Facebook
TwitterThe Copernicus DEM is a Digital Surface Model (DSM) which represents the surface of the Earth including buildings, infrastructure and vegetation. The original GLO-30 provides worldwide coverage at 30 meters (refers to 10 arc seconds). Note that ocean areas do not have tiles, there one can assume height values equal to zero. Data is provided as Cloud Optimized GeoTIFFs. Note that the vertical unit for measurement of elevation height is meters. The Copernicus DEM for Europe at 3 arcsec (0:00:03 = 0.00083333333 ~ 90 meter) in COG format has been derived from the Copernicus DEM GLO-30, mirrored on Open Data on AWS, dataset managed by Sinergise (https://registry.opendata.aws/copernicus-dem/). Processing steps: The original Copernicus GLO-30 DEM contains a relevant percentage of tiles with non-square pixels. We created a mosaic map in https://gdal.org/drivers/raster/vrt.html format and defined within the VRT file the rule to apply cubic resampling while reading the data, i.e. importing them into GRASS GIS for further processing. We chose cubic instead of bilinear resampling since the height-width ratio of non-square pixels is up to 1:5. Hence, artefacts between adjacent tiles in rugged terrain could be minimized: gdalbuildvrt -input_file_list list_geotiffs_MOOD.csv -r cubic -tr 0.000277777777777778 0.000277777777777778 Copernicus_DSM_30m_MOOD.vrt In order to reduce the spatial resolution to 3 arc seconds, weighted resampling was performed in GRASS GIS (using r.resamp.stats -w) and the pixel values were scaled with 1000 (storing the pixels as integer values) for data volume reduction. In addition, a hillshade raster map was derived from the resampled elevation map (using r.relief, GRASS GIS). Eventually, we exported the elevation and hillshade raster maps in Cloud Optimized GeoTIFF (COG) format, along with SLD and QML style files.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This spatial dataset is quantifying soil organic carbon (SOC) and total nitrogen (TN) storage with their carbon to nitrogen ratio (C/N) in soils of the northern circumpolar permafrost region (17.9 × 10⁶ km²) based on ESA’s Climate Change Initiative (CCI) Global Land Cover dataset at 300 m pixel resolution.
The dataset contains GIS grids of the northern circumpolar permafrost region for SOC, TN and C/N ratio for the following depth increments (0 – 30, 0 – 50, 0 – 100, 100 – 200, 200 – 300, 0 – 300 cm). These GIS grids are based on 651 soil pedons encompassing more than 6500 samples from 16 different study areas across the northern permafrost region.
Additional metadata with the actual pedon and profile data is available as a companion dataset.
Juri Palmtag, Jaroslav Obu, Peter Kuhry, Matthias Siewert, Niels Weiss, Gustaf Hugelius (2022) A high spatial resolution soil carbon and nitrogen dataset for the northern permafrost region. Dataset version 1. Bolin Centre Database. https://doi.org/10.17043/palmtag-2022-spatial-1
The dataset contains 18 GIS grids of the northern circumpolar permafrost region; one grid for each of the three variables SOC, TN and C/N ratio for each of the following six depth increments (0 – 30, 0 – 50, 0 – 100, 100 – 200, 200 – 300, 0 – 300 cm).
There GIS grids are provided as tif, tfw and xml files. Total uncompressed file size: 10 GB. A compressed (zip) file is available for download. Compressed file size: 141.5 MB.
The used permafrost region dataset stretches over 17.9 × 10⁶ km² of the Northern Hemisphere, and is based on equilibrium state model for the temperature at the top of the permafrost (TTOP) for the 2000 – 2016 period (Obu et al. 2019).
Detailed pedon data on soil carbon and nitrogen for the northern permafrost region, based on 6529 analyzed samples from 651 soil pedons in 16 different sampling locations, is available as a companion dataset.
The GIS dataset is based on the companion dataset and is part of a publication.
All profiles were assigned to land cover class based on field descriptions. The main aim of the field studies compiled in the companion dataset was to perform SOC/TN pool inventories of each study area considering different land cover types, geomorphological landforms and soil properties.
For the upscaling, we used the land cover map from the Global ESA Land cover Climate Change Initiative (CCI) project at 300 m spatial resolution, retrieved from the ESA Climate Change Initiative Land Cover visualization interface.
