100+ datasets found
  1. CrimeStat III: A Spatial Statistics Program for the Analysis of Crime...

    • icpsr.umich.edu
    Updated Mar 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Levine, Ned (2023). CrimeStat III: A Spatial Statistics Program for the Analysis of Crime Incident Locations (Version 3.3), United States, 2010 [Dataset]. http://doi.org/10.3886/ICPSR02824.v1
    Explore at:
    Dataset updated
    Mar 30, 2023
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Levine, Ned
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/2824/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/2824/terms

    Area covered
    United States
    Description

    CrimeStat III is a spatial statistics program for the analysis of crime incident locations, developed by Ned Levine and Associates under the direction of Ned Levine, PhD, that was funded by grants from the National Institute of Justice (grants 1997-IJ-CX-0040, 1999-IJ-CX-0044, 2002-IJ-CX-0007, and 2005-IJ-CX-K037). The program is Windows-based and interfaces with most desktop GIS programs. The purpose is to provide supplemental statistical tools to aid law enforcement agencies and criminal justice researchers in their crime mapping efforts. CrimeStat is being used by many police departments around the country as well as by criminal justice and other researchers. The program inputs incident locations (e.g., robbery locations) in 'dbf', 'shp', ASCII or ODBC-compliant formats using either spherical or projected coordinates. It calculates various spatial statistics and writes graphical objects to ArcGIS, MapInfo, Surfer for Windows, and other GIS packages. CrimeStat is organized into five sections: Data Setup Primary file - this is a file of incident or point locations with X and Y coordinates. The coordinate system can be either spherical (lat/lon) or projected. Intensity and weight values are allowed. Each incident can have an associated time value. Secondary file - this is an associated file of incident or point locations with X and Y coordinates. The coordinate system has to be the same as the primary file. Intensity and weight values are allowed. The secondary file is used for comparison with the primary file in the risk-adjusted nearest neighbor clustering routine and the duel kernel interpolation. Reference file - this is a grid file that overlays the study area. Normally, it is a regular grid though irregular ones can be imported. CrimeStat can generate the grid if given the X and Y coordinates for the lower-left and upper-right corners. Measurement parameters - This page identifies the type of distance measurement (direct, indirect or network) to be used and specifies parameters for the area of the study region and the length of the street network. CrimeStat III has the ability to utilize a network for linking points. Each segment can be weighted by travel time, travel speed, travel cost or simple distance. This allows the interaction between points to be estimated more realistically. Spatial Description Spatial distribution - statistics for describing the spatial distribution of incidents, such as the mean center, center of minimum distance, standard deviational ellipse, the convex hull, or directional mean. Spatial autocorrelation - statistics for describing the amount of spatial autocorrelation between zones, including general spatial autocorrelation indices - Moran's I , Geary's C, and the Getis-Ord General G, and correlograms that calculate spatial autocorrelation for different distance separations - the Moran, Geary, Getis-Ord correlograms. Several of these routines can simulate confidence intervals with a Monte Carlo simulation. Distance analysis I - statistics for describing properties of distances between incidents including nearest neighbor analysis, linear nearest neighbor analysis, and Ripley's K statistic. There is also a routine that assigns the primary points to the secondary points, either on the basis of nearest neighbor or point-in-polygon, and then sums the results by the secondary point values. Distance analysis II - calculates matrices representing the distance between points for the primary file, for the distance between the primary and secondary points, and for the distance between either the primary or secondary file and the grid. 'Hot spot' analysis I - routines for conducting 'hot spot' analysis including the mode, the fuzzy mode, hierarchical nearest neighbor clustering, and risk-adjusted nearest neighbor hierarchical clustering. The hierarchical nearest neighbor hot spots can be output as ellipses or convex hulls. 'Hot spot' analysis II - more routines for conducting hot spot analysis including the Spatial and Temporal Analysis of Crime (STAC), K-means clustering, Anselin's local Moran, and the Getis-Ord local G statistics. The STAC and K-means hot spots can be output as ellipses or convex hulls. All of these routines can simulate confidence intervals with a Monte Carlo simulation. Spatial Modeling Interpolation I - a single-variable kernel density estimation routine for producin

  2. d

    Protected Areas Database of the United States (PAD-US) 3.0 Spatial Analysis...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Protected Areas Database of the United States (PAD-US) 3.0 Spatial Analysis and Statistics [Dataset]. https://catalog.data.gov/dataset/protected-areas-database-of-the-united-states-pad-us-3-0-spatial-analysis-and-statistics
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    United States
    Description

    Spatial analysis and statistical summaries of the Protected Areas Database of the United States (PAD-US) provide land managers and decision makers with a general assessment of management intent for biodiversity protection, natural resource management, and outdoor recreation access across the nation. This data release presents results from statistical summaries of the PAD-US 3.0 protection status (by GAP Status Code) and public access status for various land unit boundaries (Protected Areas Database of the United States 3.0 Vector Analysis and Summary Statistics). Summary statistics are also available to explore and download (Comma-separated Table [CSV], Microsoft Excel Workbook (.xlsx), Portable Document Format [.pdf] Report) from the PAD-US Lands and Inland Water Statistics Dashboard ( https://www.usgs.gov/programs/gap-analysis-project/science/pad-us-statistics ). The vector GIS analysis file, source data used to summarize statistics for areas of interest to stakeholders (National, State, Department of the Interior Region, Congressional District, County, EcoRegions I-IV, Urban Areas, Landscape Conservation Cooperative), and complete Summary Statistics Tabular Data (CSV) are included in this data release. Raster GIS analysis files are also available for combination with other raster data (Protected Areas Database of the United States (PAD-US) 3.0 Raster Analysis). The PAD-US 3.0 Combined Fee, Designation, Easement feature class in the full inventory, with Military Lands and Tribal Areas from the Proclamation and Other Planning Boundaries feature class (Protected Areas Database of the United States (PAD-US) 3.0, https://doi.org/10.5066/P9Q9LQ4B), was modified to prioritize and remove overlapping management designations, limiting overestimation in protection status or public access statistics and to support user needs for vector and raster analysis data. Analysis files in this data release were clipped to the Census State boundary file to define the extent and fill in areas (largely private land) outside the PAD-US, providing a common denominator for statistical summaries.

