100+ datasets found
  1. Copernicus Digital Elevation Model (DEM) for Europe at 3 arc seconds (ca. 90...

    • zenodo.org
    • data.opendatascience.eu
    • +1more
    bin, png, tiff, xml
    Updated Jul 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Markus Neteler; Markus Neteler; Julia Haas; Julia Haas; Markus Metz; Markus Metz (2024). Copernicus Digital Elevation Model (DEM) for Europe at 3 arc seconds (ca. 90 meter) resolution derived from Copernicus Global 30 meter DEM dataset [Dataset]. http://doi.org/10.5281/zenodo.6211701
    Explore at:
    png, bin, xml, tiffAvailable download formats
    Dataset updated
    Jul 17, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Markus Neteler; Markus Neteler; Julia Haas; Julia Haas; Markus Metz; Markus Metz
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    Overview:
    The Copernicus DEM is a Digital Surface Model (DSM) which represents the surface of the Earth including buildings, infrastructure and vegetation. The original GLO-30 provides worldwide coverage at 30 meters (refers to 10 arc seconds). Note that ocean areas do not have tiles, there one can assume height values equal to zero. Data is provided as Cloud Optimized GeoTIFFs. Note that the vertical unit for measurement of elevation height is meters.

    The Copernicus DEM for Europe at 3 arcsec (0:00:03 = 0.00083333333 ~ 90 meter) in COG format has been derived from the Copernicus DEM GLO-30, mirrored on Open Data on AWS, dataset managed by Sinergise (https://registry.opendata.aws/copernicus-dem/).

    Processing steps:
    The original Copernicus GLO-30 DEM contains a relevant percentage of tiles with non-square pixels. We created a mosaic map in VRT format and defined within the VRT file the rule to apply cubic resampling while reading the data, i.e. importing them into GRASS GIS for further processing. We chose cubic instead of bilinear resampling since the height-width ratio of non-square pixels is up to 1:5. Hence, artefacts between adjacent tiles in rugged terrain could be minimized:

    gdalbuildvrt -input_file_list list_geotiffs_MOOD.csv -r cubic -tr 0.000277777777777778 0.000277777777777778 Copernicus_DSM_30m_MOOD.vrt

    In order to reduce the spatial resolution to 3 arc seconds, weighted resampling was performed in GRASS GIS (using r.resamp.stats -w and the pixel values were scaled with 1000 (storing the pixels as integer values) for data volume reduction. In addition, a hillshade raster map was derived from the resampled elevation map (using r.relief, GRASS GIS). Eventually, we exported the elevation and hillshade raster maps in Cloud Optimized GeoTIFF (COG) format, along with SLD and QML style files.

    Projection + EPSG code:
    Latitude-Longitude/WGS84 (EPSG: 4326)

    Spatial extent:
    north: 82:00:30N
    south: 18N
    west: 32:00:30W
    east: 70E

    Spatial resolution:
    3 arc seconds (approx. 90 m)

    Pixel values:
    meters * 1000 (scaled to Integer; example: value 23220 = 23.220 m a.s.l.)

    Software used:
    GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief)

    Original dataset license:
    https://spacedata.copernicus.eu/documents/20126/0/CSCDA_ESA_Mission-specific+Annex.pdf

    Processed by:
    mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)

  2. GIS Shapefile, Spatial boundaries and land cover summaries for eight...

    • search.dataone.org
    • portal.edirepository.org
    Updated Sep 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cary Institute Of Ecosystem Studies; John Lagrosa; Claire Welty (2017). GIS Shapefile, Spatial boundaries and land cover summaries for eight sub-watersheds of the Baltimore Ecosystem Study LTER [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-bes%2F3200%2F100
    Explore at:
    Dataset updated
    Sep 20, 2017
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Cary Institute Of Ecosystem Studies; John Lagrosa; Claire Welty
    Time period covered
    Sep 20, 2017
    Area covered
    Description

    Watershed boundaries for eight sub-watersheds within the Baltimore Ecosystem Study LTER were delineated at 1-meter and 30-meter spatial resolutions. Watershed boundaries were used to calculate total area and extract and summarize existing land cover data (1m 2016 Chesapeake Conservancy Land Cover Data Project; 30m 2011 USGS National Land Cover Database). Two spatial resolutions are included to accommodate the needs of studies with different input requirements. In addition, providing data at both spatial scales highlights the importance of spatial resolution on study results.

  3. Data from: Dakar very-high resolution land cover map

    • zenodo.org
    • data.niaid.nih.gov
    txt, zip
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tais Grippa; Tais Grippa; Stefanos Georganos; Stefanos Georganos (2020). Dakar very-high resolution land cover map [Dataset]. http://doi.org/10.5281/zenodo.1290800
    Explore at:
    zip, txtAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Tais Grippa; Tais Grippa; Stefanos Georganos; Stefanos Georganos
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Dakar
    Description

    This land cover map of Dakar (Senegal) was created from a Pléiades very-high resolution imagery with a spatial resolution of 0.5 meter. The methodology followed a open-source semi-automated framework [1] that rely on GRASS GIS using a local unsupervised optimization approach for the segmentation part [2-3].

    Description of the files:

    • "Landcover.zip" : The direct output from the supervised classification using the Random Forest classifier.
    • "Landcover_Postclassif_Level8_Splitbuildings.zip" : Post-processed version of the previous map ("Landcover"), with reduced misclassifications from the original classification (rule-based used to reclassify the errors, with a focus on built-up classes).
    • "Landcover_Postclassif_Level8_modalfilter3.zip" : Smoothed version of the previous product (modal filter with window 3x3 applied on the "Landcover_Postclassif_Level8_Splitbuildings").
    • "Landcover_Postclassif_Level9_Shadowsback.zip" : Corresponds to the "level8_Splitbuildings" with shadows coming from the original classification.
    • "Dakar_legend_colors.txt" : Text file providing the correspondance between the value of the pixels and the legend labels and a proposition of color to be used.