We thank the ESA CCI Land Cover project for providing their data, which was used for upscaling our product to circumpolar scale.
Facebook
TwitterA global analysis of accessibility to high-density urban centres at a resolution of 1×1 kilometre for 2015, as measured by travel time.
To model the time required for individuals to reach their most accessible city, we first quantified the speed at which humans move through the landscape. The principle underlying this work was that all areas on Earth, represented as pixels within a 2D grid, had a cost (that is, time) associated with moving through them that we quantified as a movement speed within a cost or ‘friction’ surface. We then applied a least-cost-path algorithm to the friction surface in relation to a set of high-density urban points. The algorithm calculated pixel-level travel times for the optimal path between each pixel and its nearest city (that is, with the shortest journey time). From this work we ultimately produced two products: (a) an accessibility map showing travel time to urban centres, as cities are proxies for access to many goods and services that affect human wellbeing; and (b) a friction surface that underpins the accessibility map and enables the creation of custom accessibility maps from other point datasets of interest. The map products are in GeoTIFF format in EPSG:4326 (WGS84) project with a spatial resolution of 30 arcsecs. The accessibility map pixel values represent travel time in minutes. The friction surface map pixels represent the time, in minutes required to travel one metre. This DANS data record contains these two map products.
Facebook
TwitterWatershed boundaries for eight sub-watersheds within the Baltimore Ecosystem Study LTER were delineated at 1-meter and 30-meter spatial resolutions. Watershed boundaries were used to calculate total area and extract and summarize existing land cover data (1m 2016 Chesapeake Conservancy Land Cover Data Project; 30m 2011 USGS National Land Cover Database). Two spatial resolutions are included to accommodate the needs of studies with different input requirements. In addition, providing data at both spatial scales highlights the importance of spatial resolution on study results.
Facebook
TwitterSentinel-2 Level-1C imagery with on-the-fly renderings for visualization. This imagery layer pulls directly from the Sentinel-2 on AWS collection and is updated daily with new imagery.Sentinel-2 imagery can be applied across a number of industries, scientific disciplines, and management practices. Some applications include, but are not limited to, land cover and environmental monitoring, climate change, deforestation, disaster and emergency management, national security, plant health and precision agriculture, forest monitoring, watershed analysis and runoff predictions, land-use planning, tracking urban expansion, highlighting burned areas and estimating fire severity.Geographic CoverageGlobalContinental land masses from 65.4° South to 72.1° North, with these special guidelines:All coastal waters up to 20 km from the shoreAll islands greater than 100 km2All EU islandsAll closed seas (e.g. Caspian Sea)The Mediterranean Sea Temporal CoverageThis layer includes a rolling collection of Sentinel-2 imagery acquired within the past 14 months.This layer is updated daily with new imagery.The revisit time for each point on Earth is every 5 days.The number of images available will vary depending on location. Product LevelThis service provides Level-1C Top of Atmosphere imagery.Alternatively, Sentinel-2 Level-2A is also available. Image Selection/FilteringThe most recent and cloud free images are displayed by default.Any image available within the past 14 months can be displayed via custom filtering.Filtering can be done based on attributes such as Acquisition Date, Estimated Cloud Cover, and Tile ID.Tile_ID is computed as [year][month][day]T[hours][minutes][seconds]_[UTMcode][latitudeband][square]_[sequence]. More… Visual RenderingDefault rendering is Natural Color (bands 4,3,2) with Dynamic Range Adjustment (DRA).The DRA version of each layer enables visualization of the full dynamic range of the images.Rendering (or display) of band combinations and calculated indices is done on-the-fly from the source images via Raster Functions.Various pre-defined Raster Functions can be selected or custom functions created.Available renderings include: Agriculture with DRA, Bathymetric with DRA, Color-Infrared with DRA, Natural Color with DRA, Short-wave Infrared with DRA, Geology with DRA, NDMI Colorized, Normalized