critical Environmental Concern') documented in agency management plans are also included. The PAD-US strives to be a complete inventory of U.S. public land and other protected areas, compiling "best available" data provided by managing agencies and organizations. The PAD-US geodatabase maps and describes areas using thirty-six attributes and five separate feature classes representing the U.S. protected areas network: Fee (ownership parcels), Designation, Easement, Marine, Proclamation and Other Planning Boundaries. An additional Combined feature class includes the full PAD-US inventory to support data management, queries, web mapping services, and analyses. The Feature Class (FeatClass) field in the Combined layer allows users to extract data types as needed. A Federal Data Reference file geodatabase lookup table facilitates the extraction of authoritative federal data provided or recommended by managing agencies from the Combined PAD-US inventory. For more information regarding the PAD-US dataset please visit, https://www.usgs.gov/programs/gap-analysis-project/science/protected-areas/. For more information about data aggregation please review the PAD-US Data Manual available at https://www.usgs.gov/programs/gap-analysis-project/pad-us-data-manual . A version history of PAD-US updates is summarized below (See https://www.usgs.gov/programs/gap-analysis-project/pad-us-data-history for more information): - Current Version - January 2022 (Version 3.0) https://doi.org/10.5066/P9Q9LQ4B - Revised - September 2020 (Version 2.1) https://doi.org/10.5066/P92QM3NT - Revised - September 2018 (Version 2.0) https://doi.org/10.5066/P955KPLE - Revised - May 2016 (Version 1.4) https://doi.org/10.5066/F7G73BSZ - Revised - November 2012 (Version 1.3) https://doi.org/10.5066/F79Z92XD - Revised - April 2011 (Version 1.2 - available from the PAD-US: Team pad-us@usgs.gov) - Revised - May 2010 (Version 1.1 - available from the PAD-US: Team pad-us@usgs.gov) - First posted - April 2009 (Version 1.0 - available from the PAD-US: Team pad-us@usgs.gov) Comparing protected area trends between PAD-US versions is not recommended without consultation with USGS as many changes reflect improvements to agency and organization GIS systems, or conservation and recreation measure classification, rather than actual changes in protected area acquisition on the ground.

  18. L

    Landscape Engineering Design Services Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Landscape Engineering Design Services Report [Dataset]. https://www.marketreportanalytics.com/reports/landscape-engineering-design-services-55946
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Apr 3, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global landscape engineering design services market is experiencing robust growth, driven by increasing urbanization, rising infrastructure development, and a growing focus on sustainable and aesthetically pleasing outdoor spaces. The market, estimated at $150 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 6% from 2025 to 2033, reaching approximately $250 billion by 2033. Key drivers include government initiatives promoting green spaces and sustainable urban planning, escalating demand for aesthetically pleasing landscapes in commercial and residential developments, and advancements in technology like Building Information Modeling (BIM) and Geographic Information Systems (GIS) that enhance design efficiency and accuracy. Significant growth is anticipated in the Asia-Pacific region, fueled by rapid urbanization and infrastructural projects in countries like China and India. The public utility segment is a major contributor, with increasing investment in parks, recreational areas, and water management projects. Landscape design services currently dominate the market, reflecting a rising awareness of the value of professionally designed outdoor spaces. However, the park planning services segment is also poised for significant growth due to the increasing demand for well-planned and sustainable park infrastructure. While the market presents considerable opportunities, certain restraints exist. These include fluctuating raw material prices, economic downturns impacting construction activities, and the need for skilled professionals to meet the rising demand. Furthermore, environmental regulations and obtaining necessary permits can cause delays and increase project costs. Despite these challenges, the long-term outlook for the landscape engineering design services market remains positive. The continued focus on sustainable development, the growth of eco-tourism, and the increasing importance of urban green spaces will sustain market momentum throughout the forecast period. Leading companies like LandDesign, Kimley-Horn, and Stantec are strategically positioned to benefit from this growth through their expertise, global presence, and innovative design solutions. The market's segmentation allows for targeted strategies by companies specializing in specific applications and service types, capitalizing on unique niches within this expanding industry.

  19. NAM Impact and Risk Analysis Database v01

    • researchdata.edu.au
    Updated Dec 11, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2018). NAM Impact and Risk Analysis Database v01 [Dataset]. https://researchdata.edu.au/nam-impact-risk-database-v01/2987800
    Explore at:
    Dataset updated
    Dec 11, 2018
    Dataset provided by
    Data.govhttps://data.gov/
    Authors
    Bioregional Assessment Program
    Description

    Abstract

    The Namoi Impact and Risk Analysis Database (Analysis Database) is a fit-for-purpose geospatial information system developed for the Impact and Risk Analysis (Component 3-4) products of the Bioregional Assessment Technical Programme (BATP). The Analysis Database brings together many of the data sets of the scientific disciplines of the Programme and includes modelling results from hydrogeology and hydrology, landscape classes and economic, sociocultural and ecological assets. These data sets are listed in the Data Register for each subregion and can be found on the Bioregional Assessments web site (http://www.bioregionalassessments.gov.au/).