    References:

    [1] Grippa, Taïs, Moritz Lennert, Benjamin Beaumont, Sabine Vanhuysse, Nathalie Stephenne, and Eléonore Wolff. 2017. “An Open-Source Semi-Automated Processing Chain for Urban Object-Based Classification.” Remote Sensing 9 (4): 358. https://doi.org/10.3390/rs9040358.

    [2] Grippa, Tais, Stefanos Georganos, Sabine G. Vanhuysse, Moritz Lennert, and Eléonore Wolff. 2017. “A Local Segmentation Parameter Optimization Approach for Mapping Heterogeneous Urban Environments Using VHR Imagery.” In Proceedings Volume 10431, Remote Sensing Technologies and Applications in Urban Environments II., edited by Wieke Heldens, Nektarios Chrysoulakis, Thilo Erbertseder, and Ying Zhang, 20. SPIE. https://doi.org/10.1117/12.2278422.

    [3] Georganos, Stefanos, Taïs Grippa, Moritz Lennert, Sabine Vanhuysse, and Eleonore Wolff. 2017. “SPUSPO: Spatially Partitioned Unsupervised Segmentation Parameter Optimization for Efficiently Segmenting Large Heterogeneous Areas.” In Proceedings of the 2017 Conference on Big Data from Space (BiDS’17).

    Founding:

    This dataset was produced in the frame of two research project : MAUPP (http://maupp.ulb.ac.be) and REACT (http://react.ulb.be), funded by the Belgian Federal Science Policy Office (BELSPO).

  4. f

    Data Paper. Data Paper

    • wiley.figshare.com
    html
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elizabeth J. Sbrocco; Paul H. Barber (2023). Data Paper. Data Paper [Dataset]. http://doi.org/10.6084/m9.figshare.3555765.v1
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Wiley
    Authors
    Elizabeth J. Sbrocco; Paul H. Barber
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    File List bathymetry_30s.7z (MD5: dd855211bbcdee7d6862414da23d6da2) biogeo01_07_30s.7z (MD5: 396525db0abd9de2ede3d8fdeb15e8ee) biogeo08_17_30s.7z (MD5: 96c2417eed84e85f9896536b934c53e1) Monthly_Variables_30s.7z (MD5: 89016a8d17e8d8a1dddef0a121a83f5d)

         Additional high resolution raster files:
    

    Sea_Ice_30s.7z (MD5: 547d355294c530f63b9b0a73dedd2f3a)

         Low resolution MARSPEC data files:
    

    MARSPEC_2o5m.7z (MD5: 923c97d185adb0c72f158a84e2981391) MARSPEC_5m.7z (MD5: 95f7c3739c4f2889c2eff18afeffa489) MARSPEC_10m.7z (MD5: d91f3127f46f7004d116f14328bf4b71) Description Ecological niche models are widely used in terrestrial studies to address critical ecological and evolutionary questions related to past and future climate change, local adaptation and speciation, the discovery of rare endemics, and biological invasions. However the application of niche models to similar questions in marine ecosystems has lagged behind, in part due to the lack of a centralized high-resolution spatial data set representing both benthic and pelagic marine environments. Here we describe the creation of MARSPEC, a high-resolution GIS database of ocean climate layers intended for marine ecological niche modeling and other applications in marine spatial ecology. MARSPEC combines information related to topographic complexity of the seafloor with bioclimatic measures of sea surface temperature and salinity for the world ocean. We derived seven geophysical variables from a high-resolution raster grid representing depth of the seafloor (bathymetry) to characterize six facets of topographic complexity (east-west and north-south components of aspect, slope, concavity of the seafloor, and plan and profile curvature) and distance from shore. We further derived 10 bioclimatic variables describing the annual mean, range, variance and extreme values for temperature and salinity from long-term monthly climatological means obtained from remotely sensed and in situ oceanographic observations. All variables were clipped to a common land mask, interpolated to a nominal 1-km (30 arc-second) grid, and converted to an ESRI raster grid file format compatible with popular GIS programs. MARSPEC is a 10-fold improvement in spatial resolution over the next-best data set (Bio-ORACLE) and is the only high-resolution global marine data set to combine variables from the benthic and pelagic environments into a single database. Additionally, we provide the monthly climatological layers used to derive the bioclimatic variables, allowing users to calculate equivalent MARSPEC variables from anomaly data for past and future climate scenarios. A detailed description of GIS processing steps required to calculate the MARSPEC variables can be found in the metadata.

          Key words: climate change; ecological niche modeling; GIS; marine spatial ecology; ocean climate; salinity; sea surface temperature; species distribution modeling.
    