Difference Built-Up Index (NDBI), NDWI Raw, NDWI - with VRE Raw, NDVI – with VRE Raw (NDRE), NDVI - VRE only Raw, NDVI Raw, Normalized Burn Ratio, NDVI Colormap. Multispectral BandsBandDescriptionWavelength (µm)Resolution (m)1Coastal aerosol0.433 - 0.453602Blue0.458 - 0.523103Green0.543 - 0.578104Red0.650 - 0.680105Vegetation Red Edge0.698 - 0.713206Vegetation Red Edge0.733 - 0.748207Vegetation Red Edge0.773 - 0.793208NIR0.785 - 0.900108ANarrow NIR0.855 - 0.875209Water vapour0.935 - 0.9556010SWIR – Cirrus1.365 - 1.3856011SWIR-11.565 - 1.6552012SWIR-22.100 - 2.28020Additional NotesOverviews exist with a spatial resolution of 150m and are updated every quarter based on the best and latest imagery available at that time.To work with source images at all scales, the ‘Lock Raster’ functionality is available. NOTE: ‘Lock Raster’ should only be used on the layer for short periods of time, as the imagery and associated record Object IDs may change daily.This ArcGIS Server dynamic imagery layer can be used in Web Maps and ArcGIS Desktop as well as Web and Mobile applications using the REST based Image services API.Images can be exported up to a maximum of 4,000 columns x 4,000 rows per request. Data SourceSentinel-2 imagery is the result of close collaboration between the (European Space Agency) ESA, the European Commission and USGS. Data is hosted by the Amazon Web Services as part of their Registry of Open Data. Users can access the imagery from Sentinel-2 on AWS, or alternatively access EarthExplorer or the Copernicus Data Space Ecosystem to download the scenes.For information on Sentinel-2 imagery, see Sentinel-2.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Artificial lighting is strongly associated with urbanisation and is increasing in its extent, brightness and spectral range. Changes in urban lighting have both positive and negative effects on city performance, yet little is known about how its character and magnitude vary across the urban landscape. A major barrier to related research, planning and governance has been the lack of lighting data at the city extent, particularly at a fine spatial resolution. Our aims were therefore to capture such data using aerial night photography and to undertake a case study of urban lighting. We present the finest scale multi-spectral lighting dataset available for an entire city and explore how lighting metrics vary with built density and land-use. We found positive relationships between artificial lighting indicators and built density at coarse spatial scales, whilst at a local level lighting varied with land-use. Manufacturing and housing are the primary land-use zones responsible for the city’s brightly lit areas, yet manufacturing sites are relatively rare within the city. Our data suggests that efforts to address light pollution should broaden their focus from residential street lighting to include security lighting within manufacturing areas.
Facebook
TwitterThis layer includes Landsat 8 and 9 imagery rendered on-the-fly as Natural Color with DRA for use in visualization and analysis. This layer is time enabled and includes a number of band combinations and indices rendered on demand. The imagery includes eight multispectral bands from the Operational Land Imager (OLI) and two bands from the Thermal Infrared Sensor (TIRS). It is updated daily with new imagery directly sourced from the USGS Landsat collection on AWS.Geographic CoverageGlobal Land Surface.Polar regions are available in polar-projected Imagery Layers: Landsat Arctic Views and Landsat Antarctic Views.Temporal CoverageThis layer is updated daily with new imagery.Working in tandem, Landsat 8 and 9 revisit each point on Earth's land surface every 8 days.Most images collected from January 2015 to present are included.Approximately 5 images for each path/row from 2013 and 2014 are also included.Product LevelThe Landsat 8 and 9 imagery in this layer is comprised of Collection 2 Level-1 data.The imagery has Top of Atmosphere (TOA) correction applied.TOA is applied using the radiometric rescaling coefficients provided the USGS.The TOA reflectance values (ranging 0 – 1 by default) are scaled using a range of 0 – 10,000.Image Selection/FilteringA number of fields are available for filtering, including Acquisition Date, Estimated Cloud Cover, and Product ID.To isolate and work with specific images, either use the ‘Image Filter’ to create custom layers or add a ‘Query Filter’ to restrict the default layer display to a specified image or group of images.Visual RenderingDefault rendering is Natural