Facebook
TwitterSpatial analysis and statistical summaries of the Protected Areas Database of the United States (PAD-US) provide land managers and decision makers with a general assessment of management intent for biodiversity protection, natural resource management, and outdoor recreation access across the nation. This data release presents results from statistical summaries of the PAD-US 3.0 protection status (by GAP Status Code) and public access status for various land unit boundaries (Protected Areas Database of the United States 3.0 Vector Analysis and Summary Statistics). Summary statistics are also available to explore and download (Comma-separated Table [CSV], Microsoft Excel Workbook (.xlsx), Portable Document Format [.pdf] Report) from the PAD-US Lands and Inland Water Statistics Dashboard ( https://www.usgs.gov/programs/gap-analysis-project/science/pad-us-statistics ). The vector GIS analysis file, source data used to summarize statistics for areas of interest to stakeholders (National, State, Department of the Interior Region, Congressional District, County, EcoRegions I-IV, Urban Areas, Landscape Conservation Cooperative), and complete Summary Statistics Tabular Data (CSV) are included in this data release. Raster GIS analysis files are also available for combination with other raster data (Protected Areas Database of the United States (PAD-US) 3.0 Raster Analysis). The PAD-US 3.0 Combined Fee, Designation, Easement feature class in the full inventory, with Military Lands and Tribal Areas from the Proclamation and Other Planning Boundaries feature class (Protected Areas Database of the United States (PAD-US) 3.0, https://doi.org/10.5066/P9Q9LQ4B), was modified to prioritize and remove overlapping management designations, limiting overestimation in protection status or public access statistics and to support user needs for vector and raster analysis data. Analysis files in this data release were clipped to the Census State boundary file to define the extent and fill in areas (largely private land) outside the PAD-US, providing a common denominator for statistical summaries.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In the last decade, a plethora of algorithms have been developed for spatial ecology studies. In our case, we use some of these codes for underwater research work in applied ecology analysis of threatened endemic fishes and their natural habitat. For this, we developed codes in Rstudio® script environment to run spatial and statistical analyses for ecological response and spatial distribution models (e.g., Hijmans & Elith, 2017; Den Burg et al., 2020). The employed R packages are as follows: caret (Kuhn et al., 2020), corrplot (Wei & Simko, 2017), devtools (Wickham, 2015), dismo (Hijmans & Elith, 2017), gbm (Freund & Schapire, 1997; Friedman, 2002), ggplot2 (Wickham et al., 2019), lattice (Sarkar, 2008), lattice (Musa & Mansor, 2021), maptools (Hijmans & Elith, 2017), modelmetrics (Hvitfeldt & Silge, 2021), pander (Wickham, 2015), plyr (Wickham & Wickham, 2015), pROC (Robin et al., 2011), raster (Hijmans & Elith, 2017), RColorBrewer (Neuwirth, 2014), Rcpp (Eddelbeuttel & Balamura, 2018), rgdal (Verzani, 2011), sdm (Naimi & Araujo, 2016), sf (e.g., Zainuddin, 2023), sp (Pebesma, 2020) and usethis (Gladstone, 2022).
It is important to follow all the codes in order to obtain results from the ecological response and spatial distribution models. In particular, for the ecological scenario, we selected the Generalized Linear Model (GLM) and for the geographic scenario we selected DOMAIN, also known as Gower's metric (Carpenter et al., 1993). We selected this regression method and this distance similarity metric because of its adequacy and robustness for studies with endemic or threatened species (e.g., Naoki et al., 2006). Next, we explain the statistical parameterization for the codes immersed in the GLM and DOMAIN running:
In the first instance, we generated the background points and extracted the values of the variables (Code2_Extract_values_DWp_SC.R). Barbet-Massin et al. (2012) recommend the use of 10,000 background points when using regression methods (e.g., Generalized Linear Model) or distance-based models (e.g., DOMAIN). However, we considered important some factors such as the extent of the area and the type of study species for the correct selection of the number of points (Pers. Obs.). Then, we extracted the values of predictor variables (e.g., bioclimatic, topographic, demographic, habitat) in function of presence and background points (e.g., Hijmans and Elith, 2017).
