26 datasets found
  1. h

    ct-of-the-spine-scoliosis

    • huggingface.co
    Updated Oct 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Training Data (2023). ct-of-the-spine-scoliosis [Dataset]. https://huggingface.co/datasets/TrainingDataPro/ct-of-the-spine-scoliosis
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 26, 2023
    Authors
    Training Data
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Computed Tomography (CT) of the Spine - Scoliosis

    The dataset consists of CT spine scans of people with scoliosis. images that aid in the assessment and diagnosis of scoliosis. Each scan consists of multiple slices capturing various sections of the spine, including the cervical (neck), thoracic (upper back), and lumbar (lower back) regions. The data are presented in 2 different formats: .jpg and .dcm. The dataset of CT spine scans is valuable for research in automated scoliosis… See the full description on the dataset page: https://huggingface.co/datasets/TrainingDataPro/ct-of-the-spine-scoliosis.

  2. A multi-modal 3D medical image database for ultrasound-guided spinal surgery...

    • zenodo.org
    zip
    Updated May 26, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nima Masoumi; Clyde Belasso; Yiming Xiao; Hassan Rivaz; Nima Masoumi; Clyde Belasso; Yiming Xiao; Hassan Rivaz (2021). A multi-modal 3D medical image database for ultrasound-guided spinal surgery [Dataset]. http://doi.org/10.5281/zenodo.2483402
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 26, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Nima Masoumi; Clyde Belasso; Yiming Xiao; Hassan Rivaz; Nima Masoumi; Clyde Belasso; Yiming Xiao; Hassan Rivaz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Three different datasets of vertebrae with corresponding computed tomography (CT) and ultrasound (US) images are presented. In the first dataset, three human patients lumbar vertebrae are presented and the US images are simulated from their CT images. The second dataset includes corresponding CT, US, and simulated US images of a phantom made from post-mortem canine cervical and thoracic vertebrae. The last phantom consists of the CT, US, and simulated US images of a phantom made from a post-mortem lamb lumbar vertebrae. For each of the two latter datasets, we also provide 15 landmark pairs of matching structures between the CT and US images and performed fiducial registration to acquire a silver standard for assessing image registration.

    The datasets can be used to test CT-US image registration techniques and to validate techniques that simulate US from CT.

  3. m

    North America Spinal Surgery Market - Size, Growth & Statistics, Forecast

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Jan 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). North America Spinal Surgery Market - Size, Growth & Statistics, Forecast [Dataset]. https://www.mordorintelligence.com/industry-reports/north-america-spinal-surgery-market-industry
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jan 30, 2025
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    North America
    Description

    The North America Spinal Surgery Market Report is Segmented by Device Type (Spinal Decompression (Corpectomy, Discectomy, Facetectomy, Foraminotomy, and Laminotomy), Spinal Fusion (Cervical Fusion, Interbody Fusion, Thoracolumbar Fusion, and Others), Fracture Repair Devices, Arthroplasty Devices and Non-Fusion Devices), and Country (United States, Canada, Mexico). The Report Offers the Value (in USD) for the Above Segments.

  4. h

    lumbar-spine-mri-dataset

    • huggingface.co
    Updated Feb 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Training Data (2024). lumbar-spine-mri-dataset [Dataset]. https://huggingface.co/datasets/TrainingDataPro/lumbar-spine-mri-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 21, 2024
    Authors
    Training Data
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Spine MRI Dataset, Anomaly Detection & Segmentation

    The dataset consists of .dcm files containing MRI scans of the spine of the person with several dystrophic changes, such as degeneration of discs, osteophytes, dorsal disk extrusion, spondylitis and asymmetry of B2 segments of vertebral arteries. The images are labeled by the doctors and accompanied by report in PDF-format. The dataset includes 5 studies, made from the different angles which provide a comprehensive understanding… See the full description on the dataset page: https://huggingface.co/datasets/TrainingDataPro/lumbar-spine-mri-dataset.

  5. f

    Association between clustered subgroup membership at baseline and failing to...

    • plos.figshare.com
    xls
    Updated Jun 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zachary D. Rethorn; Alessandra N. Garcia; Chad E. Cook; Oren N. Gottfried (2023). Association between clustered subgroup membership at baseline and failing to achieve clinically meaningful improvement on outcome at 3 months. [Dataset]. http://doi.org/10.1371/journal.pone.0241868.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Zachary D. Rethorn; Alessandra N. Garcia; Chad E. Cook; Oren N. Gottfried
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Association between clustered subgroup membership at baseline and failing to achieve clinically meaningful improvement on outcome at 3 months.