  3. Codes in R for spatial statistics analysis, ecological response models and...

    • zenodo.org
    • data.niaid.nih.gov
    bin
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    D. W. Rössel-Ramírez; D. W. Rössel-Ramírez; J. Palacio-Núñez; J. Palacio-Núñez; S. Espinosa; S. Espinosa; J. F. Martínez-Montoya; J. F. Martínez-Montoya (2025). Codes in R for spatial statistics analysis, ecological response models and spatial distribution models [Dataset]. http://doi.org/10.5281/zenodo.7603557
    Explore at:
    binAvailable download formats
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    D. W. Rössel-Ramírez; D. W. Rössel-Ramírez; J. Palacio-Núñez; J. Palacio-Núñez; S. Espinosa; S. Espinosa; J. F. Martínez-Montoya; J. F. Martínez-Montoya
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In the last decade, a plethora of algorithms have been developed for spatial ecology studies. In our case, we use some of these codes for underwater research work in applied ecology analysis of threatened endemic fishes and their natural habitat. For this, we developed codes in Rstudio® script environment to run spatial and statistical analyses for ecological response and spatial distribution models (e.g., Hijmans & Elith, 2017; Den Burg et al., 2020). The employed R packages are as follows: caret (Kuhn et al., 2020), corrplot (Wei & Simko, 2017), devtools (Wickham, 2015), dismo (Hijmans & Elith, 2017), gbm (Freund & Schapire, 1997; Friedman, 2002), ggplot2 (Wickham et al., 2019), lattice (Sarkar, 2008), lattice (Musa & Mansor, 2021), maptools (Hijmans & Elith, 2017), modelmetrics (Hvitfeldt & Silge, 2021), pander (Wickham, 2015), plyr (Wickham & Wickham, 2015), pROC (Robin et al., 2011), raster (Hijmans & Elith, 2017), RColorBrewer (Neuwirth, 2014), Rcpp (Eddelbeuttel & Balamura, 2018), rgdal (Verzani, 2011), sdm (Naimi & Araujo, 2016), sf (e.g., Zainuddin, 2023), sp (Pebesma, 2020) and usethis (Gladstone, 2022).

    It is important to follow all the codes in order to obtain results from the ecological response and spatial distribution models. In particular, for the ecological scenario, we selected the Generalized Linear Model (GLM) and for the geographic scenario we selected DOMAIN, also known as Gower's metric (Carpenter et al., 1993). We selected this regression method and this distance similarity metric because of its adequacy and robustness for studies with endemic or threatened species (e.g., Naoki et al., 2006). Next, we explain the statistical parameterization for the codes immersed in the GLM and DOMAIN running:

    In the first instance, we generated the background points and extracted the values of the variables (Code2_Extract_values_DWp_SC.R). Barbet-Massin et al. (2012) recommend the use of 10,000 background points when using regression methods (e.g., Generalized Linear Model) or distance-based models (e.g., DOMAIN). However, we considered important some factors such as the extent of the area and the type of study species for the correct selection of the number of points (Pers. Obs.). Then, we extracted the values of predictor variables (e.g., bioclimatic, topographic, demographic, habitat) in function of presence and background points (e.g., Hijmans and Elith, 2017).

    Subsequently, we subdivide both the presence and background point groups into 75% training data and 25% test data, each group, following the method of Soberón & Nakamura (2009) and Hijmans & Elith (2017). For a training control, the 10-fold (cross-validation) method is selected, where the response variable presence is assigned as a factor. In case that some other variable would be important for the study species, it should also be assigned as a factor (Kim, 2009).

    After that, we ran the code for the GBM method (Gradient Boost Machine; Code3_GBM_Relative_contribution.R and Code4_Relative_contribution.R), where we obtained the relative contribution of the variables used in the model. We parameterized the code with a Gaussian distribution and cross iteration of 5,000 repetitions (e.g., Friedman, 2002; kim, 2009; Hijmans and Elith, 2017). In addition, we considered selecting a validation interval of 4 random training points (Personal test). The obtained plots were the partial dependence blocks, in function of each predictor variable.

    Subsequently, the correlation of the variables is run by Pearson's method (Code5_Pearson_Correlation.R) to evaluate multicollinearity between variables (Guisan & Hofer, 2003). It is recommended to consider a bivariate correlation ± 0.70 to discard highly correlated variables (e.g., Awan et al., 2021).

    Once the above codes were run, we uploaded the same subgroups (i.e., presence and background groups with 75% training and 25% testing) (Code6_Presence&backgrounds.R) for the GLM method code (Code7_GLM_model.R). Here, we first ran the GLM models per variable to obtain the p-significance value of each variable (alpha ≤ 0.05); we selected the value one (i.e., presence) as the likelihood factor. The generated models are of polynomial degree to obtain linear and quadratic response (e.g., Fielding and Bell, 1997; Allouche et al., 2006). From these results, we ran ecological response curve models, where the resulting plots included the probability of occurrence and values for continuous variables or categories for discrete variables. The points of the presence and background training group are also included.

    On the other hand, a global GLM was also run, from which the generalized model is evaluated by means of a 2 x 2 contingency matrix, including both observed and predicted records. A representation of this is shown in Table 1 (adapted from Allouche et al., 2006). In this process we select an arbitrary boundary of 0.5 to obtain better modeling performance and avoid high percentage of bias in type I (omission) or II (commission) errors (e.g., Carpenter et al., 1993; Fielding and Bell, 1997; Allouche et al., 2006; Kim, 2009; Hijmans and Elith, 2017).

    Table 1. Example of 2 x 2 contingency matrix for calculating performance metrics for GLM models. A represents true presence records (true positives), B represents false presence records (false positives - error of commission), C represents true background points (true negatives) and D represents false backgrounds (false negatives - errors of omission).