Subsequently, we subdivide both the presence and background point groups into 75% training data and 25% test data, each group, following the method of Soberón & Nakamura (2009) and Hijmans & Elith (2017). For a training control, the 10-fold (cross-validation) method is selected, where the response variable presence is assigned as a factor. In case that some other variable would be important for the study species, it should also be assigned as a factor (Kim, 2009).
After that, we ran the code for the GBM method (Gradient Boost Machine; Code3_GBM_Relative_contribution.R and Code4_Relative_contribution.R), where we obtained the relative contribution of the variables used in the model. We parameterized the code with a Gaussian distribution and cross iteration of 5,000 repetitions (e.g., Friedman, 2002; kim, 2009; Hijmans and Elith, 2017). In addition, we considered selecting a validation interval of 4 random training points (Personal test). The obtained plots were the partial dependence blocks, in function of each predictor variable.
Subsequently, the correlation of the variables is run by Pearson's method (Code5_Pearson_Correlation.R) to evaluate multicollinearity between variables (Guisan & Hofer, 2003). It is recommended to consider a bivariate correlation ± 0.70 to discard highly correlated variables (e.g., Awan et al., 2021).
Once the above codes were run, we uploaded the same subgroups (i.e., presence and background groups with 75% training and 25% testing) (Code6_Presence&backgrounds.R) for the GLM method code (Code7_GLM_model.R). Here, we first ran the GLM models per variable to obtain the p-significance value of each variable (alpha ≤ 0.05); we selected the value one (i.e., presence) as the likelihood factor. The generated models are of polynomial degree to obtain linear and quadratic response (e.g., Fielding and Bell, 1997; Allouche et al., 2006). From these results, we ran ecological response curve models, where the resulting plots included the probability of occurrence and values for continuous variables or categories for discrete variables. The points of the presence and background training group are also included.
On the other hand, a global GLM was also run, from which the generalized model is evaluated by means of a 2 x 2 contingency matrix, including both observed and predicted records. A representation of this is shown in Table 1 (adapted from Allouche et al., 2006). In this process we select an arbitrary boundary of 0.5 to obtain better modeling performance and avoid high percentage of bias in type I (omission) or II (commission) errors (e.g., Carpenter et al., 1993; Fielding and Bell, 1997; Allouche et al., 2006; Kim, 2009; Hijmans and Elith, 2017).
Table 1. Example of 2 x 2 contingency matrix for calculating performance metrics for GLM models. A represents true presence records (true positives), B represents false presence records (false positives - error of commission), C represents true background points (true negatives) and D represents false backgrounds (false negatives - errors of omission).
Validation set
Model
True
False
Presence
A
B
Background
C
D
We then calculated the Overall and True Skill Statistics (TSS) metrics. The first is used to assess the proportion of correctly predicted cases, while the second metric assesses the prevalence of correctly predicted cases (Olden and Jackson, 2002). This metric also gives equal importance to the prevalence of presence prediction as to the random performance correction (Fielding and Bell, 1997; Allouche et al., 2006).
The last code (i.e., Code8_DOMAIN_SuitHab_model.R) is for species distribution modelling using the DOMAIN algorithm (Carpenter et al., 1993). Here, we loaded the variable stack and the presence and background group subdivided into 75% training and 25% test, each. We only included the presence training subset and the predictor variables stack in the calculation of the DOMAIN metric, as well as in the evaluation and validation of the model.
Regarding the model evaluation and estimation, we selected the following estimators:
1) partial ROC, which evaluates the approach between the curves of positive (i.e., correctly predicted presence) and negative (i.e., correctly predicted absence) cases. As farther apart these curves are, the model has a better prediction performance for the correct spatial distribution of the species (Manzanilla-Quiñones, 2020).