Color (bands 4,3,2) with Dynamic Range Adjustment (DRA).Raster Functions enable on-the-fly rendering of band combinations and calculated indices from the source imagery.The DRA version of each layer enables visualization of the full dynamic range of the images.Other pre-defined Raster Functions can be selected via the renderer drop-down or custom functions can be created.This layer is part of a larger collection of Landsat Imagery Layers that you can use to perform a variety of mapping analysis tasks.Pre-defined functions: Natural Color with DRA, Agriculture with DRA, Geology with DRA, Color Infrared with DRA, Bathymetric with DRA, Short-wave Infrared with DRA, Normalized Difference Moisture Index Colorized, NDVI Raw, NDVI Colorized, NBR Raw15 meter Landsat Imagery Layers are also available: Panchromatic and Pansharpened.Multispectral BandsThe table below lists all available multispectral OLI bands. Natural Color with DRA consumes bands 4,3,2.BandDescriptionWavelength (µm)Spatial Resolution (m)1Coastal aerosol0.43 - 0.45302Blue0.45 - 0.51303Green0.53 - 0.59304Red0.64 - 0.67305Near Infrared (NIR)0.85 - 0.88306SWIR 11.57 - 1.65307SWIR 22.11 - 2.29308Cirrus (in OLI this is band 9)1.36 - 1.38309QA Band (available with Collection 1)*NA30*More about the Quality Assessment BandTIRS BandsBandDescriptionWavelength (µm)Spatial Resolution (m)10TIRS110.60 - 11.19100 * (30)11TIRS211.50 - 12.51100 * (30)*TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered data product.Additional Usage NotesImage exports are limited to 4,000 columns x 4,000 rows per request.This dynamic imagery layer can be used in Web Maps and ArcGIS Pro as well as web and mobile applications using the ArcGIS REST APIs.WCS and WMS compatibility means this imagery layer can be consumed as WCS or WMS services.The Landsat Explorer App is another way to access and explore the imagery.This layer is part of a larger collection of Landsat Imagery Layers.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted by the Amazon Web Services as part of their Public Data Sets program.For information, see Landsat 8 and Landsat 9.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This land cover map of Dakar (Senegal) was created from a Pléiades very-high resolution imagery with a spatial resolution of 0.5 meter. The methodology followed a open-source semi-automated framework [1] that rely on GRASS GIS using a local unsupervised optimization approach for the segmentation part [2-3].
Description of the files:
"Landcover.zip" : The direct output from the supervised classification using the Random Forest classifier.
"Landcover_Postclassif_Level8_Splitbuildings.zip" : Post-processed version of the previous map ("Landcover"), with reduced misclassifications from the original classification (rule-based used to reclassify the errors, with a focus on built-up classes).
"Landcover_Postclassif_Level8_modalfilter3.zip" : Smoothed version of the previous product (modal filter with window 3x3 applied on the "Landcover_Postclassif_Level8_Splitbuildings").
"Landcover_Postclassif_Level9_Shadowsback.zip" : Corresponds to the "level8_Splitbuildings" with shadows coming from the original classification.
"Dakar_legend_colors.txt" : Text file providing the correspondance between the value of the pixels and the legend labels and a proposition of color to be used.
References:
[1] Grippa, Taïs, Moritz Lennert, Benjamin Beaumont, Sabine Vanhuysse, Nathalie Stephenne, and Eléonore Wolff. 2017. “An Open-Source Semi-Automated Processing Chain for Urban Object-Based Classification.” Remote Sensing 9 (4): 358. https://doi.org/10.3390/rs9040358.
[2] Grippa, Tais, Stefanos Georganos, Sabine G. Vanhuysse, Moritz Lennert, and Eléonore Wolff. 2017. “A Local Segmentation Parameter Optimization Approach for Mapping Heterogeneous Urban Environments Using VHR Imagery.” In Proceedings Volume 10431, Remote Sensing Technologies and Applications in Urban Environments II., edited by Wieke Heldens, Nektarios Chrysoulakis, Thilo Erbertseder, and Ying Zhang, 20. SPIE. https://doi.org/10.1117/12.2278422.
[3] Georganos, Stefanos, Taïs Grippa, Moritz Lennert, Sabine Vanhuysse, and Eleonore Wolff. 2017. “SPUSPO: Spatially Partitioned Unsupervised Segmentation Parameter Optimization for Efficiently Segmenting Large Heterogeneous Areas.” In Proceedings of the 2017 Conference on Big Data from Space (BiDS’17).
Founding:
This dataset was produced in the frame of two research project : MAUPP (http://maupp.ulb.ac.be) and REACT (http://react.ulb.be), funded by the Belgian Federal Science Policy Office (BELSPO).
