Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Overview:
The Copernicus DEM is a Digital Surface Model (DSM) which represents the surface of the Earth including buildings, infrastructure and vegetation. The original GLO-30 provides worldwide coverage at 30 meters (refers to 10 arc seconds). Note that ocean areas do not have tiles, there one can assume height values equal to zero. Data is provided as Cloud Optimized GeoTIFFs. Note that the vertical unit for measurement of elevation height is meters.
The Copernicus DEM for Europe at 3 arcsec (0:00:03 = 0.00083333333 ~ 90 meter) in COG format has been derived from the Copernicus DEM GLO-30, mirrored on Open Data on AWS, dataset managed by Sinergise (https://registry.opendata.aws/copernicus-dem/).
Processing steps:
The original Copernicus GLO-30 DEM contains a relevant percentage of tiles with non-square pixels. We created a mosaic map in VRT format and defined within the VRT file the rule to apply cubic resampling while reading the data, i.e. importing them into GRASS GIS for further processing. We chose cubic instead of bilinear resampling since the height-width ratio of non-square pixels is up to 1:5. Hence, artefacts between adjacent tiles in rugged terrain could be minimized:
gdalbuildvrt -input_file_list list_geotiffs_MOOD.csv -r cubic -tr 0.000277777777777778 0.000277777777777778 Copernicus_DSM_30m_MOOD.vrt
In order to reduce the spatial resolution to 3 arc seconds, weighted resampling was performed in GRASS GIS (using r.resamp.stats -w
and the pixel values were scaled with 1000 (storing the pixels as integer values) for data volume reduction. In addition, a hillshade raster map was derived from the resampled elevation map (using r.relief
, GRASS GIS). Eventually, we exported the elevation and hillshade raster maps in Cloud Optimized GeoTIFF (COG) format, along with SLD and QML style files.
Projection + EPSG code:
Latitude-Longitude/WGS84 (EPSG: 4326)
Spatial extent:
north: 82:00:30N
south: 18N
west: 32:00:30W
east: 70E
Spatial resolution:
3 arc seconds (approx. 90 m)
Pixel values:
meters * 1000 (scaled to Integer; example: value 23220 = 23.220 m a.s.l.)
Software used:
GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief)
Original dataset license:
https://spacedata.copernicus.eu/documents/20126/0/CSCDA_ESA_Mission-specific+Annex.pdf
Processed by:
mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)
Watershed boundaries for eight sub-watersheds within the Baltimore Ecosystem Study LTER were delineated at 1-meter and 30-meter spatial resolutions. Watershed boundaries were used to calculate total area and extract and summarize existing land cover data (1m 2016 Chesapeake Conservancy Land Cover Data Project; 30m 2011 USGS National Land Cover Database). Two spatial resolutions are included to accommodate the needs of studies with different input requirements. In addition, providing data at both spatial scales highlights the importance of spatial resolution on study results.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This land cover map of Dakar (Senegal) was created from a Pléiades very-high resolution imagery with a spatial resolution of 0.5 meter. The methodology followed a open-source semi-automated framework [1] that rely on GRASS GIS using a local unsupervised optimization approach for the segmentation part [2-3].
Description of the files:
References:
[1] Grippa, Taïs, Moritz Lennert, Benjamin Beaumont, Sabine Vanhuysse, Nathalie Stephenne, and Eléonore Wolff. 2017. “An Open-Source Semi-Automated Processing Chain for Urban Object-Based Classification.” Remote Sensing 9 (4): 358. https://doi.org/10.3390/rs9040358.
[2] Grippa, Tais, Stefanos Georganos, Sabine G. Vanhuysse, Moritz Lennert, and Eléonore Wolff. 2017. “A Local Segmentation Parameter Optimization Approach for Mapping Heterogeneous Urban Environments Using VHR Imagery.” In Proceedings Volume 10431, Remote Sensing Technologies and Applications in Urban Environments II., edited by Wieke Heldens, Nektarios Chrysoulakis, Thilo Erbertseder, and Ying Zhang, 20. SPIE. https://doi.org/10.1117/12.2278422.