2) ROC/AUC curve for model validation, where an optimal performance threshold is estimated to have an expected confidence of 75% to 99% probability (De Long et al., 1988).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository contains the codes and simulated dataset for paper entitled "Computational improvements to multiscale geographically weighted regression"
Facebook
TwitterSpatial analysis and statistical summaries of the Protected Areas Database of the United States (PAD-US) provide land managers and decision makers with a general assessment of management intent for biodiversity protection, natural resource management, and outdoor recreation access across the nation. This data release (PAD-US 4.1 Vector Analysis and Summary Statistics) presents results from statistical summaries of the PAD-US 4.1 protection status (by GAP Status Code) and public access status for various land unit boundaries. Summary statistics are also available to explore and download from the PAD-US Statistics Dashboard ( https://www.usgs.gov/programs/gap-analysis-project/science/pad-us-statistics ). The vector GIS analysis file, source data used to summarize statistics for areas of interest to stakeholders (National, State, Department of the Interior Region, Congressional District, County, EcoRegions I-IV, Urban Areas, Landscape Conservation Cooperative), and complete Summary Statistics Tabular Data (CSV) are included in this data release. Raster analysis files are also available for combination with other raster data (PAD-US 4.1 Raster Analysis child item). The PAD-US Combined Fee, Designation, Easement feature class in the Full Inventory Database, with Military Lands and Tribal Areas from the Proclamation and Other Planning Boundaries feature class, was modified to prioritize and remove overlapping management designations, limiting overestimation in protection status or public access statistics and to support user needs for vector and raster analysis data. Analysis files in this data release were clipped to the Census State boundary file to define the extent and fill in areas (largely private land) outside the PAD-US, providing a common denominator for statistical summaries.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
While log-Gaussian Cox process regression models are useful tools for modeling point patterns, they can be technically difficult to fit and require users to learn/adopt bespoke software. We show that, for suitably formatted data, we can actually fit these models using generalized additive model software, via a simple line of code, demonstrated on R by the popular mgcv package. We are able to do this because a common and computationally efficient way to fit a log-Gaussian Cox process model is to use a basis function expansion to approximate the Gaussian random field, as is provided by a generic bivariate smoother over geographic space. We further show that if basis functions are parameterized appropriately then we can estimate parameters in the spatial covariance function for the latent random field using a generalized additive model. We use simulation to show that this approach leads to model fits of comparable quality to state-of-the-art software, often more quickly. But we see the main advance from this work as lowering the technology barrier to spatial statistics for applied researchers, many of whom are already familiar with generalized additive model software.
Facebook
TwitterThis data set provides an estimate of the vapor pressure deficit. It infers a value for each grid point based on nearby and distant values of the input Level-2 datasets and estimates of the variance of those values, with lower variances given higher weight.The Spatial Statistical Data Fusion (SSDF) surface continental United States (CONUS) products, fuse data from the Atmospheric InfraRed Sounder (AIRS) instrument on the EOS-Aqua spacecraft with data from the Cross-track Infrared and Microwave Sounding Suite (CrIMSS) instruments on the Suomi-NPP spacecraft. The CrIMSS instrument suite consists of the Cross-track Infrared Sounder (CrIS) infrared sounder and the Advanced Technology Microwave Sounder (ATMS) microwave sounder. These are all daily products on a ¼ x ¼ degree latitude/longitude grid covering the continental United States (CONUS).The SSDF algorithm infers a value for each grid point based on nearby and distant values of the input Level-2 datasets and estimates of the variance of those values, with lower variances given higher weight. Performing the data fusion of two (or more) remote sensing datasets that estimate the same physical state involves four major steps: (1) Filtering input data; (2) Matching the remote sensing datasets to an in situ dataset, taken as a truth estimate; (3) Using these matchups to characterize the input datasets via estimation of their bias and variance relative to the truth estimate; (4) Performing the spatial statistical data fusion. We note that SSDF can also be performed on a single remote sensing input dataset. The SSDF algorithm only ingests the bias-corrected estimates, their latitudes and longitudes, and their estimated variances; the algorithm is agnostic as to which dataset or datasets those estimates, latitudes, longitudes, and variances originated from.