Facebook
TwitterA set of global climate layers (climate grids) with a spatial resolution of about 1 square kilometer. The data can be used for mapping and spatial modeling in a GIS or with other computer programs. If you are not familiar with such programs, you can try DIVA-GIS or the R raster package.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Multi-temporal landslide inventories are important information for the understanding of landslide dynamics and related predisposing and triggering factors, and thus a crucial prerequisite for probabilistic hazard and risk assessment. Despite the great importance of these inventories, they do not exist for many landslide prone regions in the world. In this context, the recently evolving global-scale availability of high temporal and spatial resolution optical satellite imagery (RapidEye, Sentinel-2A/B, planet) has opened up new opportunities for the creation of these multi-temporal inventories. To derive such multi-temporal landslide inventories, a semi-automated spatiotemporal landslide mapper was developed at the Remote Sensing Section of the GFZ Potsdam being capable of deriving post-failure landslide objects (polygons) from multi-sensor optical satellite time series data (Behling et al., 2016). The developed approach represents an extension of the original methodology (Behling et al., 2014, Behling and Roessner, 2020) and facilitates the integration of optical time series data acquired by different satellite systems. The goal of combining satellite data originating from variable sensor systems has been the establishment of longest possible time series for retrospective systematic assessment of multi-temporal landslide activity at highest possible temporal and spatial resolution. We applied the developed approach to a 2500 km² study area in Southern Kyrgyzstan using an optical satellite database acquired by the Landsat TM/ETM+, SPOT 1/5, IRS1-C LISSIII, ASTER, and RapidEye sensor systems covering a time period between 1986 and 2013. A multi-temporal landslide inventory from 2009-2013 derived from RapidEye satellite time series data is available as separate publications (Behling et al., 2014; Behling and Roessner, 2020). The resulting systematic multi-temporal landslide inventory being subject of this data publication is supplementary to the article of Behling et al. (2016), which describes the extended spatiotemporal landslide mapper in detail. This multi-sensor approach prioritizes most suitable images within the available multi-sensor satellite time series using parameters, such as spatial resolution, cloud coverage, similarity of sensor characteristics and seasonality related to vegetation characteristics with the goal of establishing a robust back-bone time series for initial detection of possible landslide objects. In a second step, this initial analysis gets more refined in order to achieve the best possible approximation of the date of landslide occurrence. For a more detailed description of the methodology of the extended spatiotemporal landslide mapper, please see Behling et al. (2016). In general, this landslide mapper detects landslide objects by analyzing temporal NDVI-based vegetation cover changes and relief-oriented parameters in a rule-based approach combining pixel- and object-based analysis. Typical landslide-related vegetation changes comprise abrupt disturbances of vegetation cover in the result of the actual failure as well as post-failure revegetation which usually happens at a slower pace compared to vegetation growth in the surrounding undisturbed areas, since the displaced landslide masses are susceptible to subsequent erosion and reactivation processes. The resulting landslide-specific temporal surface cover dynamics in form of temporal trajectories is used as input information to identify freshly occurred landslides and to separate them from other temporal variations in the surrounding vegetation cover (e.g., seasonal vegetation changes or changes due to agricultural activities) and from permanently non-vegetated areas (e.g., urban non-vegetated areas, water bodies, rock outcrops). The data are provided in vector format (polygons) in form of a standard shapefile contained in the zip-file 2020-002_Behling_et-al_2016_landslide_inventory_SouthernKyrgyzstan_1986_2013.zip and are described in more detail in the associated data description.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
HCID is a global grid identification system offering users to refer the location and boundary of a grid cell, available at multiple spatial resolutions, using a single integer number. Instead of using the coordinates (latitude and longitude) of two corners of the grid cell bounding box (i.e., upper-left and lower-right), we assign each grid cell with a sequential integer number, or a grid cell ID, unique to each spatial resolution. This system was developed by HarvestChoice (http://harvestchoice.org) and is being widely used to facilitate analysis of spatial data layers, including the visualization, domain analysis, spatial aggregation/dis-aggregation, and general exchange of spatially-explicit data across disciplines - without needing to use a GIS software and spatial analysis skills. For the five arc-minute resolution of grids, we call the ID system as "CELL5M", whereas ones for 30 arc-second, 30-minute and 1 degree are called CELL30S, CELL30M and CELL1D, respectively. Assigning 0 starting at the upper-left corner (longitude: -180.0, latitude: 90.0) with a geographic projection, for example, CELL5M ranges up to 9,331,199 at the lower-right corner (longitude: 180.0, latitude: -90.0). The grid cell ID at a specific location can be easily computed mathematically, and this can be also easily converted to different resolutions.