[3] Georganos, Stefanos, Taïs Grippa, Moritz Lennert, Sabine Vanhuysse, and Eleonore Wolff. 2017. “SPUSPO: Spatially Partitioned Unsupervised Segmentation Parameter Optimization for Efficiently Segmenting Large Heterogeneous Areas.” In Proceedings of the 2017 Conference on Big Data from Space (BiDS’17).
Founding:
This dataset was produced in the frame of two research project : MAUPP (http://maupp.ulb.ac.be) and REACT (http://react.ulb.be), funded by the Belgian Federal Science Policy Office (BELSPO).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
File List bathymetry_30s.7z (MD5: dd855211bbcdee7d6862414da23d6da2) biogeo01_07_30s.7z (MD5: 396525db0abd9de2ede3d8fdeb15e8ee) biogeo08_17_30s.7z (MD5: 96c2417eed84e85f9896536b934c53e1) Monthly_Variables_30s.7z (MD5: 89016a8d17e8d8a1dddef0a121a83f5d)
Additional high resolution raster files:
Sea_Ice_30s.7z (MD5: 547d355294c530f63b9b0a73dedd2f3a)
Low resolution MARSPEC data files:
MARSPEC_2o5m.7z (MD5: 923c97d185adb0c72f158a84e2981391) MARSPEC_5m.7z (MD5: 95f7c3739c4f2889c2eff18afeffa489) MARSPEC_10m.7z (MD5: d91f3127f46f7004d116f14328bf4b71) Description Ecological niche models are widely used in terrestrial studies to address critical ecological and evolutionary questions related to past and future climate change, local adaptation and speciation, the discovery of rare endemics, and biological invasions. However the application of niche models to similar questions in marine ecosystems has lagged behind, in part due to the lack of a centralized high-resolution spatial data set representing both benthic and pelagic marine environments. Here we describe the creation of MARSPEC, a high-resolution GIS database of ocean climate layers intended for marine ecological niche modeling and other applications in marine spatial ecology. MARSPEC combines information related to topographic complexity of the seafloor with bioclimatic measures of sea surface temperature and salinity for the world ocean. We derived seven geophysical variables from a high-resolution raster grid representing depth of the seafloor (bathymetry) to characterize six facets of topographic complexity (east-west and north-south components of aspect, slope, concavity of the seafloor, and plan and profile curvature) and distance from shore. We further derived 10 bioclimatic variables describing the annual mean, range, variance and extreme values for temperature and salinity from long-term monthly climatological means obtained from remotely sensed and in situ oceanographic observations. All variables were clipped to a common land mask, interpolated to a nominal 1-km (30 arc-second) grid, and converted to an ESRI raster grid file format compatible with popular GIS programs. MARSPEC is a 10-fold improvement in spatial resolution over the next-best data set (Bio-ORACLE) and is the only high-resolution global marine data set to combine variables from the benthic and pelagic environments into a single database. Additionally, we provide the monthly climatological layers used to derive the bioclimatic variables, allowing users to calculate equivalent MARSPEC variables from anomaly data for past and future climate scenarios. A detailed description of GIS processing steps required to calculate the MARSPEC variables can be found in the metadata.
Key words: climate change; ecological niche modeling; GIS; marine spatial ecology; ocean climate; salinity; sea surface temperature; species distribution modeling.