Facebook
Twitterhttps://creativecommons.org/share-your-work/public-domain/pdmhttps://creativecommons.org/share-your-work/public-domain/pdm
This collection consists of geospatial data layers and summary data at the country and country sub-division levels that are part of USAID's Demographic Health Survey Spatial Data Repository. This collection includes geographically-linked health and demographic data from the DHS Program and the U.S. Census Bureau for mapping in a geographic information system (GIS). The data includes indicators related to: fertility, family planning, maternal and child health, gender, HIV/AIDS, literacy, malaria, nutrition, and sanitation. Each set of files is associated with a specific health survey for a given year for over 90 different countries that were part of the following surveys:Demographic Health Survey (DHS)Malaria Indicator Survey (MIS)Service Provisions Assessment (SPA)Other qualitative surveys (OTH)Individual files are named with identifiers that indicate: country, survey year, survey, and in some cases the name of a variable or indicator. A list of the two-letter country codes is included in a CSV file.Datasets are subdivided into the following folders:Survey boundaries: polygon shapefiles of administrative subdivision boundaries for countries used in specific surveys. Indicator data: polygon shapefiles and geodatabases of countries and subdivisions with 25 of the most common health indicators collected in the DHS. Estimates generated from survey data.Modeled surfaces: geospatial raster files that represent gridded population and health indicators generated from survey data, for several countries.Geospatial covariates: CSV files that link survey cluster locations to ancillary data (known as covariates) that contain data on topics including population, climate, and environmental factors.Population estimates: spreadsheets and polygon shapefiles for countries and subdivisions with 5-year age/sex group population estimates and projections for 2000-2020 from the US Census Bureau, for designated countries in the PEPFAR program.Workshop materials: a tutorial with sample data for learning how to map health data using DHS SDR datasets with QGIS. Documentation that is specific to each dataset is included in the subfolders, and a methodological summary for all of the datasets is included in the root folder as an HTML file. File-level metadata is available for most files. Countries for which data included in the repository include: Afghanistan, Albania, Angola, Armenia, Azerbaijan, Bangladesh, Benin, Bolivia, Botswana, Brazil, Burkina Faso, Burundi, Cape Verde, Cambodia, Cameroon, Central African Republic, Chad, Colombia, Comoros, Congo, Congo (Democratic Republic of the), Cote d'Ivoire, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Eswatini (Swaziland), Ethiopia, Gabon, Gambia, Ghana, Guatemala, Guinea, Guyana, Haiti, Honduras, India, Indonesia, Jordan, Kazakhstan, Kenya, Kyrgyzstan, Lesotho, Liberia, Madagascar, Malawi, Maldives, Mali, Mauritania, Mexico, Moldova, Morocco, Mozambique, Myanmar, Namibia, Nepal, Nicaragua, Niger, Nigeria, Pakistan, Papua New Guinea, Paraguay, Peru, Philippines, Russia, Rwanda, Samoa, Sao Tome and Principe, Senegal, Sierra Leone, South Africa, Sri Lanka, Sudan, Tajikistan, Tanzania, Thailand, Timor-Leste, Togo, Trinidad and Tobago, Tunisia, Turkey, Turkmenistan, Uganda, Ukraine, Uzbekistan, Viet Nam, Yemen, Zambia, Zimbabwe
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/3372/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/3372/terms
The Regional Crime Analysis GIS (RCAGIS) is an Environmental Systems Research Institute (ESRI) MapObjects-based system that was developed by the United States Department of Justice Criminal Division Geographic Information Systems (GIS) Staff, in conjunction with the Baltimore County Police Department and the Regional Crime Analysis System (RCAS) group, to facilitate the analysis of crime on a regional basis. The RCAGIS system was designed specifically to assist in the analysis of crime incident data across jurisdictional boundaries. Features of the system include: (1) three modes, each designed for a specific level of analysis (simple queries, crime analysis, or reports), (2) wizard-driven (guided) incident database queries, (3) graphical tools for the creation, saving, and printing of map layout files, (4) an interface with CrimeStat spatial statistics software developed by Ned Levine and Associates for advanced analysis tools such as hot spot surfaces and ellipses, (5) tools for graphically viewing and analyzing historical crime trends in specific areas, and (6) linkage tools for drawing connections between vehicle theft and recovery locations, incident locations and suspects' homes, and between attributes in any two loaded shapefiles. RCAGIS also supports digital imagery, such as orthophotos and other raster data sources, and geographic source data in multiple projections. RCAGIS can be configured to support multiple incident database backends and varying database schemas using a field mapping utility.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
Discover the booming Spatial Analysis Software market! Our in-depth analysis reveals a $5 billion market projected to reach $12.4 billion by 2033, driven by AI, cloud computing, and rising geospatial data. Learn about key trends, regional insights, and leading companies shaping this dynamic sector.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper develops a new method for analyzing the relationship between a set of points and another single point, the latter of which we call a reference point.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Geospatial Analytics Market Size 2025-2029
The geospatial analytics market size is forecast to increase by USD 178.6 billion, at a CAGR of 21.4% between 2024 and 2029.