    Validation set

    Model

    True

    False

    Presence

    A

    B

    Background

    C

    D

    We then calculated the Overall and True Skill Statistics (TSS) metrics. The first is used to assess the proportion of correctly predicted cases, while the second metric assesses the prevalence of correctly predicted cases (Olden and Jackson, 2002). This metric also gives equal importance to the prevalence of presence prediction as to the random performance correction (Fielding and Bell, 1997; Allouche et al., 2006).

    The last code (i.e., Code8_DOMAIN_SuitHab_model.R) is for species distribution modelling using the DOMAIN algorithm (Carpenter et al., 1993). Here, we loaded the variable stack and the presence and background group subdivided into 75% training and 25% test, each. We only included the presence training subset and the predictor variables stack in the calculation of the DOMAIN metric, as well as in the evaluation and validation of the model.

    Regarding the model evaluation and estimation, we selected the following estimators:

    1) partial ROC, which evaluates the approach between the curves of positive (i.e., correctly predicted presence) and negative (i.e., correctly predicted absence) cases. As farther apart these curves are, the model has a better prediction performance for the correct spatial distribution of the species (Manzanilla-Quiñones, 2020).

    2) ROC/AUC curve for model validation, where an optimal performance threshold is estimated to have an expected confidence of 75% to 99% probability (De Long et al., 1988).

  4. S

    Spatial Analysis Software Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Spatial Analysis Software Report [Dataset]. https://www.marketreportanalytics.com/reports/spatial-analysis-software-53687
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global spatial analysis software market is experiencing robust growth, driven by increasing adoption across diverse sectors. The market, currently valued at approximately $5 billion (estimated based on typical market sizes for similar software segments), is projected to witness a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033. This expansion is fueled by several key factors. The rising availability of geospatial data, coupled with advancements in cloud computing and artificial intelligence (AI), is enabling more sophisticated and accessible spatial analysis capabilities. Industries such as urban planning, environmental management, logistics, and retail are leveraging these advancements for optimized resource allocation, improved decision-making, and enhanced operational efficiency. The integration of spatial analysis tools into Geographic Information Systems (GIS) platforms further enhances market penetration, streamlining workflows and facilitating comprehensive data analysis. Demand for predictive modeling and location intelligence solutions is also a major growth driver, particularly among businesses seeking to understand customer behavior, optimize supply chains, and mitigate risks. However, market growth is not without its challenges. The high cost of implementation and maintenance of advanced spatial analysis software can be a barrier to entry for smaller organizations. Furthermore, the complexity of these tools requires skilled professionals, leading to a shortage of trained personnel in some regions. Despite these restraints, the long-term outlook for the spatial analysis software market remains positive, with continued innovation and wider adoption expected across various applications and geographic locations. Specific segments like those focused on 3D spatial analysis and real-time data processing are anticipated to experience particularly strong growth in the coming years. The increasing prevalence of big data and the need for effective data visualization are key elements underpinning this dynamic market.

  5. Geospatial Analytics Software Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Geospatial Analytics Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-geospatial-analytics-software-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geospatial Analytics Software Market Outlook



    The global geospatial analytics software market size is projected to grow from USD 50.1 billion in 2023 to USD 114.5 billion by 2032, reflecting a robust compound annual growth rate (CAGR) of 9.5%. This remarkable growth is largely driven by the increasing adoption of geospatial technologies across various sectors, including urban planning, agriculture, transportation, and disaster management. The surge in the utilization of geospatial data for strategic decision-making, coupled with advancements in technology such as artificial intelligence (AI) and big data analytics, plays a pivotal role in propelling market growth.



    One of the key growth factors of the geospatial analytics software market is the rapid digital transformation occurring globally. Governments and enterprises are increasingly recognizing the value of geospatial data in enhancing operational efficiency and strategic planning. The rise in smart city initiatives across the world has bolstered the demand for geospatial analytics, as cities leverage these technologies to optimize infrastructure, manage resources, and improve public services. Additionally, the integration of AI and machine learning with geospatial analytics has enhanced the accuracy and predictive capabilities of these systems, further driving their adoption.



    Another significant driver is the growing need for disaster management and climate change adaptation. As the frequency and intensity of natural disasters increase due to climate change, there is a heightened demand for geospatial analytics to predict, monitor, and mitigate the impact of such events. Geospatial software aids in mapping hazard zones, planning evacuation routes, and assessing damage post-disaster. This capability is crucial for governments and organizations involved in disaster management and mitigation, thereby boosting the market growth.



    The transportation and logistics sector is also a major contributor to the growth of the geospatial analytics software market. The advent of autonomous vehicles and the continuous evolution of logistics and supply chain management have heightened the need for precise geospatial data. Geospatial analytics enables real-time tracking, route optimization, and efficient fleet management, which are critical for the smooth operation of transportation systems. This trend is expected to continue, driving the demand for geospatial analytics solutions in transportation and logistics.



    On a regional level, North America is anticipated to dominate the geospatial analytics software market, driven by technological advancements and substantial investments in geospatial technologies. The presence of major market players and the high adoption rate of advanced technologies in sectors such as defense, agriculture, and urban planning contribute to this dominance. However, the Asia Pacific region is expected to witness the highest growth rate, fueled by rapid urbanization, government initiatives for smart cities, and increasing investments in infrastructure development.



    GIS Software plays a crucial role in the geospatial analytics software market, offering powerful tools for data visualization, spatial analysis, and geographic mapping. As organizations across various sectors increasingly rely on geospatial data for strategic decision-making, GIS Software provides the necessary infrastructure to manage, analyze, and interpret this data effectively. Its integration with other technologies such as AI and machine learning enhances its capabilities, enabling more accurate predictions and insights. This makes GIS Software an indispensable component for industries like urban planning, agriculture, and transportation, where spatial data is pivotal for optimizing operations and improving outcomes. The growing demand for GIS Software is a testament to its importance in driving the geospatial analytics market forward.