This layer includes Landsat GLS, Landsat 8, and Landsat 9 imagery for use in visualization and analysis. This layer is time enabled and includes a number band combinations and indices rendered on demand. The Landsat 8 and 9 imagery includes nine multispectral bands from the Operational Land Imager (OLI) and two bands from the Thermal Infrared Sensor (TIRS). It is updated daily with new imagery directly sourced from the USGS Landsat collection on AWS.Geographic CoverageGlobal Land Surface.Polar regions are available in polar-projected Imagery Layers: Landsat Arctic Views and Landsat Antarctic Views.Temporal CoverageThis layer is updated daily with new imagery.Working in tandem, Landsat 8 and 9 revisit each point on Earth's land surface every 8 days.Most images collected from January 2015 to present are included.Approximately 5 images for each path/row from 2013 and 2014 are also included.This layer also includes imagery from the Global Land Survey* (circa 2010, 2005, 2000, 1990, 1975).Product LevelThe Landsat 8 and 9 imagery in this layer is comprised of Collection 2 Level-1 data.The imagery has Top of Atmosphere (TOA) correction applied.TOA is applied using the radiometric rescaling coefficients provided the USGS.The TOA reflectance values (ranging 0 – 1 by default) are scaled using a range of 0 – 10,000.Image Selection/FilteringA number of fields are available for filtering, including Acquisition Date, Estimated Cloud Cover, and Product ID.To isolate and work with specific images, either use the ‘Image Filter’ to create custom layers or add a ‘Layer Filter’ to restrict the default layer display to a specified image or group of images.To isolate a specific mission, use the Layer Filter and the dataset_id or SensorName fields.Visual RenderingThe default rendering in this layer is Agriculture (bands 6,5,2) with Dynamic Range Adjustment (DRA). Brighter green indicates more vigorous vegetation.The DRA version of each layer enables visualization of the full dynamic range of the images.Rendering (or display) of band combinations and calculated indices is done on-the-fly from the source images via Raster Functions.Various pre-defined Raster Functions can be selected or custom functions can be created.Pre-defined functions: Natural Color with DRA, Agriculture with DRA, Geology with DRA, Color Infrared with DRA, Bathymetric with DRA, Short-wave Infrared with DRA, Normalized Difference Moisture Index Colorized, NDVI Raw, NDVI Colorized, NBR Raw15 meter Landsat Imagery Layers are also available: Panchromatic and Pansharpened.Multispectral Bands
Band
Description
Wavelength (µm)
Spatial Resolution (m)
1
Coastal aerosol
0.43 - 0.45
30
2
Blue
0.45 - 0.51
30
3
Green
0.53 - 0.59
30
4
Red
0.64 - 0.67
30
5
Near Infrared (NIR)
0.85 - 0.88
30
6
SWIR 1
1.57 - 1.65
30
7
SWIR 2
2.11 - 2.29
30
8
Cirrus (in OLI this is band 9)
1.36 - 1.38
30
9
QA Band (available with Collection 1)*
NA
30
*More about the Quality Assessment BandTIRS Bands
Band
Description
Wavelength (µm)
Spatial Resolution (m)
10
TIRS1
10.60 - 11.19
100 * (30)
11
TIRS2
11.50 - 12.51
100 * (30)
*TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered data product.Additional Usage NotesImage exports are limited to 4,000 columns x 4,000 rows per request.This dynamic imagery layer can be used in Web Maps and ArcGIS Pro as well as web and mobile applications using the ArcGIS REST APIs.WCS and WMS compatibility means this imagery layer can be consumed as WCS or WMS services.The Landsat Explorer App is another way to access and explore the imagery.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted in Amazon Web Services as part of their Public Data Sets program.For information, see Landsat 8 and Landsat 9.*The Global Land Survey includes images from Landsat 1 through Landsat 7. Band numbers and band combinations differ from those of Landsat 8, but have been mapped to the most appropriate band as in the above table. For more information about the Global Land Survey, visit GLS.
The Catch-In-Areas database integrates catch data from the Catch Accounting System (which has the spatial resolution of a NMFS Reporting Area) into a database that resolves the GIS data into polygons of approximately 7.5 km. In unrestricted outside waters, sixty four grid IDs fit inside one state statistical area. A state statistical area is = degree in latitude and one degree in longitude bloc...