  5. Multispectral Landsat

    • eo-for-disaster-management-amerigeoss.hub.arcgis.com
    • afrigeo.africageoportal.com
    • +9more
    Updated Mar 19, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2015). Multispectral Landsat [Dataset]. https://eo-for-disaster-management-amerigeoss.hub.arcgis.com/datasets/d9b466d6a9e647ce8d1dd5fe12eb434b
    Explore at:
    Dataset updated
    Mar 19, 2015
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer includes Landsat GLS, Landsat 8, and Landsat 9 imagery for use in visualization and analysis. This layer is time enabled and includes a number band combinations and indices rendered on demand. The Landsat 8 and 9 imagery includes nine multispectral bands from the Operational Land Imager (OLI) and two bands from the Thermal Infrared Sensor (TIRS). It is updated daily with new imagery directly sourced from the USGS Landsat collection on AWS.Geographic CoverageGlobal Land Surface.Polar regions are available in polar-projected Imagery Layers: Landsat Arctic Views and Landsat Antarctic Views.Temporal CoverageThis layer is updated daily with new imagery.Working in tandem, Landsat 8 and 9 revisit each point on Earth's land surface every 8 days.Most images collected from January 2015 to present are included.Approximately 5 images for each path/row from 2013 and 2014 are also included.This layer also includes imagery from the Global Land Survey* (circa 2010, 2005, 2000, 1990, 1975).Product LevelThe Landsat 8 and 9 imagery in this layer is comprised of Collection 2 Level-1 data.The imagery has Top of Atmosphere (TOA) correction applied.TOA is applied using the radiometric rescaling coefficients provided the USGS.The TOA reflectance values (ranging 0 – 1 by default) are scaled using a range of 0 – 10,000.Image Selection/FilteringA number of fields are available for filtering, including Acquisition Date, Estimated Cloud Cover, and Product ID.To isolate and work with specific images, either use the ‘Image Filter’ to create custom layers or add a ‘Layer Filter’ to restrict the default layer display to a specified image or group of images.To isolate a specific mission, use the Layer Filter and the dataset_id or SensorName fields.Visual RenderingThe default rendering in this layer is Agriculture (bands 6,5,2) with Dynamic Range Adjustment (DRA). Brighter green indicates more vigorous vegetation.The DRA version of each layer enables visualization of the full dynamic range of the images.Rendering (or display) of band combinations and calculated indices is done on-the-fly from the source images via Raster Functions.Various pre-defined Raster Functions can be selected or custom functions can be created.Pre-defined functions: Natural Color with DRA, Agriculture with DRA, Geology with DRA, Color Infrared with DRA, Bathymetric with DRA, Short-wave Infrared with DRA, Normalized Difference Moisture Index Colorized, NDVI Raw, NDVI Colorized, NBR Raw15 meter Landsat Imagery Layers are also available: Panchromatic and Pansharpened.Multispectral Bands

    Band

    Description

    Wavelength (µm)

    Spatial Resolution (m)

    1

    Coastal aerosol

    0.43 - 0.45

    30

    2

    Blue

    0.45 - 0.51

    30

    3

    Green

    0.53 - 0.59

    30

    4

    Red

    0.64 - 0.67

    30

    5

    Near Infrared (NIR)

    0.85 - 0.88

    30

    6

    SWIR 1

    1.57 - 1.65

    30

    7

    SWIR 2

    2.11 - 2.29

    30

    8

    Cirrus (in OLI this is band 9)

    1.36 - 1.38

    30

    9

    QA Band (available with Collection 1)*

    NA

    30

    *More about the Quality Assessment BandTIRS Bands

    Band

    Description

    Wavelength (µm)

    Spatial Resolution (m)

    10

    TIRS1

    10.60 - 11.19

    100 * (30)

    11

    TIRS2

    11.50 - 12.51

    100 * (30)

    *TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered data product.Additional Usage NotesImage exports are limited to 4,000 columns x 4,000 rows per request.This dynamic imagery layer can be used in Web Maps and ArcGIS Pro as well as web and mobile applications using the ArcGIS REST APIs.WCS and WMS compatibility means this imagery layer can be consumed as WCS or WMS services.The Landsat Explorer App is another way to access and explore the imagery.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted in Amazon Web Services as part of their Public Data Sets program.For information, see Landsat 8 and Landsat 9.*The Global Land Survey includes images from Landsat 1 through Landsat 7. Band numbers and band combinations differ from those of Landsat 8, but have been mapped to the most appropriate band as in the above table. For more information about the Global Land Survey, visit GLS.

  6. Catch-In-Areas Main

    • fisheries.noaa.gov
    • s.cnmilf.com
    • +2more
    esri rest service
    Updated Sep 2, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alaska Regional Office (2015). Catch-In-Areas Main [Dataset]. https://www.fisheries.noaa.gov/inport/item/27363
    Explore at:
    esri rest serviceAvailable download formats
    Dataset updated
    Sep 2, 2015
    Dataset provided by
    Alaska Regional Office
    Time period covered
    2003 - Mar 22, 2125
    Area covered
    Description

    The Catch-In-Areas database integrates catch data from the Catch Accounting System (which has the spatial resolution of a NMFS Reporting Area) into a database that resolves the GIS data into polygons of approximately 7.5 km. In unrestricted outside waters, sixty four grid IDs fit inside one state statistical area. A state statistical area is = degree in latitude and one degree in longitude bloc...

  7. a

    imageryBaseMapsEarthCoverearthCoverMelcd

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • hub.arcgis.com
    • +3more
    Updated Jun 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Maine (2024). imageryBaseMapsEarthCoverearthCoverMelcd [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/1d6297fc680948ac89fc3f8e03099894
    Explore at:
    Dataset updated
    Jun 10, 2024
    Dataset authored and provided by
    State of Maine
    Area covered
    Description

    Maine Land Cover Dataset (MELCD) is a land cover map for Maine primarily derived from Landsat Thematic Mapper 5 and 7 imagery, from the years 1999-2001. This imagery constitutes the basis for the National Land Cover Dataset (NLCD 2001) and the NOAA Coastal Change Analysis Program (C-CAP). This land cover map was refined to the State of Maine requirements using SPOT 5 panchromatic imagery from 2004. The Landsat imagery used was for three seasons: early spring (leaf-off), summer, and early fall (senescence) and was collected with a spatial resolution of 30 m. The SPOT 5 panchromatic imagery was collected at a spatial resolution of 5 m during the spring and summer months of 2004. The map was developed in two distinct stages, the first stage was the development of a state wide land cover data set consistent with the NOAAC-CAP land cover map. The second stage was: a) the update to 2004 conditions, b) a refinement of the classification system to Maine specific classes and, c) a refinement of the spatial boundaries to create a polygon map based on 5 m imagery.