    Component Analysis



    The geospatial analytics software market is segmented into software and services when considering components. The software segment includes comprehensive solutions that integrate various geospatial data types and provide analytical tools for mapping, visualization, and data processing. This segment is expected to hold the largest market share due to the increasing adoption of these solutions in various industries for efficient data management and decision-making. The continuous advancements in software capabilities, such as the inclusion of AI and machine learning algorithms

  6. Codes and Data for Manuscript IJGIS-2019-0308

    • figshare.com
    txt
    Updated Nov 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ziqi Li (2019). Codes and Data for Manuscript IJGIS-2019-0308 [Dataset]. http://doi.org/10.6084/m9.figshare.10257284.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Nov 5, 2019
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Ziqi Li
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository contains the codes and simulated dataset for paper entitled "Computational improvements to multiscale geographically weighted regression"

  7. Geodatabase for the Baltimore Ecosystem Study Spatial Data

    • search.dataone.org
    • portal.edirepository.org
    Updated Apr 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove (2020). Geodatabase for the Baltimore Ecosystem Study Spatial Data [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-bes%2F3120%2F150
    Explore at:
    Dataset updated
    Apr 1, 2020
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove
    Time period covered
    Jan 1, 1999 - Jun 1, 2014
    Area covered
    Description

    The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt

  8. S

    Spatial Analysis Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Spatial Analysis Software Report [Dataset]. https://www.datainsightsmarket.com/reports/spatial-analysis-software-529883
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    May 11, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Spatial Analysis Software market is experiencing robust growth, driven by the increasing adoption of cloud-based solutions, the expanding use of drones and other data acquisition technologies for precise geographic data collection, and the rising demand for advanced analytics across diverse sectors. The market's expansion is fueled by the need for efficient geospatial data processing and interpretation in applications such as urban planning, infrastructure development, environmental monitoring, and precision agriculture. Key trends include the integration of Artificial Intelligence (AI) and Machine Learning (ML) for automating analysis and improving accuracy, the proliferation of readily available satellite imagery and sensor data, and the growing adoption of 3D modeling and visualization techniques. While data security concerns and the high initial investment costs for advanced software solutions pose some restraints, the overall market outlook remains positive, with a projected compound annual growth rate (CAGR) exceeding 10% (a reasonable estimate based on the rapid technological advancements and market penetration observed in related sectors). This growth is expected to be particularly strong in the North American and Asia-Pacific regions, driven by substantial government investments in infrastructure projects and burgeoning private sector adoption. The segmentation by application (architecture, engineering, and other sectors) reflects the versatility of spatial analysis software, enabling its use across various industries. Similarly, the choice between cloud-based and locally deployed solutions caters to specific organizational needs and technical capabilities. The competitive landscape is characterized by both established players and emerging technology companies, showcasing the dynamic nature of the market. Major players like Autodesk, Bentley Systems, and Trimble are leveraging their existing portfolios to integrate advanced spatial analysis capabilities, while smaller companies are focusing on niche applications and innovative analytical techniques. The ongoing advancements in both hardware and software, coupled with increasing data availability and affordability, are set to further fuel the market's growth in the coming years. The historical period (2019-2024) likely witnessed moderate growth as the market matured, laying the foundation for the accelerated expansion expected during the forecast period (2025-2033). Continued innovation and industry convergence will be key drivers shaping the future trajectory of the Spatial Analysis Software market.

  9. Regional Crime Analysis Geographic Information System (RCAGIS)

    • icpsr.umich.edu
    Updated May 29, 2002
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Justice. Criminal Division Geographic Information Systems Staff. Baltimore County Police Department (2002). Regional Crime Analysis Geographic Information System (RCAGIS) [Dataset]. http://doi.org/10.3886/ICPSR03372.v1
    Explore at:
    Dataset updated
    May 29, 2002
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States Department of Justice. Criminal Division Geographic Information Systems Staff. Baltimore County Police Department
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/3372/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/3372/terms

    Description

    The Regional Crime Analysis GIS (RCAGIS) is an Environmental Systems Research Institute (ESRI) MapObjects-based system that was developed by the United States Department of Justice Criminal Division Geographic Information Systems (GIS) Staff, in conjunction with the Baltimore County Police Department and the Regional Crime Analysis System (RCAS) group, to facilitate the analysis of crime on a regional basis. The RCAGIS system was designed specifically to assist in the analysis of crime incident data across jurisdictional boundaries. Features of the system include: (1) three modes, each designed for a specific level of analysis (simple queries, crime analysis, or reports), (2) wizard-driven (guided) incident database queries, (3) graphical tools for the creation, saving, and printing of map layout files, (4) an interface with CrimeStat spatial statistics software developed by Ned Levine and Associates for advanced analysis tools such as hot spot surfaces and ellipses, (5) tools for graphically viewing and analyzing historical crime trends in specific areas, and (6) linkage tools for drawing connections between vehicle theft and recovery locations, incident locations and suspects' homes, and between attributes in any two loaded shapefiles. RCAGIS also supports digital imagery, such as orthophotos and other raster data sources, and geographic source data in multiple projections. RCAGIS can be configured to support multiple incident database backends and varying database schemas using a field mapping utility.

  10. g

    Protected Areas Database of the United States (PAD-US) 4.0 Spatial Analysis...

    • gimi9.com
    Updated Jul 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Protected Areas Database of the United States (PAD-US) 4.0 Spatial Analysis and Statistics | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_protected-areas-database-of-the-united-states-pad-us-4-0-spatial-analysis-and-statistics/
    Explore at:
    Dataset updated
    Jul 20, 2024
    Area covered
    United States
    Description

    Spatial analysis and statistical summaries of the Protected Areas Database of the United States (PAD-US) provide land managers and decision makers with a general assessment of management intent for biodiversity protection, natural resource management, and outdoor recreation access across the nation. This data release presents results from statistical summaries of the PAD-US 4.0 protection status (by GAP Status Code) and public access status for various land unit boundaries (PAD-US 4.0 Vector Analysis and Summary Statistics). Summary statistics are also available to explore and download from the PAD-US Statistics Dashboard ( https://www.usgs.gov/programs/gap-analysis-project/science/pad-us-statistics ). The vector GIS analysis file, source data used to summarize statistics for areas of interest to stakeholders (National, State, Department of the Interior Region, Congressional District, County, EcoRegions I-IV, Urban Areas, Landscape Conservation Cooperative), and complete Summary Statistics Tabular Data (CSV) are included in this data release. Raster analysis files are also available for combination with other raster data (PAD-US 4.0 Raster Analysis). The PAD-US Combined Fee, Designation, Easement feature class in the Full Inventory Database, with Military Lands and Tribal Areas from the Proclamation and Other Planning Boundaries feature class, was modified to prioritize and remove overlapping management designations, limiting overestimation in protection status or public access statistics and to support user needs for vector and raster analysis data. Analysis files in this data release were clipped to the Census State boundary file to define the extent and fill in areas (largely private land) outside the PAD-US, providing a common denominator for statistical summaries.