Maine Land Cover Dataset (MELCD) is a land cover map for Maine primarily derived from Landsat Thematic Mapper 5 and 7 imagery, from the years 1999-2001. This imagery constitutes the basis for the National Land Cover Dataset (NLCD 2001) and the NOAA Coastal Change Analysis Program (C-CAP). This land cover map was refined to the State of Maine requirements using SPOT 5 panchromatic imagery from 2004. The Landsat imagery used was for three seasons: early spring (leaf-off), summer, and early fall (senescence) and was collected with a spatial resolution of 30 m. The SPOT 5 panchromatic imagery was collected at a spatial resolution of 5 m during the spring and summer months of 2004. The map was developed in two distinct stages, the first stage was the development of a state wide land cover data set consistent with the NOAAC-CAP land cover map. The second stage was: a) the update to 2004 conditions, b) a refinement of the classification system to Maine specific classes and, c) a refinement of the spatial boundaries to create a polygon map based on 5 m imagery.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Aerial digital ortho-photography was the foundation imagery for map development. For Abó, the photography was acquired on April May 15, 2002 at a scale of approximately 1:3,000; for Quarai and Gran Quivira it was flown on April 2, 2003 at scales of 1:3,600 and 1:3000, respectively. The 2002-03 digital imagery has a base pixel resolution of 1.0 m. We also made use of statewide 1-meter resolution, true-color imagery from 2005 that became available in 2006 through the New Mexico Resource Geographic Information System. A 10 m spatial resolution USGS Digital Elevation Model (DEM) was used, in conjunction with ground data, to help discriminate between vegetation types based on elevation gradients and terrain. All imagery and other spatial data layers were compiled into a geodatabase and GIS using ArcGIS 9.3 (ESRI 2008).
Land Surface Temperature (LST) from MODIS data for Mauritania at 30 arc seconds (ca. 1000 meter) resolution (2019 - 2023). Source data: - MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1 km SIN Grid (MOD11A2 v061): https://lpdaac.usgs.gov/products/mod11a2v061/ The Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature/Emissivity 8-Day (MOD11A2) Version 6.1 product provides an average 8-day per-pixel Land Surface Temperature and Emissivity (LST&E) with a 1 kilometer (km) spatial resolution in a 1,200 by 1,200 km grid. Each pixel value in the MOD11A2 is a simple average of all the corresponding MOD11A1 LST pixels collected within that 8-day period. The 8-day compositing period was chosen because twice that period is the exact ground track repeat period of the Terra and Aqua platforms. For the time period January 2019 - December 2023, the LST layer of the original data has been processed. Both day (10:30 am) and night (10:30 pm) overpasses have been processed separately. Bad quality pixels or pixels with snow/ice and/or cloud cover have been masked using the provided quality assurance (QA) layers. The time series has been gapfilled with a temporal and a spatial approach. Gaps in the time series were filled with a harmonic analysis of time series using six frequencies to also model relatively short-term changes in LST. Only missing values were replaced by modelled values. The 8-day data are then aggregated to monthly temporal resolution using the average and reprojected to Latitude-Longitude/WGS84. File naming: lst_day/night_monthly_YYYY_MM_30arcsec.tif e.g.: lst_day_monthly_2023_12_30arcsec.tif The date within the filename are year and month of aggregated timestamp. Pixel values: LST * 10 Scaled to Integer, example: value 327 = 32.7 Units are degree Celsius. Projection + EPSG code: Latitude-Longitude/WGS84 (EPSG: 4326) Spatial extent: north: 28N south: 14N west: 18W east: 4W Temporal extent: January 2019 - December 2023 Spatial resolution: 30 arc seconds (approx. 1000 m) Temporal resolution: monthly Software used: GRASS GIS 8.3.2 Format: GeoTIFF Original dataset license: All data products distributed by NASA's Land Processes Distributed Active Archive Center (LP DAAC) are available at no charge. The LP DAAC requests that any author using NASA data products in their work provide credit for the data, and any assistance provided by the LP DAAC, in the data section of the paper, the acknowledgement section, and/or as a reference. The recommended citation for each data product is available on its Digital Object Identifier (DOI) Landing page, which can be accessed through the Search Data Catalog interface. For more information see: https://lpdaac.usgs.gov/products/mod13a2v061/ Processed by: mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/) Contact: mundialis GmbH & Co. KG, info@mundialis.de Acknowledgements: This study was partially funded by EU grant 874850 MOOD. The contents of this publication are the sole responsibility of the authors and don't necessarily reflect the views of the European Commission.