  8. Geospatial data for the Vegetation Mapping Inventory Project of Salinas...

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Salinas Pueblo Missions National Monument [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-salinas-pueblo-missions-na
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Aerial digital ortho-photography was the foundation imagery for map development. For Abó, the photography was acquired on April May 15, 2002 at a scale of approximately 1:3,000; for Quarai and Gran Quivira it was flown on April 2, 2003 at scales of 1:3,600 and 1:3000, respectively. The 2002-03 digital imagery has a base pixel resolution of 1.0 m. We also made use of statewide 1-meter resolution, true-color imagery from 2005 that became available in 2006 through the New Mexico Resource Geographic Information System. A 10 m spatial resolution USGS Digital Elevation Model (DEM) was used, in conjunction with ground data, to help discriminate between vegetation types based on elevation gradients and terrain. All imagery and other spatial data layers were compiled into a geodatabase and GIS using ArcGIS 9.3 (ESRI 2008).

  9. o

    MODIS LST Day and Night, monthly aggregated time series for Mauritania at 30...

    • data.opendatascience.eu
    • data.mundialis.de
    • +1more
    Updated Jun 10, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). MODIS NDWI, monthly aggregated time series for Mauritania at 30 arc seconds (ca. 1000 meter) resolution (2019 - 2023) [Dataset]. https://data.opendatascience.eu/geonetwork/srv/search?format=GeoTiff
    Explore at:
    Dataset updated
    Jun 10, 2021
    Description

    Land Surface Temperature (LST) from MODIS data for Mauritania at 30 arc seconds (ca. 1000 meter) resolution (2019 - 2023). Source data: - MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1 km SIN Grid (MOD11A2 v061): https://lpdaac.usgs.gov/products/mod11a2v061/ The Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature/Emissivity 8-Day (MOD11A2) Version 6.1 product provides an average 8-day per-pixel Land Surface Temperature and Emissivity (LST&E) with a 1 kilometer (km) spatial resolution in a 1,200 by 1,200 km grid. Each pixel value in the MOD11A2 is a simple average of all the corresponding MOD11A1 LST pixels collected within that 8-day period. The 8-day compositing period was chosen because twice that period is the exact ground track repeat period of the Terra and Aqua platforms. For the time period January 2019 - December 2023, the LST layer of the original data has been processed. Both day (10:30 am) and night (10:30 pm) overpasses have been processed separately. Bad quality pixels or pixels with snow/ice and/or cloud cover have been masked using the provided quality assurance (QA) layers. The time series has been gapfilled with a temporal and a spatial approach. Gaps in the time series were filled with a harmonic analysis of time series using six frequencies to also model relatively short-term changes in LST. Only missing values were replaced by modelled values. The 8-day data are then aggregated to monthly temporal resolution using the average and reprojected to Latitude-Longitude/WGS84. File naming: lst_day/night_monthly_YYYY_MM_30arcsec.tif e.g.: lst_day_monthly_2023_12_30arcsec.tif The date within the filename are year and month of aggregated timestamp. Pixel values: LST * 10 Scaled to Integer, example: value 327 = 32.7 Units are degree Celsius. Projection + EPSG code: Latitude-Longitude/WGS84 (EPSG: 4326) Spatial extent: north: 28N south: 14N west: 18W east: 4W Temporal extent: January 2019 - December 2023 Spatial resolution: 30 arc seconds (approx. 1000 m) Temporal resolution: monthly Software used: GRASS GIS 8.3.2 Format: GeoTIFF Original dataset license: All data products distributed by NASA's Land Processes Distributed Active Archive Center (LP DAAC) are available at no charge. The LP DAAC requests that any author using NASA data products in their work provide credit for the data, and any assistance provided by the LP DAAC, in the data section of the paper, the acknowledgement section, and/or as a reference. The recommended citation for each data product is available on its Digital Object Identifier (DOI) Landing page, which can be accessed through the Search Data Catalog interface. For more information see: https://lpdaac.usgs.gov/products/mod13a2v061/ Processed by: mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/) Contact: mundialis GmbH & Co. KG, info@mundialis.de Acknowledgements: This study was partially funded by EU grant 874850 MOOD. The contents of this publication are the sole responsibility of the authors and don't necessarily reflect the views of the European Commission.

  10. d

    NLCD 2001 Percent Developed Imperviousness (2011 Edition, amended 2014) -...

    • search.dataone.org
    • datadiscoverystudio.org
    Updated Oct 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2016). NLCD 2001 Percent Developed Imperviousness (2011 Edition, amended 2014) - National Geospatial Data Asset (NGDA) Land Use Land Cover [Dataset]. https://search.dataone.org/view/350523ca-76ef-4934-95f5-69662c062d9b
    Explore at:
    Dataset updated
    Oct 29, 2016
    Dataset provided by
    USGS Science Data Catalog
    Authors
    U.S. Geological Survey
    Time period covered
    Apr 28, 1999 - Jul 26, 2004
    Area covered
    Variables measured
    Red, Blue, Count, Green, Value, Opacity, ObjectID
    Description

    The National Land Cover Database 2001 Percent Developed Imperviousness was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (EPA), the U.S. Department of Agriculture - Forest Service (USDA-FS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (FWS), the Bureau of Land Management (BLM) and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land Cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer et al. (2003) and http://www.mrlc.gov/mrlc2k.asp. The NLCD 2001 was created by partitioning the U.S. into mapping zones. A total of 66 mapping zones were delineated within the conterminous U.S. based on ecoregion and geographical characteristics, edge-matching features and the size requirement of Landsat mosaics. This update represents a seamless assembly of updated NLCD 2001 Percent Developed Imperviousness for all 66 MRLC mapping zones. Questions about the NLCD 2001 Percent Developed Imperviousness 2011 Edition can be directed to the NLCD 2001 land cover mapping team at USGS EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.