The market is experiencing significant growth, driven by the increasing adoption of geospatial analytics in sectors such as healthcare and insurance. This trend is fueled by the ability of geospatial analytics to provide valuable insights from location-based data, leading to improved operational efficiency and decision-making. Additionally, emerging methods in data collection and generation, including the use of drones and satellite imagery, are expanding the scope and potential of geospatial analytics. However, the market faces challenges, including data privacy and security concerns. With the vast amounts of sensitive location data being collected and analyzed, ensuring its protection is crucial for companies to maintain trust with their customers and avoid regulatory penalties. Navigating these challenges and capitalizing on the opportunities presented by the growing adoption of geospatial analytics requires a strategic approach from industry players. Companies must prioritize data security, invest in advanced analytics technologies, and collaborate with stakeholders to build trust and transparency. By addressing these challenges and leveraging the power of geospatial analytics, businesses can gain a competitive edge and unlock new opportunities in various industries.
What will be the Size of the Geospatial Analytics Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe market continues to evolve, driven by the increasing demand for location-specific insights across various sectors. Urban planning relies on geospatial optimization and data enrichment to enhance city designs and improve infrastructure. Cloud-based geospatial solutions facilitate real-time data access, enabling location intelligence for public safety and resource management. Spatial data standards ensure interoperability among different systems, while geospatial software and data visualization tools provide valuable insights from satellite imagery and aerial photography. Geospatial services offer data integration, spatial data accuracy, and advanced analytics capabilities, including 3D visualization, route optimization, and data cleansing. Precision agriculture and environmental monitoring leverage geospatial data to optimize resource usage and monitor ecosystem health.
Infrastructure management and real estate industries rely on geospatial data for asset tracking and market analysis. Spatial statistics and disaster management applications help mitigate risks and respond effectively to crises. Geospatial data management and quality remain critical as the volume and complexity of data grow. Geospatial modeling and interoperability enable seamless data sharing and collaboration. Sensor networks and geospatial data acquisition technologies expand the reach of geospatial analytics, while AI-powered geospatial analytics offer new opportunities for predictive analysis and automation. The ongoing development of geospatial technologies and applications underscores the market's continuous dynamism, providing valuable insights and solutions for businesses and organizations worldwide.
How is this Geospatial Analytics Industry segmented?
The geospatial analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. TechnologyGPSGISRemote sensingOthersEnd-userDefence and securityGovernmentEnvironmental monitoringMining and manufacturingOthersApplicationSurveyingMedicine and public safetyMilitary intelligenceDisaster risk reduction and managementOthersTypeSurface and field analyticsGeovisualizationNetwork and location analyticsOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyItalyUKAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW)
By Technology Insights
The gps segment is estimated to witness significant growth during the forecast period.The market encompasses various applications and technologies, including geospatial optimization, data enrichment, location-based services (LBS), spatial data standards, public safety, geospatial software, resource management, location intelligence, geospatial data visualization, geospatial services, data integration, 3D visualization, satellite imagery, remote sensing, GIS platforms, spatial data infrastructure, aerial photography, route optimization, data cleansing, precision agriculture, spatial interpolation, geospatial databases, transportation planning, spatial data accuracy, spatial analysis, map projections, interactive maps, marketing analytics, data storytelling, geospati