The National Land Cover Database 2001 Percent Developed Imperviousness was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (EPA), the U.S. Department of Agriculture - Forest Service (USDA-FS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (FWS), the Bureau of Land Management (BLM) and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land Cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer et al. (2003) and http://www.mrlc.gov/mrlc2k.asp. The NLCD 2001 was created by partitioning the U.S. into mapping zones. A total of 66 mapping zones were delineated within the conterminous U.S. based on ecoregion and geographical characteristics, edge-matching features and the size requirement of Landsat mosaics. This update represents a seamless assembly of updated NLCD 2001 Percent Developed Imperviousness for all 66 MRLC mapping zones. Questions about the NLCD 2001 Percent Developed Imperviousness 2011 Edition can be directed to the NLCD 2001 land cover mapping team at USGS EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.
Abstract: Monthly and annual average solar resource potential for the lower 48 states of the United States of America.
Purpose: Provide information on the solar resource potential for the United States of America lower 48 states. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location.
Supplemental Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximatley 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain. Units are in kilowatt hours per meter squared per day.
OtherCitation Details:
George, R, and E. Maxwell, 1999: "High-Resolution Maps of Solar Collector Performance Using A Climatological Solar Radiation Model", Proceedings of the 1999 Annual Conference, American Solar Energy Society, Portland, ME.
Maxwell, E, R. George and S. Wilcox, "A Climatological Solar Radiation Model", Proceedings of the 1998 Annual Conference, American Solar Energy Society, Albuquerque NM.
Marion, William and Stephen Wilcox, 1994: "Solar Radiation Data Manual for Flat-plate and Concentrating Collectors". NREL/TP-463-5607, National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401.
DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data.
Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data.
THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA.
The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.
ArcGIS Image Service
Mean LIS Flash Rate Density
Time Interval: Diurnal Climatology
Platform: TRMM
Time Extent: 1998-01-01 to 2013-12-31
Projection: GCS WGS84
Extent: (38.0°, 180.0°), (-38.0°, -180.0°)
Other Formats: OGC WMS, OGC WCS, REST
Collection
The LIS 0.1 Degree Very High Resolution Gridded Lightning Diurnal Climatology (VHRDC) dataset consists of gridded diurnal climatologies of total lightning flash rates seen by the Lightning Imaging Sensor (LIS) from January 1, 1998 through December 31, 2013. LIS is an instrument on the Tropical Rainfall Measurement Mission satellite (TRMM) used to detect the distribution and variability of total lightning occurring in the Earth's tropical and subtropical regions. This information can be used for severe storm detection and analysis, and also for lightning-atmosphere interaction studies. The gridded climatologies include annual mean flash rate, mean diurnal cycle of flash rate with 24 hour resolution, and mean annual cycle of flash rate with daily, monthly, or seasonal resolution. All datasets are in 0.1 degree spatial resolution. The mean annual cycle of flash rate datasets (i.e., daily, monthly or seasonal) have both 49-day and 1 degree boxcar moving averages to remove diurnal cycle and smooth regions with low flash rate, making the results more robust. (GHRC)
Source Data: DAAC, CMR, Earthdata Search
Satellite Mapping and Analysis of Severe Hailstorms (SMASH) Project
This Hailstorm research project seeks to address knowledge gaps in the severe hail climatology using regional to global scale satellite observations and provides mechanisms to explore related datasets.
For questions/issues please contact: kristopher.m.bedka@nasa.gov
SMASH AGOL Group | NASA Applied Sciences | NASA Disasters Mapping Portal | NASA Langley Research Center Science Directorate
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Abstract: Monthly and annual average solar resource potential for the lower 48 states of the United States of America.
Purpose: Provide information on the solar resource potential for the for the lower 48 states of the United States of America.