  11. NREL GIS Data: Continental United States Photovoltaic Low Resolution

    • data.wu.ac.at
    • data.globalchange.gov
    • +1more
    zip
    Updated Aug 29, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Energy (2017). NREL GIS Data: Continental United States Photovoltaic Low Resolution [Dataset]. https://data.wu.ac.at/schema/data_gov/ODczOWIwNGQtMjMyNy00ZWRhLThjY2UtZjk4NWQ4MGIzMTdm
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 29, 2017
    Dataset provided by
    United States Department of Energyhttp://energy.gov/
    Area covered
    United States
    Description

    Abstract: Monthly and annual average solar resource potential for the lower 48 states of the United States of America.

    Purpose: Provide information on the solar resource potential for the United States of America lower 48 states. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location.

    Supplemental Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximatley 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain. Units are in kilowatt hours per meter squared per day.

    OtherCitation Details:

    George, R, and E. Maxwell, 1999: "High-Resolution Maps of Solar Collector Performance Using A Climatological Solar Radiation Model", Proceedings of the 1999 Annual Conference, American Solar Energy Society, Portland, ME.

    Maxwell, E, R. George and S. Wilcox, "A Climatological Solar Radiation Model", Proceedings of the 1998 Annual Conference, American Solar Energy Society, Albuquerque NM.

    Marion, William and Stephen Wilcox, 1994: "Solar Radiation Data Manual for Flat-plate and Concentrating Collectors". NREL/TP-463-5607, National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401.

    License Info

    DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data.

    Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data.

    THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA.

    The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.

  12. Full Climatology With Hourly Timesteps (TRMM LIS Very High Resolution...

    • disasters.amerigeoss.org
    • disasters-usnsdi.opendata.arcgis.com
    Updated Dec 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NASA ArcGIS Online (2022). Full Climatology With Hourly Timesteps (TRMM LIS Very High Resolution Climatology Flashes/(sq km * year)) (TRMM Lightning Imaging Sensor Climatologies) [Dataset]. https://disasters.amerigeoss.org/datasets/6fcb8c86e5f84471b7840ece5cdfeba6
    Explore at:
    Dataset updated
    Dec 8, 2022
    Dataset provided by
    NASAhttp://nasa.gov/
    Authors
    NASA ArcGIS Online
    Area covered
    Description

    ArcGIS Image Service

    Mean LIS Flash Rate Density 
    
    Time Interval: Diurnal Climatology
    
    Platform: TRMM
    
    Time Extent: 1998-01-01 to 2013-12-31
    
    Projection: GCS WGS84
    
    Extent: (38.0°, 180.0°), (-38.0°, -180.0°)
    
    Other Formats: OGC WMS, OGC WCS, REST
    
    
          Collection
        The LIS 0.1 Degree Very High Resolution Gridded Lightning Diurnal Climatology (VHRDC) dataset consists of gridded diurnal climatologies of total lightning flash rates seen by the Lightning Imaging Sensor (LIS) from January 1, 1998 through December 31, 2013. LIS is an instrument on the Tropical Rainfall Measurement Mission satellite (TRMM) used to detect the distribution and variability of total lightning occurring in the Earth's tropical and subtropical regions. This information can be used for severe storm detection and analysis, and also for lightning-atmosphere interaction studies. The gridded climatologies include annual mean flash rate, mean diurnal cycle of flash rate with 24 hour resolution, and mean annual cycle of flash rate with daily, monthly, or seasonal resolution. All datasets are in 0.1 degree spatial resolution. The mean annual cycle of flash rate datasets (i.e., daily, monthly or seasonal) have both 49-day and 1 degree boxcar moving averages to remove diurnal cycle and smooth regions with low flash rate, making the results more robust. (GHRC)
    
        Source Data: DAAC, CMR, Earthdata Search
    
    
    
    
    
    
    
    
    
    Satellite Mapping and Analysis of Severe Hailstorms (SMASH) Project
    

    This Hailstorm research project seeks to address knowledge gaps in the severe hail climatology using regional to global scale satellite observations and provides mechanisms to explore related datasets.

    For questions/issues please contact: kristopher.m.bedka@nasa.gov

    SMASH AGOL Group | NASA Applied Sciences | NASA Disasters Mapping Portal | NASA Langley Research Center Science Directorate

  13. A

    NREL GIS Data: Continental United States High Resolution Concentrating Solar...

    • data.amerigeoss.org
    • datadiscoverystudio.org
    • +1more
    zip
    Updated Jul 25, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). NREL GIS Data: Continental United States High Resolution Concentrating Solar Power [Dataset]. https://data.amerigeoss.org/dataset/activity/nrel-gis-data-continental-united-states-high-resolution-concentrating-solar-power
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 25, 2019
    Dataset provided by
    United States[old]
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Abstract: Monthly and annual average solar resource potential for the lower 48 states of the United States of America.

    Purpose: Provide information on the solar resource potential for the for the lower 48 states of the United States of America.

    Supplemental Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximatley 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain.

    Other Citation Details: George, R, and E. Maxwell, 1999: "High-Resolution Maps of Solar Collector Performance Using A Climatological Solar Radiation Model", Proceedings of the 1999 Annual Conference, American Solar Energy Society, Portland, ME.

    License Info

    This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data.

    Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data.

    THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA.

    The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.