  11. Spatial Demography Column 1 Data and code

    • figshare.com
    txt
    Updated Jan 18, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Corey Sparks (2016). Spatial Demography Column 1 Data and code [Dataset]. http://doi.org/10.6084/m9.figshare.809582.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 18, 2016
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Corey Sparks
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These are the data and code for the first column in the Spatial Demography journal's Software and Code series

  12. f

    Data and R code for "New methods for quantifying the effects of catchment...

    • smithsonian.figshare.com
    txt
    Updated Jul 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Donald Weller; Matthew Baker; Ryan King (2024). Data and R code for "New methods for quantifying the effects of catchment spatial patterns on aquatic responses" [Dataset]. http://doi.org/10.25573/serc.23557056.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jul 13, 2024
    Dataset provided by
    Smithsonian Environmental Research Center
    Authors
    Donald Weller; Matthew Baker; Ryan King
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This figshare item provides data and R code to reproduce the analysis in the following paper:Weller, DE; ME Baker, and RS King. 2023. New methods for quantifying the effects of catchment spatial patterns on aquatic responses. Landscape Ecology. https://doi.org/10.1007/s10980-023-01706-xThis figshare item provides 14 files: five data files (.csv files), a list of models to be fitted by the R code (Modlist.csv), and seven files of R code (.R files). The file 0SpatialAnalysis.txt provides more information on the spatial analysis we used to generate distance distributions.Data filesThe five data files are· subestPCB.csv· cdist.csv· hdist.csv· ldist.csv· tdist.csvThe file subestPCB.csv provides catchment id numbers, names, and average measured PCB concentrations from fish tissues for 14 study subestuaries. The remaining four files provide the distance distributions for commercial land, high-density residential land, low-density residential land, and all land. Each distance file has four columns, junk, count, catchment id, and distance. Information in the junk column is not used. Count provides land area as the number of 30 by 30 meter (0.09 hectare) pixels. The variable called distance provides the distance to the subestuary shoreline in decameters.R codeThe R codes reproduce the statistical analysis and most of the tables and figures from the published paper.We ran the codes using Rstudio. We invoked Rstudio’s New Project … > Existing Directory option to establish the directory containing the data files and R codes files as an Rstudio project. Then we ran five R codes in sequence according to the initial numbers in the file names (1ReadData.R, 2FitModels.R, 3Tables.R, 4Figures.R, and 5FigureS3.R). Each program adds to the objects saved in the R workspace within the Rstudio project. Figures and tables are saved in the subdirectory FiguresTables.The five numbered R files also use functions from two other files: DistWeightFunctionsV01.R and AuxillaryFunctionsV01.R.The first R program expects the five data files (subestPCB.csv, cdist.csv, hdist.csv, ldist.csv, and tdist.csv) to reside in the same directory as the program and the Rstudio project.Comments in the R files provide additional information on how each one works.

  13. f

    Data from: Fitting Log-Gaussian Cox Processes Using Generalized Additive...

    • tandf.figshare.com
    zip
    Updated Jun 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elliot Dovers; Jakub Stoklosa; David I. Warton (2025). Fitting Log-Gaussian Cox Processes Using Generalized Additive Model Software [Dataset]. http://doi.org/10.6084/m9.figshare.25189094.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 11, 2025
    Dataset provided by
    Taylor & Francis
    Authors
    Elliot Dovers; Jakub Stoklosa; David I. Warton
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    While log-Gaussian Cox process regression models are useful tools for modeling point patterns, they can be technically difficult to fit and require users to learn/adopt bespoke software. We show that, for suitably formatted data, we can actually fit these models using generalized additive model software, via a simple line of code, demonstrated on R by the popular mgcv package. We are able to do this because a common and computationally efficient way to fit a log-Gaussian Cox process model is to use a basis function expansion to approximate the Gaussian random field, as is provided by a generic bivariate smoother over geographic space. We further show that if basis functions are parameterized appropriately then we can estimate parameters in the spatial covariance function for the latent random field using a generalized additive model. We use simulation to show that this approach leads to model fits of comparable quality to state-of-the-art software, often more quickly. But we see the main advance from this work as lowering the technology barrier to spatial statistics for applied researchers, many of whom are already familiar with generalized additive model software.

  14. S

    Spatial Distribution Data of Poor Villages and Poor Population in Guangxi

    • scidb.cn
    Updated May 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Long Wang (2025). Spatial Distribution Data of Poor Villages and Poor Population in Guangxi [Dataset]. http://doi.org/10.57760/sciencedb.24940
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 12, 2025
    Dataset provided by
    Science Data Bank
    Authors
    Long Wang
    License

    https://api.github.com/licenses/agpl-3.0https://api.github.com/licenses/agpl-3.0

    Area covered
    Liuzhou, Guangxi
    Description

    The dataset comprises two tables. The first table contains spatial distribution point data for 5,000 impoverished villages in Guangxi, which were officially designated as such by the Guangxi Zhuang Autonomous Region government during the 13th Five-Year Plan period. The data can be accessed via the operational website of a subordinate unit under the Guangxi Department of Agriculture and Rural Affairs: 广西十三五贫困村名单 - 广西扶贫网. This table includes the latitude and longitude coordinates (WGS1984) of each village, with geocoding services provided by Baidu Maps and coordinate correction performed using GeoSharp software.The second table presents aggregated statistics on the distribution of 4.52 million impoverished individuals and impoverished villages across Guangxi, organized by administrative divisions. The data is sourced from the official website of the Guangxi Zhuang Autonomous Region government.