Supplemental Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximatley 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain.
Other Citation Details: George, R, and E. Maxwell, 1999: "High-Resolution Maps of Solar Collector Performance Using A Climatological Solar Radiation Model", Proceedings of the 1999 Annual Conference, American Solar Energy Society, Portland, ME.
This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data.
Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data.
THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA.
The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.
DATASET: Alpha version 2000 and 2010 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and MODIS-derived urban extent change built in. REGION: Asia SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described on the website and in: Gaughan AE, Stevens FR, Linard C, Jia P and Tatem AJ, 2013, High resolution population distribution maps for Southeast Asia in 2010 and 2015, PLoS ONE, 8(2): e55882 FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - VNM00urbchg.tif = Vietnam (VNM) population count map for 2000 (00) adjusted to match UN national estimates and incorporating urban extent and urban population estimates for 2000. DATE OF PRODUCTION: July 2013 Dataset construction details and input data are provided here: www.asiapop.org and here: http://www.plosone.org/article/info:doi/10.1371/journal.pone.0055882
This layer includes Landsat 8 and 9 imagery rendered on-the-fly as Natural Color with DRA for use in visualization and analysis. This layer is time enabled and includes a number of band combinations and indices rendered on demand. The imagery includes eight multispectral bands from the Operational Land Imager (OLI) and two bands from the Thermal Infrared Sensor (TIRS). It is updated daily with new imagery directly sourced from the USGS Landsat collection on AWS.Geographic CoverageGlobal Land Surface.Polar regions are available in polar-projected Imagery Layers: Landsat Arctic Views and Landsat Antarctic Views.Temporal CoverageThis layer is updated daily with new imagery.Working in tandem, Landsat 8 and 9 revisit each point on Earth's land surface every 8 days.Most images collected from January 2015 to present are included.Approximately 5 images for each path/row from 2013 and 2014 are also included.Product LevelThe Landsat 8 and 9 imagery in this layer is comprised of Collection 2 Level-1 data.The imagery has Top of Atmosphere (TOA) correction applied.TOA is applied using the radiometric rescaling coefficients provided the USGS.The TOA reflectance values (ranging 0 – 1 by default) are scaled using a range of 0 – 10,000.Image Selection/FilteringA number of fields are available for filtering, including Acquisition Date, Estimated Cloud Cover, and Product ID.To isolate and work with specific images, either use the ‘Image Filter’ to create custom layers or add a ‘Query Filter’ to restrict the default layer display to a specified image or group of images.Visual RenderingDefault rendering is Natural Color (bands 4,3,2) with Dynamic Range Adjustment (DRA).Raster Functions enable on-the-fly rendering of band combinations and calculated indices from the source imagery.The DRA version of each layer enables visualization of the full dynamic range of the images.Other pre-defined Raster Functions can be selected via the renderer drop-down or custom functions can be created.This layer is part of a larger collection of Landsat Imagery Layers that you can use to perform a variety of mapping analysis tasks.Pre-defined functions: Natural Color with DRA, Agriculture with DRA, Geology with DRA, Color Infrared with DRA, Bathymetric with DRA, Short-wave Infrared with DRA, Normalized Difference Moisture Index Colorized, NDVI Raw, NDVI Colorized, NBR Raw15 meter Landsat Imagery Layers are also available: Panchromatic and Pansharpened.Multispectral BandsThe table below lists all available multispectral OLI bands. Natural Color with DRA consumes bands 4,3,2.BandDescriptionWavelength (µm)Spatial Resolution (m)1Coastal aerosol0.43 - 0.45302Blue0.45 - 0.51303Green0.53 - 0.59304Red0.64 - 0.67305Near Infrared (NIR)0.85 - 0.88306SWIR 11.57 - 1.65307SWIR 22.11 - 2.29308Cirrus (in OLI this is band 9)1.36 - 1.38309QA Band (available with Collection 1)*NA30*More about the Quality Assessment BandTIRS BandsBandDescriptionWavelength (µm)Spatial Resolution (m)10TIRS110.60 - 11.19100 * (30)11TIRS211.50 - 12.51100 * (30)*TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered data product.Additional Usage NotesImage exports are limited to 4,000 columns x 4,000 rows per request.This dynamic imagery layer can be used in Web Maps and ArcGIS Pro as well as web and mobile applications using the ArcGIS REST APIs.WCS and WMS compatibility means this imagery layer can be consumed as WCS or WMS services.The Landsat Explorer App is another way to access and explore the imagery.This layer is part of a larger collection of Landsat Imagery Layers.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted by the Amazon Web Services as part of their Public Data Sets program.For information, see Landsat 8 and Landsat 9.