  14. s

    Timor-Leste 100m Urban change

    • eprints.soton.ac.uk
    Updated May 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Timor-Leste 100m Urban change [Dataset]. https://eprints.soton.ac.uk/440411/
    Explore at:
    Dataset updated
    May 5, 2023
    Dataset provided by
    University of Southampton
    Authors
    WorldPop,
    Area covered
    Timor-Leste
    Description

    DATASET: Alpha version 2000 and 2010 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and MODIS-derived urban extent change built in. REGION: Asia SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described on the website and in: Gaughan AE, Stevens FR, Linard C, Jia P and Tatem AJ, 2013, High resolution population distribution maps for Southeast Asia in 2010 and 2015, PLoS ONE, 8(2): e55882 FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - VNM00urbchg.tif = Vietnam (VNM) population count map for 2000 (00) adjusted to match UN national estimates and incorporating urban extent and urban population estimates for 2000. DATE OF PRODUCTION: July 2013 Dataset construction details and input data are provided here: www.asiapop.org and here: http://www.plosone.org/article/info:doi/10.1371/journal.pone.0055882

  15. Landsat 8-9 Natural Color with DRA

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Aug 11, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2016). Landsat 8-9 Natural Color with DRA [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/esri::landsat-8-9-natural-color-with-dra/about
    Explore at:
    Dataset updated
    Aug 11, 2016
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer includes Landsat 8 and 9 imagery rendered on-the-fly as Natural Color with DRA for use in visualization and analysis. This layer is time enabled and includes a number of band combinations and indices rendered on demand. The imagery includes eight multispectral bands from the Operational Land Imager (OLI) and two bands from the Thermal Infrared Sensor (TIRS). It is updated daily with new imagery directly sourced from the USGS Landsat collection on AWS.Geographic CoverageGlobal Land Surface.Polar regions are available in polar-projected Imagery Layers: Landsat Arctic Views and Landsat Antarctic Views.Temporal CoverageThis layer is updated daily with new imagery.Working in tandem, Landsat 8 and 9 revisit each point on Earth's land surface every 8 days.Most images collected from January 2015 to present are included.Approximately 5 images for each path/row from 2013 and 2014 are also included.Product LevelThe Landsat 8 and 9 imagery in this layer is comprised of Collection 2 Level-1 data.The imagery has Top of Atmosphere (TOA) correction applied.TOA is applied using the radiometric rescaling coefficients provided the USGS.The TOA reflectance values (ranging 0 – 1 by default) are scaled using a range of 0 – 10,000.Image Selection/FilteringA number of fields are available for filtering, including Acquisition Date, Estimated Cloud Cover, and Product ID.To isolate and work with specific images, either use the ‘Image Filter’ to create custom layers or add a ‘Query Filter’ to restrict the default layer display to a specified image or group of images.Visual RenderingDefault rendering is Natural Color (bands 4,3,2) with Dynamic Range Adjustment (DRA).Raster Functions enable on-the-fly rendering of band combinations and calculated indices from the source imagery.The DRA version of each layer enables visualization of the full dynamic range of the images.Other pre-defined Raster Functions can be selected via the renderer drop-down or custom functions can be created.This layer is part of a larger collection of Landsat Imagery Layers that you can use to perform a variety of mapping analysis tasks.Pre-defined functions: Natural Color with DRA, Agriculture with DRA, Geology with DRA, Color Infrared with DRA, Bathymetric with DRA, Short-wave Infrared with DRA, Normalized Difference Moisture Index Colorized, NDVI Raw, NDVI Colorized, NBR Raw15 meter Landsat Imagery Layers are also available: Panchromatic and Pansharpened.Multispectral BandsThe table below lists all available multispectral OLI bands. Natural Color with DRA consumes bands 4,3,2.BandDescriptionWavelength (µm)Spatial Resolution (m)1Coastal aerosol0.43 - 0.45302Blue0.45 - 0.51303Green0.53 - 0.59304Red0.64 - 0.67305Near Infrared (NIR)0.85 - 0.88306SWIR 11.57 - 1.65307SWIR 22.11 - 2.29308Cirrus (in OLI this is band 9)1.36 - 1.38309QA Band (available with Collection 1)*NA30*More about the Quality Assessment BandTIRS BandsBandDescriptionWavelength (µm)Spatial Resolution (m)10TIRS110.60 - 11.19100 * (30)11TIRS211.50 - 12.51100 * (30)*TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered data product.Additional Usage NotesImage exports are limited to 4,000 columns x 4,000 rows per request.This dynamic imagery layer can be used in Web Maps and ArcGIS Pro as well as web and mobile applications using the ArcGIS REST APIs.WCS and WMS compatibility means this imagery layer can be consumed as WCS or WMS services.The Landsat Explorer App is another way to access and explore the imagery.This layer is part of a larger collection of Landsat Imagery Layers.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted by the Amazon Web Services as part of their Public Data Sets program.For information, see Landsat 8 and Landsat 9.