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Spatial Intelligence Software market is booming, projected to reach $45 billion by 2033 with a 12% CAGR. Discover key trends, drivers, restraints, and leading companies shaping this lucrative sector, including cloud-based solutions and applications for large enterprises and SMEs. Explore regional market share and growth projections in our comprehensive analysis.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The GIS Software market is booming, projected to reach $45 billion by 2033 with a CAGR of 12%! Discover key trends, drivers, and restraints shaping this dynamic sector, including the impact of cloud computing, AI, and IoT. Leading companies and regional insights are analyzed in this comprehensive market report.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The market for Spatial Intelligence Software is projected to grow from XXX in 2022 to XXX by 2033, exhibiting a CAGR of XX% during the forecast period. This growth can be attributed to increasing government initiatives, rising adoption of advanced analytics, and growing awareness of the benefits of spatial intelligence in various industries. Furthermore, rising investment in data analytics and business intelligence tools, coupled with the expanding need for better decision-making capabilities, is anticipated to drive market expansion. The market is segmented based on application and type. On the basis of application, the market is divided into large enterprises and SMEs. Large enterprises are expected to hold a significant market share due to higher spending on technology and increased need for data-driven insights. In terms of type, the market is divided into cloud-based and web-based solutions. Cloud-based solutions are projected to witness substantial growth due to their scalability, cost-effectiveness, and ease of deployment. Leading companies operating in this market include Alteryx, Caliper Corporation, CartoDB, Avuxi, Cubeware, Esri, Fract, Gadberry Group, Galigeo, Board, Geoblink, Qlik, Maptive, Pitney Bowes, and CARTO. North America is expected to dominate the market, followed by Europe and Asia Pacific.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The size of the Spatial Analysis Software market was valued at USD XXX million in 2024 and is projected to reach USD XXX million by 2033, with an expected CAGR of XX % during the forecast period.
Facebook
TwitterA multiple machine-learning model (Asquith and Killian, 2024) implementing Cubist and Random Forest regressions was used to predict monthly mean groundwater levels through time for the available years described in the metadata for the Mississippi River Valley alluvial aquifer (MRVA). The MRVA is the surficial aquifer of the Mississippi Alluvial Plain (MAP), located in the south-central United States. Employing two machine-learning techniques offered the opportunity to generate model and statistical error and covariance between them to estimate total uncertainty. Potentiometric surface predictions were made at the 1-kilometer grid scale using the National Hydrogeologic Grid (Clark and others, 2018). Results produced by the mmlMRVAgen1 software have been condensed into thirteen themes each containing a multi-banded GeoTIFF raster with 504 layers, corresponding to each month for the available years described in the metadata. The themes include the final predicted monthly water-level altitudes, in feet North American Vertical Datum of 1988 (NAVD88), for the study area (pol), which were computed by pooling through weighted-mean averaging by cell the even and odd year predictions for that month. The depth to water was predicted in feet (nhgd2w), utilizing the NHG cell altitude as the land surface datum. Model errors were evaluated using both the normal error (modnorerr) in standard deviations of feet and the polynomial-density-quantile4 distribution (PDQ4)-error model (modpdqerr) without the inclusion of land-surface variation of the NHG. The equivalent standard deviations of these error models were calculated both with and without the inclusion of land-surface variation of the NHG (norerr, norerrnhg, pdqerr, pdqerrnhg). The lower and upper bounds (in feet) of the 90-percent prediction limits for both model error forms were computed (norlwr, norupr, pdqlwr, pdqupr). Lastly, the ratio of model error to total error (modtotrat) was also computed. Complementing each of the GeoTIFFs are .json extensions to each file. These provide additional multi-band support information. This double-file representation stems from the native GeoTIFF drivers within the terra R package underpinning the operations. Overall, the model objects created by the mmlMRVAgen1 from about 156,000 water-level records for about 58,000 wells report (1) a normalized Nash−Sutcliffe Efficiency (NNSE) of about 0.997, (2) a root-mean-square error (RMSE) of about 4.15 feet, and (3) a bias prior to computing the NNSE and RMSE of about 0.0963 feet before its subsequent removal (see mmlMRVAgen1 software diagnostics associated with "MRVA_MML_CONSTANTS"). The model objects also report for the 156,000 water-level records (1) a mean percent ratio of model error to total error of about 69.2 percent and (2) a mean width of about 12.05 feet for the 90-percent prediction bounds from the PDQ4 error framework (see mmlMRVAgen1 software diagnostics associated with "genMML/03step.R"). The model objects were used in post-model creation to predict each of the rasters provided in this data release. (Note, the results herein are associated with the "April 21, 2024" model run, see mmlMRVAgen1/model_archive/README.md.) For a full description of covariate assemblage and hydrograph modeling, see Asquith and Killian (2022) (covMRVAgen1 software). For a full description of multiple machine-learning modeling, see Asquith and Killian (2024) (mmlMRVAgen1 software).