DATASET: Alpha version 2000 and 2010 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and MODIS-derived urban extent change built in. REGION: Asia SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described on the website and in: Gaughan AE, Stevens FR, Linard C, Jia P and Tatem AJ, 2013, High resolution population distribution maps for Southeast Asia in 2010 and 2015, PLoS ONE, 8(2): e55882 FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - VNM00urbchg.tif = Vietnam (VNM) population count map for 2000 (00) adjusted to match UN national estimates and incorporating urban extent and urban population estimates for 2000. DATE OF PRODUCTION: July 2013 Dataset construction details and input data are provided here: www.asiapop.org and here: http://www.plosone.org/article/info:doi/10.1371/journal.pone.0055882
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a collection of 124 global and free datasets allowing for spatial (and temporal) analyses of floods, droughts and their interactions with human societies. We have structured the datasets into seven categories: hydrographic baseline, hydrological dynamics, hydrological extremes, land cover & agriculture, human presence, water management, and vulnerability. Please refer to Lindersson et al. (accepted february 2020 in WIREs Water) for further information about review methodology.
The collection is a descriptive list, holding the following information for each dataset:
NOTE: Carefully consult the data usage licenses as given by the data providers, to assure that the exact permissions and restrictions are followed.
The rocky desertification data were obtained from Landsat 8 operational land imager (OLI) image data provided by the U.S. Geological Survey (USGS) ("https://www.usgs.gov"), de-clouded based on the Google Earth Engine (GEE), and atmospherically corrected using ENVI5.3 Fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) atmospheric correction tool with a spatial resolution of 30 m [37,38]. The land use type data with a spatial resolution of 1000 m were downloaded from the Resource and Environmental Science and Data Center of the Chinese Academy of Sciences ("https://www.resdc.cn"). The land use types in these data mainly include watersheds, rivers, and urban industrial construction land, cultivated land, woodland, grassland, and unutilized land. The overall accuracy of this dataset reached 95.41%, which met the needs of this study. The digital elevation model (DEM) data for the study area were obtained from the Geospatial Data Cloud Platform of the Computer Network Inf...
WorldClim 2.1 provides downscaled estimates of climate variables as monthly means over the period of 1970-2000 based on interpolated station measurements. Here we provide analytical image services of precipitation for each month along with an annual mean. Each time step is accessible from a processing template.Time Extent: Monthly/Annual 1970-2000Units: mm/monthCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 16 Bit IntegerData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim v2.1Using Processing Templates to Access TimeThere are 13 processing templates applied to this service, each providing access to the 12 monthly and 1 annual mean precipitation layers. To apply these in ArcGIS Online, select the Image Display options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left-hand menu. From the Processing Template pull down menu, select the version to display.What can you do with this layer?This layer may be added to maps to visualize and quickly interrogate each pixel value. The pop-up provides a graph of the time series along with the calculated annual mean value.This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro and an area count of precipitation may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from month to month to show seasonal patterns.To calculate precipitation by land area, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Source Data: The datasets behind this layer were extracted from GeoTIF files produced by WorldClim at 2.5 minutes resolution. The mean of the 12 GeoTIFs was calculated (annual), and the 13 rasters were converted to Cloud Optimized GeoTIFF format and added to a mosaic dataset.Citation: Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4302-4315.