  6. Dynamic Spinal Tethering Systems Market by Product, Capacity, Application,...

    • futuremarketinsights.com
    html, pdf
    Updated Jul 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Future Market Insights (2022). Dynamic Spinal Tethering Systems Market by Product, Capacity, Application, Distribution Channel & Region - Forecast 2022 to 2032 [Dataset]. https://www.futuremarketinsights.com/reports/dynamic-spinal-tethering-systems-market
    Explore at:
    pdf, htmlAvailable download formats
    Dataset updated
    Jul 7, 2022
    Dataset authored and provided by
    Future Market Insights
    License

    https://www.futuremarketinsights.com/privacy-policyhttps://www.futuremarketinsights.com/privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    Worldwide
    Description

    [250 Pages Report] The dynamic spinal tethering system market is likely to record a CAGR of 10% during the forecast period, up from US$ 59.7 Mn in 2022 to reach a valuation of US$ 154.85 Mn by 2032.

    AttributesDetails
    Dynamic Spinal Tethering System Market Size in 2022US$ 59.7 Mn
    Dynamic Spinal Tethering System Market Projected Size in 2032US$ 154.85 Mn
    Dynamic Spinal Tethering System Market Value-Based CAGR (2022-2032)10%

    Scope of Report

    Report AttributeDetails
    Growth rateCAGR of 10% from 2022 to 2032
    Base year for estimation2021
    Historical data2015 to 2020
    Forecast period2022 to 2032
    Quantitative unitsRevenue in USD million and CAGR from 2022 to 2032
    Report coverageRevenue forecast, volume forecast, company ranking, competitive landscape, growth factors, and trends, Pricing Analysis,
    Segments coveredApplication, end user, region
    Regional scopeNorth America; Western Europe, Eastern Europe, Middle East, Africa, ASEAN, South Asia, Rest of Asia, Australia and New Zealand
    Country scopeUSA; Canada; Mexico; Germany; UK; France; Italy; Spain; Russia; Belgium; Poland; Czech Republic; China; India; Japan; Australia; Brazil; Argentina; Colombia; Saudi Arabia; UAE; Iran; South Africa
    Key companies profiledINTUITIVEX, Medronic, Alphatec Spine, Inc., Arthrex, Camber Spine, DePuy Synthes, Exactech, Inc., Globus Medical Inc.
    Customization scopeFree report customization (equivalent to up to 8 analysts working days) with purchase. Addition or alteration to country, regional & segment scope.
    Pricing and purchase optionsAvail customized purchase options to meet your exact research needs.
  7. USA Spinal Surgery Devices Market Size & Share Analysis - Industry Research...

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Jun 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2023). USA Spinal Surgery Devices Market Size & Share Analysis - Industry Research Report - Growth Trends [Dataset]. https://www.mordorintelligence.com/industry-reports/usa-spinal-surgery-devices-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jun 9, 2023
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    United States
    Description

    The USA Spinal Surgery Devices market is segmented by Device Type (Spinal Decompression, Spinal Fusion, Arthroplasty Devices, Fracture Repair Devices, Non-spinal Fusion Devices)

  8. h

    spinal-cord-dataset

    • huggingface.co
    Updated Feb 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Training Data (2024). spinal-cord-dataset [Dataset]. https://huggingface.co/datasets/TrainingDataPro/spinal-cord-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 21, 2024
    Authors
    Training Data
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Spine MRI Dataset, Anomaly Detection & Segmentation

    The dataset consists of .dcm files containing MRI scans of the spine of the person with several dystrophic changes, such as osteochondrosis, spondyloarthrosis, hemangioma, physiological lordosis smoothed, osteophytes and aggravated defects. The images are labeled by the doctors and accompanied by report in PDF-format. The dataset includes 9 studies, made from the different angles which provide a comprehensive understanding of a… See the full description on the dataset page: https://huggingface.co/datasets/TrainingDataPro/spinal-cord-dataset.

  9. h

    SPIDER

    • huggingface.co
    Updated Feb 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chris Oswald (2024). SPIDER [Dataset]. https://huggingface.co/datasets/cdoswald/SPIDER
    Explore at:
    Dataset updated
    Feb 24, 2024
    Authors
    Chris Oswald
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a large publicly available multi-center lumbar spine magnetic resonance imaging (MRI) dataset with reference segmentations of vertebrae, intervertebral discs (IVDs), and spinal canal. The dataset includes 447 sagittal T1 and T2 MRI series from 218 studies of 218 patients with a history of low back pain. The data was collected from four different hospitals. There is an additional hidden test set, not available here, used in the accompanying SPIDER challenge on spider.grand-challenge.org. We share this data to encourage wider participation and collaboration in the field of spine segmentation, and ultimately improve the diagnostic value of lumbar spine MRI.