  16. s

    Malaysia 100m Urban change

    • eprints.soton.ac.uk
    Updated May 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Malaysia 100m Urban change [Dataset]. https://eprints.soton.ac.uk/440034/
    Explore at:
    Dataset updated
    May 5, 2023
    Dataset provided by
    University of Southampton
    Authors
    WorldPop,
    Area covered
    Malaysia
    Description

    DATASET: Alpha version 2000 and 2010 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and MODIS-derived urban extent change built in. REGION: Asia SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described on the website and in: Gaughan AE, Stevens FR, Linard C, Jia P and Tatem AJ, 2013, High resolution population distribution maps for Southeast Asia in 2010 and 2015, PLoS ONE, 8(2): e55882 FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - VNM00urbchg.tif = Vietnam (VNM) population count map for 2000 (00) adjusted to match UN national estimates and incorporating urban extent and urban population estimates for 2000. DATE OF PRODUCTION: July 2013 Dataset construction details and input data are provided here: www.asiapop.org and here: http://www.plosone.org/article/info:doi/10.1371/journal.pone.0055882

  17. Collection of global datasets for the study of floods, droughts and their...

    • zenodo.org
    bin
    Updated Mar 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sara Lindersson; Sara Lindersson; Luigia Brandimarte; Luigia Brandimarte; Johanna Mård; Johanna Mård; Giuliano Di Baldassarre; Giuliano Di Baldassarre (2020). Collection of global datasets for the study of floods, droughts and their interactions with human societies [Dataset]. http://doi.org/10.5281/zenodo.3608634
    Explore at:
    binAvailable download formats
    Dataset updated
    Mar 6, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Sara Lindersson; Sara Lindersson; Luigia Brandimarte; Luigia Brandimarte; Johanna Mård; Johanna Mård; Giuliano Di Baldassarre; Giuliano Di Baldassarre
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a collection of 124 global and free datasets allowing for spatial (and temporal) analyses of floods, droughts and their interactions with human societies. We have structured the datasets into seven categories: hydrographic baseline, hydrological dynamics, hydrological extremes, land cover & agriculture, human presence, water management, and vulnerability. Please refer to Lindersson et al. (accepted february 2020 in WIREs Water) for further information about review methodology.

    The collection is a descriptive list, holding the following information for each dataset:

    • Category - as structured in Lindersson et al. (in preparation).
    • Sub-category- as structured in Lindersson et al. (in preparation).
    • Abbreviation - official or as specified in Lindersson et al. (in preparation).
    • Title - full title of dataset.
    • Product(s) - type of product(s) offered by the dataset.
    • Period - time period covered by the dataset, not defined for all datasets.
    • Temporal resolution - not defined for static datasets.
    • Angular spatial resolution - only defined for gridded datasets.
    • Metric spatial resolution - only defined for gridded datasets.
    • Map scale
    • Extent - geographic coverage of dataset given in latitude limits.
    • Description
    • Creating institute(s)
    • Data type - raster, vector or tabular.
    • File format
    • Primary EO type - specifies if the product primarily is based on remote sensing, ground-based data, or a hybrid between remote sensing and ground-based data.
    • Data sources - lists the data sources behind the dataset, to the extent this is feasible.
    • Data sources also in this table - data sources that are also included as datasets in this collection.
    • Intentionally compatible with - defines other datasets in this collection that the dataset is intentinoally compatible with.
    • Citation - dataset reference or credit.
    • Documentation - dataset documentation.
    • Web address - dataset access link.

    NOTE: Carefully consult the data usage licenses as given by the data providers, to assure that the exact permissions and restrictions are followed.

  18. d

    Distribution pattern of rocky desertification in southwest China and...

    • datadryad.org
    • data.niaid.nih.gov
    • +1more
    zip
    Updated Oct 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dengfeng Wei; Yue Chang; Danni Song; Dengfeng Wei; Honghai Kuang (2023). Distribution pattern of rocky desertification in southwest China and analysis of its main driving factors based on GIS and Geodetector [Dataset]. http://doi.org/10.5061/dryad.ns1rn8q0p
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 25, 2023
    Dataset provided by
    Dryad
    Authors
    Dengfeng Wei; Yue Chang; Danni Song; Dengfeng Wei; Honghai Kuang
    Time period covered
    2023
    Area covered
    Southwestern China
    Description

    The rocky desertification data were obtained from Landsat 8 operational land imager (OLI) image data provided by the U.S. Geological Survey (USGS) ("https://www.usgs.gov"), de-clouded based on the Google Earth Engine (GEE), and atmospherically corrected using ENVI5.3 Fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) atmospheric correction tool with a spatial resolution of 30 m [37,38]. The land use type data with a spatial resolution of 1000 m were downloaded from the Resource and Environmental Science and Data Center of the Chinese Academy of Sciences ("https://www.resdc.cn"). The land use types in these data mainly include watersheds, rivers, and urban industrial construction land, cultivated land, woodland, grassland, and unutilized land. The overall accuracy of this dataset reached 95.41%, which met the needs of this study. The digital elevation model (DEM) data for the study area were obtained from the Geospatial Data Cloud Platform of the Computer Network Inf...

  19. WorldClim Global Mean Precipitation

    • ai-climate-hackathon-global-community.hub.arcgis.com
    • cacgeoportal.com
    • +6more
    Updated Mar 25, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). WorldClim Global Mean Precipitation [Dataset]. https://ai-climate-hackathon-global-community.hub.arcgis.com/datasets/e6ab693056a9465cbc3b26414f0ddd2c
    Explore at:
    Dataset updated
    Mar 25, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    WorldClim 2.1 provides downscaled estimates of climate variables as monthly means over the period of 1970-2000 based on interpolated station measurements. Here we provide analytical image services of precipitation for each month along with an annual mean. Each time step is accessible from a processing template.Time Extent: Monthly/Annual 1970-2000Units: mm/monthCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 16 Bit IntegerData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim v2.1Using Processing Templates to Access TimeThere are 13 processing templates applied to this service, each providing access to the 12 monthly and 1 annual mean precipitation layers. To apply these in ArcGIS Online, select the Image Display options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left-hand menu. From the Processing Template pull down menu, select the version to display.What can you do with this layer?This layer may be added to maps to visualize and quickly interrogate each pixel value. The pop-up provides a graph of the time series along with the calculated annual mean value.This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro and an area count of precipitation may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from month to month to show seasonal patterns.To calculate precipitation by land area, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Source Data: The datasets behind this layer were extracted from GeoTIF files produced by WorldClim at 2.5 minutes resolution. The mean of the 12 GeoTIFs was calculated (annual), and the 13 rasters were converted to Cloud Optimized GeoTIFF format and added to a mosaic dataset.Citation: Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4302-4315.