    An Analysis Database of common design and schema was implemented for each individual subregion where a full Impact and Risk Analysis was completed. To populate each database, input datasets were transformed, normalised and inserted into their respective Analysis Database in accord with the common design and schema. The approach enabled the universal treatment of data analysis across all bioregions despite data being of a different specification and origin.

    The Analysis Database provided for this subregion is an exact replica of the original used for the assessment of the subregion with the exception that a few spatial data for individual Assets subject to restrictions have been removed before publication. The restrictions are typically for threatened species spatial data but occasionally, restrictive licencing conditions imposed by some custodians prevented publication of some data. The database is constructed using the Open Source platform PostgreSQL coupled with PostGIS. This technology was considered to better enable the provenance and transparency requirements of the Programme. The files provided here have been prepared using the PostgreSQL version 9.5 SQL Dump function - pg_dump.

    A detailed description of the Analysis Database, its design, structure and application is provided in the supporting documentation: http://data.bioregionalassessments.gov.au/dataset/05e851cf-57a5-4127-948a-1b41732d538c

    Purpose

    The Namoi Impact and Risk Analysis Database (Analysis Database) is the geospatial database for completing the Impact and Risk Analysis component of a Bioregional Assessment. This includes the creating of results, tables and maps that appear in the relevant Products of each assessment. The database also manages the data used by the BA Explorer.

    An individual instance of the Analysis Database was developed for each subregion where a component 3-4 Impact and Risks Assessment was conducted. With the exception of the subregion-specific data contained within it and the removal of restricted data records, each analysis database is of identical design and structure.

    Dataset History

    This Analysis Database is an instance of PostgreSQL version 9.5 hosted on Linux Red Hat Enterprise Linux version 4.8.5-4. PostgreSQL geospatial capabilities are provided by POSTGIS version 2.2.

    Data pre-processing and upload into each PostgreSQL database was completed using FME Desktop (Oracle Edition) version 2016.1.2.1. Analysis data and results are provided to users and systems via the geospatial services of Geoserver version 2.9.1. Scientific analysis and mapping was undertaken by connecting a range of data using a combination of Microsoft Excel, QGIS and ArcMap systems.

    During the Programme and for its working life, the Analysis Database was hosted and managed on instances of Amazon Web Services managed by Geoscience Australia and the Bureau of Meteorology.

    Dataset Citation

    Bioregional Assessment Programme (2018) NAM Impact and Risk Analysis Database v01. Bioregional Assessment Derived Dataset. Viewed 11 December 2018, http://data.bioregionalassessments.gov.au/dataset/1549c88d-927b-4cb5-b531-1d584d59be58.

    Dataset Ancestors

  20. m

    Conceptual Understanding: "What is Students Spatial Thinking Design in...

    • data.mendeley.com
    Updated Jul 20, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Feny Rita Fiantika (2022). Conceptual Understanding: "What is Students Spatial Thinking Design in Geometry Learning?" [Dataset]. http://doi.org/10.17632/kj94z94s4r.4
    Explore at:
    Dataset updated
    Jul 20, 2022
    Authors
    Feny Rita Fiantika
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data for classification indicator of spatial thinking.

    The change of paradigms in national assessment began in 2021 became a particular issue for teachers in improving student competencies. The main issue encountered by teachers is the way to improve student competencies in mathematic learning, especially in geometry. This writing is aimed to outline spatial-thinking indicators with six relevant background components of realistic geometry, and to describe students’ spatial-thinking design to acquire a geometric comprehension by using google Sketch-Up. The spatial-thinking indicators are outlined with six background components of realistic geometry by using Explanatory Factor Analysis (EFA) with JAPS software version 0.15.0.0. The acquired research results show the correlations between sighting and projecting, orientating and locating, transforming, constructing and drawing, measuring and calculation, and spatial reasoning variables. Spatial-thinking indicators are outlined in six component groups of realistic geometry. The results can be used as the consideration for teachers in identifying students’ conceptual understanding to support the improvement of student competencies.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Theodore Roosevelt National Park [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-theodore-roosevelt-nationa
Organization logo

Geospatial data for the Vegetation Mapping Inventory Project of Theodore Roosevelt National Park

Explore at:
Dataset updated
Jun 4, 2024
Dataset provided by
National Park Servicehttp://www.nps.gov/
Description

The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. An ArcInfo (copyright ESRI) GIS database was designed for THRO using the National Park GIS Database Design, Layout, and Procedures created by RSGIG. This was created through Arc Macro Language (AML) scripts that helped automate the transfer process and ensure that all spatial and attribute data was consistent and stored properly. Actual transfer of information from the interpreted aerial photographs to a digital, geo-referenced format involved two techniques, scanning (for the vegetation classes) and on-screen digitizing (for the land-use classes). Transferred information used to create vegetation polygon coverages and linear coverages in ArcInfo were based on quarter-quad borders. Attribute information including vegetation map unit, location, and aerial photo number was subsequently entered for all polygons. In addition, the spatial database has an FGDC-compliant metadata file.

Search
Clear search
Close search
Google apps
Main menu