Facebook
TwitterLANDSAT satellite imagery of the State of Hawaii.This satellite image mosaic covers all the main Hawaiian Islandswith a blue ocean image filled into the ocean areas. The land imagery are composites of multiple images from the Landsat satellite and are substantially cloud-free. They were produced in true color (using bands 3, 2 and 1) and pan-sharpened using band 8 to produce a spatial resolution of 15 meters. The imagery was then resampled to 12.5 meters. The oceanfill image is a replicated portion of one of the Landsat images. Aland/ocean mask was used to integrate the Landsat imagery and blue oceanfill image into a single image. Source data: Landsat 7 (ETM) satellite imageryImagery dates: 1999-2003Image format: JPEG2000 RGB CompressedDatum: NAD83Projection: UTM Zone 04 NorthProjection Units: MetersX resolution: 12.5 MetersY resolution: 12.5 MetersUL X,Y: 800517.19E, 2252081.58NLR X,Y: 948742.19E, 2086156.58NUL Lat, Long: 20:20:35.37N, 156:07:18.35WLR Lat, Long: 18:49:07.53N, 154:44:38.85WOriginator: Earthstar Geographics LLCWeb: www.terracolor.netEmail: terracolor@es-geo.comHawaii Statewide GIS Program, Office of Planning, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Rocky desertification, a pressing environmental concern in Southwest China, significantly impacts local living conditions and regional sustainability. Employing remote sensing on a macro scale, this study focuses on identifying and analyzing the spatial distribution and driving factors of rocky desertification. Conducted in Southwest China, using Landsat data from Google Earth Engine for 2020, the research quantitatively extracts information on rocky desertification patches through traditional methods. Excluding unlikely areas using land use data, spatial distribution features and driving factors are examined via GIS spatial analysis and a geodetector model. The main conclusions are as follows. Rocky desertification covers 217,530.4 km2 (accounting for 15.6% of Southwest China), with areas of slight, moderate, and severe rocky desertification at 81.3%, 7.1%, and 11.6%, respectively. Spatially, rocky desertification primarily occurs in areas where lithology is carbonate rock between clastic rocks and continuous limestone, slope exceeds 15°, elevation ranges is 1000–2000 m, land use types are grassland and woodland, precipitation is 80–120 mm, and population density is below 50 people/km2. Human activities have minimal influence. Geodetector analysis identifies lithology, land use type, and slope as primary driving factors, with interactive effects of lithology and land use type and slope and land use type jointly influencing rocky desertification formation in Southwest China. Methods The rocky desertification data were obtained from Landsat 8 operational land imager (OLI) image data provided by the U.S. Geological Survey (USGS) ("https://www.usgs.gov"), de-clouded based on the Google Earth Engine (GEE), and atmospherically corrected using ENVI5.3 Fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) atmospheric correction tool with a spatial resolution of 30 m [37,38]. The land use type data with a spatial resolution of 1000 m were downloaded from the Resource and Environmental Science and Data Center of the Chinese Academy of Sciences ("https://www.resdc.cn"). The land use types in these data mainly include watersheds, rivers, and urban industrial construction land, cultivated land, woodland, grassland, and unutilized land. The overall accuracy of this dataset reached 95.41%, which met the needs of this study. The digital elevation model (DEM) data for the study area were obtained from the Geospatial Data Cloud Platform of the Computer Network Information Center of the Chinese Academy of Sciences ("http://www.gscloud.cn"), with a spatial resolution of 30 m. The precipitation data for 2020 were obtained from the China Meteorological Administration ("http://www.cma.gov.cn/"). The monthly average precipitation data of Southwest China for 2020 were obtained after kriging interpolation. The population density data were obtained from the 2020 Yearbook of the National and Local Government Statistical Bureau ("http://www.stats.gov.cn/tjsj/ndsj/").