  15. Data from: Developing a Marine Spatial Plan - a toolkit for the Pacific

    • americansamoa-data.sprep.org
    • pacificdata.org
    • +14more
    pdf
    Updated Apr 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Secretariat of the Pacific Regional Environment Programme (2025). Developing a Marine Spatial Plan - a toolkit for the Pacific [Dataset]. https://americansamoa-data.sprep.org/dataset/developing-marine-spatial-plan-toolkit-pacific
    Explore at:
    pdf(12884311)Available download formats
    Dataset updated
    Apr 2, 2025
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    -199.72264766693 -28.087490311993, -219.12890195847 -7.8851419697265)), -124.34763908386 -11.48863038718, -212.37889766693 -11.48863038718, -140.9413933754 8.0940445985177, POLYGON ((-219.97263908386 -2.0034967616288, Pacific Region
    Description

    This toolkit outlines the basic process of developing a national marine spatial plan. It has been tailored specifically for use by Pacific Island countries based upon lessons learned in Fiji, Solomon Islands, Tonga and Vanuatu.

  16. G

    Geospatial Analytics Market Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Jan 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Geospatial Analytics Market Report [Dataset]. https://www.marketresearchforecast.com/reports/geospatial-analytics-market-1650
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Jan 10, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geospatial Analytics Market size was valued at USD 79.06 USD billion in 2023 and is projected to reach USD 202.74 USD billion by 2032, exhibiting a CAGR of 14.4 % during the forecast period. The growing adoption of location-based technologies and the increasing need for data-driven decision-making in various industries are key factors driving market growth. Geospatial analytics captures, produces and displays GIS (geographic information system)-maps and pictures that may be weather maps, GPS or satellite photos. The geospatial analysis as a tool works with state of art technology in every formats namely; the GPS, sensors that locates, social media, mobile devices, multi of the satellite imagery to produce data visualizations that are facilitating trend-finding in complex relations between people and places as well are the situations' understanding. Visualizations are depicted through the use of maps, graphs, figures, and cartograms that illustrate the entire historical picture as well as a current changing trend. This is why the forecast becomes more confident and the situation is anticipated better. Recent developments include: February 2024: Placer.ai and Esri, a Geographic Information System (GIS) technology provider, partnered to empower customers with enhanced analytics capabilities, integrating consumer behavior analysis. Additionally, the agreement will foster collaborations to unlock further features by synergizing our respective product offerings., December 2023: CKS and Esri India Technologies Pvt Ltd teamed up to introduce the 'MMGEIS' program, focusing on students from 8th grade to undergraduates, to position India as a global leader in geospatial technology through skill development and innovation., December 2023: In collaboration with Bayanat, the UAE Space Agency revealed the initiation of the operational phase of the Geospatial Analytics Platform during its participation in organizing the Space at COP28 initiatives., November 2023: USAID unveiled its inaugural Geospatial Strategy, designed to harness geospatial data and technology for more targeted international program delivery. The strategy foresees a future where geographic methods enhance the effectiveness of USAID's efforts by pinpointing development needs, monitoring program implementation, and evaluating outcomes based on location., May 2023: TomTom International BV, a geolocation technology specialist, expanded its partnership with Alteryx, Inc. Through this partnership, Alteryx will use TomTom’s Maps APIs and location data to integrate spatial data into Alteryx’s products and location insights packages, such as Alteryx Designer., May 2023: Oracle Corporation announced the launch of Oracle Spatial Studio 23.1, available in the Oracle Cloud Infrastructure (OCI) marketplace and for on-premises deployment. Users can browse, explore, and analyze geographic data stored in and managed by Oracle using a no-code mapping tool., May 2023: CAPE Analytics, a property intelligence company, announced an enhanced insurance offering by leveraging Google geospatial data. Google’s geospatial data can help CAPE create appropriate solutions for insurance carriers., February 2023: HERE Global B.V. announced a collaboration with Cognizant, an information technology, services, and consulting company, to offer digital customer experience using location data. In this partnership, Cognizant will utilize the HERE location platform’s real-time traffic data, weather, and road attribute data to develop spatial intelligent solutions for its customers., July 2022: Athenium Analytics, a climate risk analytics company, launched a comprehensive tornado data set on the Esri ArcGIS Marketplace. This offering, which included the last 25 years of tornado insights from Athenium Analytics, would extend its Bronze partner relationship with Esri. . Key drivers for this market are: Advancements in Technologies to Fuel Market Growth. Potential restraints include: Lack of Standardization Coupled with Shortage of Skilled Workforce to Limit Market Growth. Notable trends are: Rise of Web-based GIS Platforms Will Transform Market.

  17. e

    Spatial data set Regional Spatial Planning Programme 2021 Landkreis Vechta

    • data.europa.eu
    wfs, wms
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Landkreis Vechta, Spatial data set Regional Spatial Planning Programme 2021 Landkreis Vechta [Dataset]. https://data.europa.eu/88u/dataset/4fb4d97e-98b7-465a-b7ac-fc3b21132466
    Explore at:
    wfs, wmsAvailable download formats
    Dataset authored and provided by
    Landkreis Vechta
    Area covered
    Vechta
    Description

    Spatial data set of the Plan Regional Spatial Planning Programme 2021 Landkreis Vechta This is a utility service for the aggregation of plan elements with one layer per XPlanung class. That of the last change is the 23.12.2023. The scopes of the change plans are summarized in the Scopes layer.