  20. World - Terrain Elevation Above Sea Level (ELE) GIS Data, (Global Solar...

    • data.subak.org
    • datacatalog.worldbank.org
    geotiff
    Updated Feb 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (2023). World - Terrain Elevation Above Sea Level (ELE) GIS Data, (Global Solar Atlas) [Dataset]. https://data.subak.org/dataset/world-terrain-elevation-above-sea-level-ele-gis-data-global-solar-atlas
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Feb 16, 2023
    Dataset provided by
    World Bankhttp://worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Developed by SOLARGIS and provided by the Global Solar Atlas (GSA), this data resource contains terrain elevation above sea level (ELE) in [m a.s.l.] covering the globe. Data is provided in a geographic spatial reference (EPSG:4326). The resolution (pixel size) of solar resource data (GHI, DIF, GTI, DNI) is 9 arcsec (nominally 250 m), PVOUT and TEMP 30 arcsec (nominally 1 km) and OPTA 2 arcmin (nominally 4 km). The data is hyperlinked under 'resources' with the following characeristics: ELE GISdata (GeoTIFF) Data format: GEOTIFF File size : 826.8 MB There are two temporal representation of solar resource and PVOUT data available: • Longterm yearly/monthly average of daily totals (LTAym_AvgDailyTotals) • Longterm average of yearly/monthly totals (LTAym_YearlyMonthlyTotals) Both type of data are equivalent, you can select the summarization of your preference. The relation between datasets is described by simple equations: • LTAy_YearlyTotals = LTAy_DailyTotals * 365.25 • LTAy_MonthlyTotals = LTAy_DailyTotals * Number_of_Days_In_The_Month *For individual country or regional data downloads please see: https://globalsolaratlas.info/download (use the drop-down menu to select country or region of interest) *For data provided in AAIGrid please see: https://globalsolaratlas.info/download/world. For more information and terms of use, please, read metadata, provided in PDF and XML format for each data layer in a download file. For other data formats, resolution or time aggregation, please, visit Solargis website. Data can be used for visualization, further processing, and geo-analysis in all mainstream GIS software with raster data processing capabilities (such as open source QGIS, commercial ESRI ArcGIS products and others).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Markus Neteler; Markus Neteler; Julia Haas; Julia Haas; Markus Metz; Markus Metz (2024). Copernicus Digital Elevation Model (DEM) for Europe at 3 arc seconds (ca. 90 meter) resolution derived from Copernicus Global 30 meter DEM dataset [Dataset]. http://doi.org/10.5281/zenodo.6211701
Organization logo

Copernicus Digital Elevation Model (DEM) for Europe at 3 arc seconds (ca. 90 meter) resolution derived from Copernicus Global 30 meter DEM dataset

Explore at:
png, bin, xml, tiffAvailable download formats
Dataset updated
Jul 17, 2024
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Markus Neteler; Markus Neteler; Julia Haas; Julia Haas; Markus Metz; Markus Metz
License

Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically

Area covered
Europe
Description

Overview:
The Copernicus DEM is a Digital Surface Model (DSM) which represents the surface of the Earth including buildings, infrastructure and vegetation. The original GLO-30 provides worldwide coverage at 30 meters (refers to 10 arc seconds). Note that ocean areas do not have tiles, there one can assume height values equal to zero. Data is provided as Cloud Optimized GeoTIFFs. Note that the vertical unit for measurement of elevation height is meters.

The Copernicus DEM for Europe at 3 arcsec (0:00:03 = 0.00083333333 ~ 90 meter) in COG format has been derived from the Copernicus DEM GLO-30, mirrored on Open Data on AWS, dataset managed by Sinergise (https://registry.opendata.aws/copernicus-dem/).

Processing steps:
The original Copernicus GLO-30 DEM contains a relevant percentage of tiles with non-square pixels. We created a mosaic map in VRT format and defined within the VRT file the rule to apply cubic resampling while reading the data, i.e. importing them into GRASS GIS for further processing. We chose cubic instead of bilinear resampling since the height-width ratio of non-square pixels is up to 1:5. Hence, artefacts between adjacent tiles in rugged terrain could be minimized:

gdalbuildvrt -input_file_list list_geotiffs_MOOD.csv -r cubic -tr 0.000277777777777778 0.000277777777777778 Copernicus_DSM_30m_MOOD.vrt

In order to reduce the spatial resolution to 3 arc seconds, weighted resampling was performed in GRASS GIS (using r.resamp.stats -w and the pixel values were scaled with 1000 (storing the pixels as integer values) for data volume reduction. In addition, a hillshade raster map was derived from the resampled elevation map (using r.relief, GRASS GIS). Eventually, we exported the elevation and hillshade raster maps in Cloud Optimized GeoTIFF (COG) format, along with SLD and QML style files.

Projection + EPSG code:
Latitude-Longitude/WGS84 (EPSG: 4326)

Spatial extent:
north: 82:00:30N
south: 18N
west: 32:00:30W
east: 70E

Spatial resolution:
3 arc seconds (approx. 90 m)

Pixel values:
meters * 1000 (scaled to Integer; example: value 23220 = 23.220 m a.s.l.)

Software used:
GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief)

Original dataset license:
https://spacedata.copernicus.eu/documents/20126/0/CSCDA_ESA_Mission-specific+Annex.pdf

Processed by:
mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)

Search
Clear search
Close search
Google apps
Main menu