Facebook
TwitterThe files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Aerial digital ortho-photography was the foundation imagery for map development. For Abó, the photography was acquired on April May 15, 2002 at a scale of approximately 1:3,000; for Quarai and Gran Quivira it was flown on April 2, 2003 at scales of 1:3,600 and 1:3000, respectively. The 2002-03 digital imagery has a base pixel resolution of 1.0 m. We also made use of statewide 1-meter resolution, true-color imagery from 2005 that became available in 2006 through the New Mexico Resource Geographic Information System. A 10 m spatial resolution USGS Digital Elevation Model (DEM) was used, in conjunction with ground data, to help discriminate between vegetation types based on elevation gradients and terrain. All imagery and other spatial data layers were compiled into a geodatabase and GIS using ArcGIS 9.3 (ESRI 2008).
Facebook
TwitterThe Catch-In-Areas database integrates catch data from the Catch Accounting System (which has the spatial resolution of a NMFS Reporting Area) into a database that resolves the GIS data into polygons of approximately 7.5 km. In unrestricted outside waters, sixty four grid IDs fit inside one state statistical area. A state statistical area is = degree in latitude and one degree in longitude bloc...
Facebook
TwitterNational Land Cover Database 2011 (NLCD 2011) is the most recent national land cover product created by the Multi-Resolution Land Characteristics (MRLC) Consortium. NLCD 2011 provides - for the first time - the capability to assess wall-to-wall, spatially explicit, national land cover changes and trends across the United States from 2001 to 2011. As with two previous NLCD land cover products NLCD 2011 keeps the same 16-class land cover classification scheme that has been applied consistently across the United States at a spatial resolution of 30 meters. NLCD 2011 is based primarily on a decision-tree classification of circa 2011 Landsat satellite data.
Facebook
TwitterMaine Land Cover Dataset (MELCD) is a land cover map for Maine primarily derived from Landsat Thematic Mapper 5 and 7 imagery, from the years 1999-2001. This imagery constitutes the basis for the National Land Cover Dataset (NLCD 2001) and the NOAA Coastal Change Analysis Program (C-CAP). This land cover map was refined to the State of Maine requirements using SPOT 5 panchromatic imagery from 2004. The Landsat imagery used was for three seasons: early spring (leaf-off), summer, and early fall (senescence) and was collected with a spatial resolution of 30 m. The SPOT 5 panchromatic imagery was collected at a spatial resolution of 5 m during the spring and summer months of 2004. The map was developed in two distinct stages, the first stage was the development of a state wide land cover data set consistent with the NOAAC-CAP land cover map. The second stage was: a) the update to 2004 conditions, b) a refinement of the classification system to Maine specific classes and, c) a refinement of the spatial boundaries to create a polygon map based on 5 m imagery.
Facebook
TwitterAbstract: Monthly and annual average solar resource potential for the lower 48 states of the United States of America. Purpose: Provide information on the solar resource potential for the United States of America lower 48 states. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. Supplemental Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximatley 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain. Units are in kilowatt hours per meter squared per day. OtherCitation Details: George, R, and E. Maxwell, 1999: "High-Resolution Maps of Solar Collector Performance Using A Climatological Solar Radiation Model", Proceedings of the 1999 Annual Conference, American Solar Energy Society, Portland, ME. Maxwell, E, R. George and S. Wilcox, "A Climatological Solar Radiation Model", Proceedings of the 1998 Annual Conference, American Solar Energy Society, Albuquerque NM. Marion, William and Stephen Wilcox, 1994: "Solar Radiation Data Manual for Flat-plate and Concentrating Collectors". NREL/TP-463-5607, National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401. ### License Info DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.