  18. Geospatial Analytics Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    Updated Apr 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Geospatial Analytics Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Italy, and UK), APAC (China, India, and Japan), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/geospatial-analytics-market-industry-analysis
    Explore at:
    Dataset updated
    Apr 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Germany, Canada, United States, Global
    Description

    Snapshot img

    Geospatial Analytics Market Size 2025-2029

    The geospatial analytics market size is forecast to increase by USD 178.6 billion, at a CAGR of 21.4% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing adoption of geospatial analytics in sectors such as healthcare and insurance. This trend is fueled by the ability of geospatial analytics to provide valuable insights from location-based data, leading to improved operational efficiency and decision-making. Additionally, emerging methods in data collection and generation, including the use of drones and satellite imagery, are expanding the scope and potential of geospatial analytics. However, the market faces challenges, including data privacy and security concerns. With the vast amounts of sensitive location data being collected and analyzed, ensuring its protection is crucial for companies to maintain trust with their customers and avoid regulatory penalties. Navigating these challenges and capitalizing on the opportunities presented by the growing adoption of geospatial analytics requires a strategic approach from industry players. Companies must prioritize data security, invest in advanced analytics technologies, and collaborate with stakeholders to build trust and transparency. By addressing these challenges and leveraging the power of geospatial analytics, businesses can gain a competitive edge and unlock new opportunities in various industries.

    What will be the Size of the Geospatial Analytics Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the increasing demand for location-specific insights across various sectors. Urban planning relies on geospatial optimization and data enrichment to enhance city designs and improve infrastructure. Cloud-based geospatial solutions facilitate real-time data access, enabling location intelligence for public safety and resource management. Spatial data standards ensure interoperability among different systems, while geospatial software and data visualization tools provide valuable insights from satellite imagery and aerial photography. Geospatial services offer data integration, spatial data accuracy, and advanced analytics capabilities, including 3D visualization, route optimization, and data cleansing. Precision agriculture and environmental monitoring leverage geospatial data to optimize resource usage and monitor ecosystem health. Infrastructure management and real estate industries rely on geospatial data for asset tracking and market analysis. Spatial statistics and disaster management applications help mitigate risks and respond effectively to crises. Geospatial data management and quality remain critical as the volume and complexity of data grow. Geospatial modeling and interoperability enable seamless data sharing and collaboration. Sensor networks and geospatial data acquisition technologies expand the reach of geospatial analytics, while AI-powered geospatial analytics offer new opportunities for predictive analysis and automation. The ongoing development of geospatial technologies and applications underscores the market's continuous dynamism, providing valuable insights and solutions for businesses and organizations worldwide.

    How is this Geospatial Analytics Industry segmented?

    The geospatial analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. TechnologyGPSGISRemote sensingOthersEnd-userDefence and securityGovernmentEnvironmental monitoringMining and manufacturingOthersApplicationSurveyingMedicine and public safetyMilitary intelligenceDisaster risk reduction and managementOthersTypeSurface and field analyticsGeovisualizationNetwork and location analyticsOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyItalyUKAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW)

    By Technology Insights

    The gps segment is estimated to witness significant growth during the forecast period.The market encompasses various applications and technologies, including geospatial optimization, data enrichment, location-based services (LBS), spatial data standards, public safety, geospatial software, resource management, location intelligence, geospatial data visualization, geospatial services, data integration, 3D visualization, satellite imagery, remote sensing, GIS platforms, spatial data infrastructure, aerial photography, route optimization, data cleansing, precision agriculture, spatial interpolation, geospatial databases, transportation planning, spatial data accuracy, spatial analysis, map projections, interactive maps, marketing analytics, d

  19. d

    Protected Areas Database of the United States (PAD-US) 3.0 Vector Analysis...

    • catalog.data.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Protected Areas Database of the United States (PAD-US) 3.0 Vector Analysis and Summary Statistics [Dataset]. https://catalog.data.gov/dataset/protected-areas-database-of-the-united-states-pad-us-3-0-vector-analysis-and-summary-stati
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    United States
    Description

    Spatial analysis and statistical summaries of the Protected Areas Database of the United States (PAD-US) provide land managers and decision makers with a general assessment of management intent for biodiversity protection, natural resource management, and recreation access across the nation. The PAD-US 3.0 Combined Fee, Designation, Easement feature class (with Military Lands and Tribal Areas from the Proclamation and Other Planning Boundaries feature class) was modified to remove overlaps, avoiding overestimation in protected area statistics and to support user needs. A Python scripted process ("PADUS3_0_CreateVectorAnalysisFileScript.zip") associated with this data release prioritized overlapping designations (e.g. Wilderness within a National Forest) based upon their relative biodiversity conservation status (e.g. GAP Status Code 1 over 2), public access values (in the order of Closed, Restricted, Open, Unknown), and geodatabase load order (records are deliberately organized in the PAD-US full inventory with fee owned lands loaded before overlapping management designations, and easements). The Vector Analysis File ("PADUS3_0VectorAnalysisFile_ClipCensus.zip") associated item of PAD-US 3.0 Spatial Analysis and Statistics ( https://doi.org/10.5066/P9KLBB5D ) was clipped to the Census state boundary file to define the extent and serve as a common denominator for statistical summaries. Boundaries of interest to stakeholders (State, Department of the Interior Region, Congressional District, County, EcoRegions I-IV, Urban Areas, Landscape Conservation Cooperative) were incorporated into separate geodatabase feature classes to support various data summaries ("PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.zip") and Comma-separated Value (CSV) tables ("PADUS3_0SummaryStatistics_TabularData_CSV.zip") summarizing "PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.zip" are provided as an alternative format and enable users to explore and download summary statistics of interest (Comma-separated Table [CSV], Microsoft Excel Workbook [.XLSX], Portable Document Format [.PDF] Report) from the PAD-US Lands and Inland Water Statistics Dashboard ( https://www.usgs.gov/programs/gap-analysis-project/science/pad-us-statistics ). In addition, a "flattened" version of the PAD-US 3.0 combined file without other extent boundaries ("PADUS3_0VectorAnalysisFile_ClipCensus.zip") allow for other applications that require a representation of overall protection status without overlapping designation boundaries. The "PADUS3_0VectorAnalysis_State_Clip_CENSUS2020" feature class ("PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.gdb") is the source of the PAD-US 3.0 raster files (associated item of PAD-US 3.0 Spatial Analysis and Statistics, https://doi.org/10.5066/P9KLBB5D ). Note, the PAD-US inventory is now considered functionally complete with the vast majority of land protection types represented in some manner, while work continues to maintain updates and improve data quality (see inventory completeness estimates at: http://www.protectedlands.net/data-stewards/ ). In addition, changes in protected area status between versions of the PAD-US may be attributed to improving the completeness and accuracy of the spatial data more than actual management actions or new acquisitions. USGS provides no legal warranty for the use of this data. While PAD-US is the official aggregation of protected areas ( https://www.fgdc.gov/ngda-reports/NGDA_Datasets.html ), agencies are the best source of their lands data.