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Developed by SOLARGIS and provided by the Global Solar Atlas (GSA), this data resource contains terrain elevation above sea level (ELE) in [m a.s.l.] covering the globe. Data is provided in a geographic spatial reference (EPSG:4326). The resolution (pixel size) of solar resource data (GHI, DIF, GTI, DNI) is 9 arcsec (nominally 250 m), PVOUT and TEMP 30 arcsec (nominally 1 km) and OPTA 2 arcmin (nominally 4 km). The data is hyperlinked under 'resources' with the following characeristics: ELE GISdata (GeoTIFF) Data format: GEOTIFF File size : 826.8 MB There are two temporal representation of solar resource and PVOUT data available: • Longterm yearly/monthly average of daily totals (LTAym_AvgDailyTotals) • Longterm average of yearly/monthly totals (LTAym_YearlyMonthlyTotals) Both type of data are equivalent, you can select the summarization of your preference. The relation between datasets is described by simple equations: • LTAy_YearlyTotals = LTAy_DailyTotals * 365.25 • LTAy_MonthlyTotals = LTAy_DailyTotals * Number_of_Days_In_The_Month *For individual country or regional data downloads please see: https://globalsolaratlas.info/download (use the drop-down menu to select country or region of interest) *For data provided in AAIGrid please see: https://globalsolaratlas.info/download/world. For more information and terms of use, please, read metadata, provided in PDF and XML format for each data layer in a download file. For other data formats, resolution or time aggregation, please, visit Solargis website. Data can be used for visualization, further processing, and geo-analysis in all mainstream GIS software with raster data processing capabilities (such as open source QGIS, commercial ESRI ArcGIS products and others).
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Overview:
The Copernicus DEM is a Digital Surface Model (DSM) which represents the surface of the Earth including buildings, infrastructure and vegetation. The original GLO-30 provides worldwide coverage at 30 meters (refers to 10 arc seconds). Note that ocean areas do not have tiles, there one can assume height values equal to zero. Data is provided as Cloud Optimized GeoTIFFs. Note that the vertical unit for measurement of elevation height is meters.
The Copernicus DEM for Europe at 3 arcsec (0:00:03 = 0.00083333333 ~ 90 meter) in COG format has been derived from the Copernicus DEM GLO-30, mirrored on Open Data on AWS, dataset managed by Sinergise (https://registry.opendata.aws/copernicus-dem/).
Processing steps:
The original Copernicus GLO-30 DEM contains a relevant percentage of tiles with non-square pixels. We created a mosaic map in VRT format and defined within the VRT file the rule to apply cubic resampling while reading the data, i.e. importing them into GRASS GIS for further processing. We chose cubic instead of bilinear resampling since the height-width ratio of non-square pixels is up to 1:5. Hence, artefacts between adjacent tiles in rugged terrain could be minimized:
gdalbuildvrt -input_file_list list_geotiffs_MOOD.csv -r cubic -tr 0.000277777777777778 0.000277777777777778 Copernicus_DSM_30m_MOOD.vrt
In order to reduce the spatial resolution to 3 arc seconds, weighted resampling was performed in GRASS GIS (using r.resamp.stats -w
and the pixel values were scaled with 1000 (storing the pixels as integer values) for data volume reduction. In addition, a hillshade raster map was derived from the resampled elevation map (using r.relief
, GRASS GIS). Eventually, we exported the elevation and hillshade raster maps in Cloud Optimized GeoTIFF (COG) format, along with SLD and QML style files.
Projection + EPSG code:
Latitude-Longitude/WGS84 (EPSG: 4326)
Spatial extent:
north: 82:00:30N
south: 18N
west: 32:00:30W
east: 70E
Spatial resolution:
3 arc seconds (approx. 90 m)
Pixel values:
meters * 1000 (scaled to Integer; example: value 23220 = 23.220 m a.s.l.)
Software used:
GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief)
Original dataset license:
https://spacedata.copernicus.eu/documents/20126/0/CSCDA_ESA_Mission-specific+Annex.pdf
Processed by:
mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)