Facebook
TwitterYearly effective energy and mass transfer (EEMT) (MJ m−2 yr−1) was calculated for the Catalina Mountains by summing the 12 monthly values. Effective energy and mass flux varies seasonally, especially in the desert southwestern United States where contemporary climate includes a bimodal precipitation distribution that concentrates in winter (rain or snow depending on elevation) and summer monsoon periods. This seasonality of EEMT flux into the upper soil surface can be estimated by calculating EEMT on a monthly basis as constrained by solar radiation (Rs), temperature (T), precipitation (PPT), and the vapor pressure deficit (VPD): EEMT = f(Rs,T,PPT,VPD). Here we used a multiple linear regression model to calculate the monthly EEMT that accounts for VPD, PPT, and locally modified T across the terrain surface. These EEMT calculations were made using data from the PRISM Climate Group at Oregon State University (www.prismclimate.org). Climate data are provided at an 800-m spatial resolution for input precipitation and minimum and maximum temperature normals and at a 4000-m spatial resolution for dew-point temperature (Daly et al., 2002). The PRISM climate data, however, do not account for localized variation in EEMT that results from smaller spatial scale changes in slope and aspect as occurs within catchments. To address this issue, these data were then combined with 10-m digital elevation maps to compute the effects of local slope and aspect on incoming solar radiation and hence locally modified temperature (Yang et al., 2007). Monthly average dew-point temperatures were computed using 10 yr of monthly data (2000–2009) and converted to vapor pressure. Precipitation, temperature, and dew-point data were resampled on a 10-m grid using spline interpolation. Monthly solar radiation data (direct and diffuse) were computed using ArcGIS Solar Analyst extension (ESRI, Redlands, CA) and 10-m elevation data (USGS National Elevation Dataset [NED] 1/3 Arc-Second downloaded from the National Map Seamless Server at seamless.usgs.gov). Locally modified temperature was used to compute the saturated vapor pressure, and the local VPD was estimated as the difference between the saturated and actual vapor pressures. The regression model was derived using the ISOHYS climate data set comprised of approximately 30-yr average monthly means for more than 300 weather stations spanning all latitudes and longitudes (IAEA).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japanese Knotweed s.l. taxa are amongst the most aggressive vascular plant Invasive Alien Species (IAS) in the world. These taxa form dense, suppressive monocultures and are persistent, pervasive invaders throughout the more economically developed countries (MEDCs) of the world. The current paper utilises the Object-Based Image Analysis (OBIA) approach of Definiens Imaging Developer software, in combination with very high spatial resolution (VHSR) colour infra-red (CIR) and visible-band (RGB) aerial photography in order to detect Japanese Knotweed s.l. taxa in Wales (UK). An algorithm was created using Definiens in order to detect these taxa, using variables found to effectively distinguish them from landscape and vegetation features. The results of the detection algorithm were accurate, as confirmed by field validation and desk-based studies. Further, these results may be incorporated into Geographical Information Systems (GIS) research as they are readily transferable as vector polygons (shapefiles). The successful detection results developed within the Definiens software should enable greater management and control efficacy. Further to this, the basic principles of the detection process could enable detection of these taxa worldwide, given the (relatively) limited technical requirements necessary to conduct further analyses.
Facebook
TwitterThe Copernicus DEM is a Digital Surface Model (DSM) which represents the surface of the Earth including buildings, infrastructure and vegetation. The original GLO-30 provides worldwide coverage at 30 meters (refers to 10 arc seconds). Note that ocean areas do not have tiles, there one can assume height values equal to zero. Data is provided as Cloud Optimized GeoTIFFs. Note that the vertical unit for measurement of elevation height is meters. The Copernicus DEM for Europe at 3 arcsec (0:00:03 = 0.00083333333 ~ 90 meter) in COG format has been derived from the Copernicus DEM GLO-30, mirrored on Open Data on AWS, dataset managed by Sinergise (https://registry.opendata.aws/copernicus-dem/). Processing steps: The original Copernicus GLO-30 DEM contains a relevant percentage of tiles with non-square pixels. We created a mosaic map in https://gdal.org/drivers/raster/vrt.html format and defined within the VRT file the rule to apply cubic resampling while reading the data, i.e. importing them into GRASS GIS for further processing. We chose cubic instead of bilinear resampling since the height-width ratio of non-square pixels is up to 1:5. Hence, artefacts between adjacent tiles in rugged terrain could be minimized: gdalbuildvrt -input_file_list list_geotiffs_MOOD.csv -r cubic -tr 0.000277777777777778 0.000277777777777778 Copernicus_DSM_30m_MOOD.vrt In order to reduce the spatial resolution to 3 arc seconds, weighted resampling was performed in GRASS GIS (using r.resamp.stats -w) and the pixel values were scaled with 1000 (storing the pixels as integer values) for data volume reduction. In addition, a hillshade raster map was derived from the resampled elevation map (using r.relief, GRASS GIS). Eventually, we exported the elevation and hillshade raster maps in Cloud Optimized GeoTIFF (COG) format, along with SLD and QML style files.