Facebook
Twitterhttps://www.htfmarketinsights.com/privacy-policyhttps://www.htfmarketinsights.com/privacy-policy
Global Geospatial Analytics Software Market is segmented by Application (Urban Planning_ Environmental Management_ Agriculture_ Transportation_ Defense), Type (GIS Software_ Remote Sensing Software_ Spatial Statistics Software_ Location Analytics Platforms_ Mapping Software), and Geography (North America_ LATAM_ West Europe_Central & Eastern Europe_ Northern Europe_ Southern Europe_ East Asia_ Southeast Asia_ South Asia_ Central Asia_ Oceania_ MEA)
Facebook
Twitterhttps://api.github.com/licenses/agpl-3.0https://api.github.com/licenses/agpl-3.0
The dataset comprises two tables. The first table contains spatial distribution point data for 5,000 impoverished villages in Guangxi, which were officially designated as such by the Guangxi Zhuang Autonomous Region government during the 13th Five-Year Plan period. The data can be accessed via the operational website of a subordinate unit under the Guangxi Department of Agriculture and Rural Affairs: 广西十三五贫困村名单 - 广西扶贫网. This table includes the latitude and longitude coordinates (WGS1984) of each village, with geocoding services provided by Baidu Maps and coordinate correction performed using GeoSharp software.The second table presents aggregated statistics on the distribution of 4.52 million impoverished individuals and impoverished villages across Guangxi, organized by administrative divisions. The data is sourced from the official website of the Guangxi Zhuang Autonomous Region government.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectivesXinjiang is one of the high TB burden provinces of China. A spatial analysis was conducted using geographical information system (GIS) technology to improve the understanding of geographic variation of the pulmonary TB occurrence in Xinjiang, its predictors, and to search for targeted interventions.MethodsNumbers of reported pulmonary TB cases were collected at county/district level from TB surveillance system database. Population data were extracted from Xinjiang Statistical Yearbook (2006~2014). Spatial autocorrelation (or dependency) was assessed using global Moran’s I statistic. Anselin’s local Moran’s I and local Getis-Ord statistics were used to detect local spatial clusters. Ordinary least squares (OLS) regression, spatial lag model (SLM) and geographically-weighted regression (GWR) models were used to explore the socio-demographic predictors of pulmonary TB incidence from global and local perspectives. SPSS17.0, ArcGIS10.2.2, and GeoDA software were used for data analysis.ResultsIncidence of sputum smear positive (SS+) TB and new SS+TB showed a declining trend from 2005 to 2013. Pulmonary TB incidence showed a declining trend from 2005 to 2010 and a rising trend since 2011 mainly caused by the rising trend of sputum smear negative (SS-) TB incidence (p
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
North America Geographic Information System Market Size 2025-2029
The geographic information system market size in North America is forecast to increase by USD 11.4 billion at a CAGR of 23.7% between 2024 and 2029.
The market is experiencing significant growth due to the increasing adoption of advanced technologies such as artificial intelligence, satellite imagery, and sensors in various industries. In fleet management, GIS software is being used to optimize routes and improve operational efficiency. In the context of smart cities, GIS solutions are being utilized for content delivery, public safety, and building information modeling. The demand for miniaturization of technologies is also driving the market, allowing for the integration of GIS into smaller devices and applications. However, data security concerns remain a challenge, as the collection and storage of sensitive information requires robust security measures. The insurance industry is also leveraging GIS for telematics and risk assessment, while the construction sector uses GIS for server-based project management and planning. Overall, the GIS market is poised for continued growth as these trends and applications continue to evolve.
What will be the Size of the market During the Forecast Period?