  20. NPS - Points of Interest (POIs) - Geographic Coordinate System

    • public-nps.opendata.arcgis.com
    • hub.arcgis.com
    • +2more
    Updated Mar 30, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2018). NPS - Points of Interest (POIs) - Geographic Coordinate System [Dataset]. https://public-nps.opendata.arcgis.com/items/da8131936c2442d5a40f08864b0bd060
    Explore at:
    Dataset updated
    Mar 30, 2018
    Dataset authored and provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Description

    The purpose of creating and utilizing a spatial data standard is to consolidate spatial data and integrate the existing feature attribute information into a national database for reporting, planning, analysis and sharing purposes.

    The primary benefit of using a spatial data standard remains the organization and documentation of data to allow users to share spatial data between parks, regions, programs, other federal agencies, and the public, at the national level.

    Ultimately, the point of interest container will go through a formal data standard development process. This will lead to wider use and more comprehensive access to all of our available point of interest data and provide a more integrated approach to point of interest data management across the NPS and at all levels: park, region, program, and national. Until then, the point of interest spatial data container will serve as a pseudo-standard and enable data stewards to begin standardizing point of interest data.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Levine, Ned (2023). CrimeStat III: A Spatial Statistics Program for the Analysis of Crime Incident Locations (Version 3.3), United States, 2010 [Dataset]. http://doi.org/10.3886/ICPSR02824.v1
Organization logo

CrimeStat III: A Spatial Statistics Program for the Analysis of Crime Incident Locations (Version 3.3), United States, 2010

Explore at:
5 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Mar 30, 2023
Dataset provided by
Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
Authors
Levine, Ned
License

https://www.icpsr.umich.edu/web/ICPSR/studies/2824/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/2824/terms

Area covered
United States
Description

CrimeStat III is a spatial statistics program for the analysis of crime incident locations, developed by Ned Levine and Associates under the direction of Ned Levine, PhD, that was funded by grants from the National Institute of Justice (grants 1997-IJ-CX-0040, 1999-IJ-CX-0044, 2002-IJ-CX-0007, and 2005-IJ-CX-K037). The program is Windows-based and interfaces with most desktop GIS programs. The purpose is to provide supplemental statistical tools to aid law enforcement agencies and criminal justice researchers in their crime mapping efforts. CrimeStat is being used by many police departments around the country as well as by criminal justice and other researchers. The program inputs incident locations (e.g., robbery locations) in 'dbf', 'shp', ASCII or ODBC-compliant formats using either spherical or projected coordinates. It calculates various spatial statistics and writes graphical objects to ArcGIS, MapInfo, Surfer for Windows, and other GIS packages. CrimeStat is organized into five sections: Data Setup Primary file - this is a file of incident or point locations with X and Y coordinates. The coordinate system can be either spherical (lat/lon) or projected. Intensity and weight values are allowed. Each incident can have an associated time value. Secondary file - this is an associated file of incident or point locations with X and Y coordinates. The coordinate system has to be the same as the primary file. Intensity and weight values are allowed. The secondary file is used for comparison with the primary file in the risk-adjusted nearest neighbor clustering routine and the duel kernel interpolation. Reference file - this is a grid file that overlays the study area. Normally, it is a regular grid though irregular ones can be imported. CrimeStat can generate the grid if given the X and Y coordinates for the lower-left and upper-right corners. Measurement parameters - This page identifies the type of distance measurement (direct, indirect or network) to be used and specifies parameters for the area of the study region and the length of the street network. CrimeStat III has the ability to utilize a network for linking points. Each segment can be weighted by travel time, travel speed, travel cost or simple distance. This allows the interaction between points to be estimated more realistically. Spatial Description Spatial distribution - statistics for describing the spatial distribution of incidents, such as the mean center, center of minimum distance, standard deviational ellipse, the convex hull, or directional mean. Spatial autocorrelation - statistics for describing the amount of spatial autocorrelation between zones, including general spatial autocorrelation indices - Moran's I , Geary's C, and the Getis-Ord General G, and correlograms that calculate spatial autocorrelation for different distance separations - the Moran, Geary, Getis-Ord correlograms. Several of these routines can simulate confidence intervals with a Monte Carlo simulation. Distance analysis I - statistics for describing properties of distances between incidents including nearest neighbor analysis, linear nearest neighbor analysis, and Ripley's K statistic. There is also a routine that assigns the primary points to the secondary points, either on the basis of nearest neighbor or point-in-polygon, and then sums the results by the secondary point values. Distance analysis II - calculates matrices representing the distance between points for the primary file, for the distance between the primary and secondary points, and for the distance between either the primary or secondary file and the grid. 'Hot spot' analysis I - routines for conducting 'hot spot' analysis including the mode, the fuzzy mode, hierarchical nearest neighbor clustering, and risk-adjusted nearest neighbor hierarchical clustering. The hierarchical nearest neighbor hot spots can be output as ellipses or convex hulls. 'Hot spot' analysis II - more routines for conducting hot spot analysis including the Spatial and Temporal Analysis of Crime (STAC), K-means clustering, Anselin's local Moran, and the Getis-Ord local G statistics. The STAC and K-means hot spots can be output as ellipses or convex hulls. All of these routines can simulate confidence intervals with a Monte Carlo simulation. Spatial Modeling Interpolation I - a single-variable kernel density estimation routine for producin

Search
Clear search
Close search
Google apps
Main menu