Request Free Sample
The Geographic Information System (GIS) market encompasses a range of technologies and applications that enable the collection, management, analysis, and visualization of spatial data. Key industries driving market growth include transportation, infrastructure planning, urban planning, and environmental monitoring. Remote sensing technologies, such as satellite imaging and aerial photography, play a significant role in data collection. Artificial intelligence and the Internet of Things (IoT) are increasingly integrated into GIS solutions for real-time location data processing and operational efficiency.
Applications span various sectors, including agriculture, natural resources, construction, and smart cities. GIS is essential for infrastructure analysis, disaster management, and land management. Geospatial technology enables spatial data integration, providing valuable insights for decision-making and optimization. Market size is substantial and growing, fueled by increasing demand for efficient urban planning, improved infrastructure, and environmental sustainability. Geospatial startups continue to emerge, innovating in areas such as telematics, natural disasters, and smart city development.
How is this market segmented and which is the largest segment?
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Component
Software
Data
Services
Deployment
On-premise
Cloud
Geography
North America
Canada
Mexico
US
By Component Insights
The software segment is estimated to witness significant growth during the forecast period.
The Geographic Information System (GIS) market encompasses desktop, mobile, cloud, and server software for managing and analyzing spatial data. In North America, industry-specific GIS software dominates, with some commercial entities providing open-source alternatives for limited functions like routing and geocoding. Despite this, counterfeit products pose a threat, making open-source software a viable option for smaller applications. Market trends indicate a shift towards cloud-based GIS solutions for enhanced operational efficiency and real-time location data. Spatial data applications span various sectors, including transportation infrastructure planning, urban planning, natural resources management, environmental monitoring, agriculture, and disaster management. Technological innovations, such as artificial intelligence, the Internet of Things (IoT), and satellite imagery, are revolutionizing GIS solutions.
Cloud-based GIS solutions, IoT integration, and augmented reality are emerging trends. Geospatial technology is essential for smart city projects, climate monitoring, intelligent transportation systems, and land management. Industry statistics indicate steady growth, with key players focusing on product innovation, infrastructure optimization, and geospatial utility solutions.
Get a glance at the market report of share of various segments Request Free Sample
Market Dynamics
Our North America Geographic Information System Market researchers analyzed the data with 2024 as the base year, along with the key drivers, trends, and challenges. A holistic analysis of drivers will help companies refine their marketing strategies to gain a competitive advantage.
What are the key market drivers leading to the rise in the adoption of the North America Geographic Information System Market?
Rising applications of geographic
Facebook
TwitterSpatial analysis and statistical summaries of the Protected Areas Database of the United States (PAD-US) provide land managers and decision makers with a general assessment of management intent for biodiversity protection, natural resource management, and outdoor recreation access across the nation. This data release presents results from statistical summaries of the PAD-US 3.0 protection status (by GAP Status Code) and public access status for various land unit boundaries (Protected Areas Database of the United States 3.0 Vector Analysis and Summary Statistics). Summary statistics are also available to explore and download (Comma-separated Table [CSV], Microsoft Excel Workbook (.xlsx), Portable Document Format [.pdf] Report) from the PAD-US Lands and Inland Water Statistics Dashboard ( https://www.usgs.gov/programs/gap-analysis-project/science/pad-us-statistics ). The vector GIS analysis file, source data used to summarize statistics for areas of interest to stakeholders (National, State, Department of the Interior Region, Congressional District, County, EcoRegions I-IV, Urban Areas, Landscape Conservation Cooperative), and complete Summary Statistics Tabular Data (CSV) are included in this data release. Raster GIS analysis files are also available for combination with other raster data (Protected Areas Database of the United States (PAD-US) 3.0 Raster Analysis). The PAD-US 3.0 Combined Fee, Designation, Easement feature class in the full inventory, with Military Lands and Tribal Areas from the Proclamation and Other Planning Boundaries feature class (Protected Areas Database of the United States (PAD-US) 3.0, https://doi.org/10.5066/P9Q9LQ4B), was modified to prioritize and remove overlapping management designations, limiting overestimation in protection status or public access statistics and to support user needs for vector and raster analysis data. Analysis files in this data release were clipped to the Census State boundary file to define the extent and fill in areas (largely private land) outside the PAD-US, providing a common denominator for statistical summaries.