    This file also provides the biological sex for all patients and the age for the patients for which this was available. It also includes a number of scanner and acquisition parameters for each individual MRI study. The dataset also comes with radiological gradings found in a separate file for the following degenerative changes:

    1.    Modic changes (type I, II or III)

    2.    Upper and lower endplate changes / Schmorl nodes (binary)

    3.    Spondylolisthesis (binary)

    4.    Disc herniation (binary)

    5.    Disc narrowing (binary)

    6.    Disc bulging (binary)

    7.    Pfirrman grade (grade 1 to 5).

    All radiological gradings are provided per IVD level.

    Repository: https://zenodo.org/records/10159290 Paper: https://www.nature.com/articles/s41597-024-03090-w

  10. Number of outpatient orthopedic and spine procedures U.S. 2017

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of outpatient orthopedic and spine procedures U.S. 2017 [Dataset]. https://www.statista.com/statistics/961558/number-of-outpatient-orthopedic-and-spine-procedures-us/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2017
    Area covered
    United States
    Description

    This statistic depicts the number of outpatient orthopedic and spinal procedures in the U.S. in 2017, by procedure. According to the data, there were ****** primary shoulder replacement procedures in 2017.

  11. 10-year change in outpatient orthopedic and spine procedures U.S. 2017

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). 10-year change in outpatient orthopedic and spine procedures U.S. 2017 [Dataset]. https://www.statista.com/statistics/961539/change-in-outpatient-orthopedic-and-spine-procedures-us/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    This statistic depicts the 10-year change in outpatient orthopedic and spinal procedures in the U.S. as of 2017, by procedure. According to the data, primary shoulder replacement procedures had increased by 879 percent over the preceding 10 years.

  12. Acute spine and sports therapy llc Import Company US

    • seair.co.in
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seair Exim, Acute spine and sports therapy llc Import Company US [Dataset]. https://www.seair.co.in
    Explore at:
    .bin, .xml, .csv, .xlsAvailable download formats
    Dataset provided by
    Seair Exim Solutions
    Authors
    Seair Exim
    Area covered
    United States
    Description

    Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.

  13. RSNA Cervical Spine Fracture Detection (RSNA-CSF) Dataset

    • registry.opendata.aws
    Updated Aug 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Radiological Society of North America (2024). RSNA Cervical Spine Fracture Detection (RSNA-CSF) Dataset [Dataset]. https://registry.opendata.aws/rsna-cervical-spine-fracture-detection/
    Explore at:
    Dataset updated
    Aug 2, 2024
    Dataset provided by
    Radiological Society of North America
    Description

    Over 1.5 million spine fractures occur annually in the United States alone resulting in over 17,730 spinal cord injuries annually. The most common site of spine fracture is the cervical spine. There has been a rise in the incidence of spinal fractures in the elderly and in this population, fractures can be more difficult to detect on imaging due to degenerative disease and osteoporosis. Imaging diagnosis of adult spine fractures is now almost exclusively performed with computed tomography (CT). Quickly detecting and determining the location of any vertebral fractures is essential to prevent neurologic deterioration and paralysis after trauma. RSNA has teamed with the American Society of Neuroradiology (ASNR) and the American Society of Spine Radiology (ASSR) to create this ground truth dataset, collecting imaging data from twelve sites on six continents, including approximately 2,000 CT studies. Spine radiology specialists from the ASNR and ASSR provided expert image level annotations these studies to indicate the presence, vertebral level and location of any cervical spine fractures.

  14. Atlanta spine Import Company US

    • seair.co.in
    Updated Sep 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seair Exim (2018). Atlanta spine Import Company US [Dataset]. https://www.seair.co.in
    Explore at:
    .bin, .xml, .csv, .xlsAvailable download formats
    Dataset updated
    Sep 15, 2018
    Dataset provided by
    Seair Exim Solutions
    Authors
    Seair Exim
    Area covered
    United States
    Description

    Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.

  15. Minimally Invasive Spine Surgery Market Analysis, Size, and Forecast...

    • technavio.com
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). Minimally Invasive Spine Surgery Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Italy, and UK), and APAC (China, India, Japan, and South Korea), Rest of World [Dataset]. https://www.technavio.com/report/minimally-invasive-spine-surgery-market-industry-analysis
    Explore at:
    Dataset updated
    Dec 15, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Europe, Germany, United Kingdom, France, United States, Global
    Description

    Snapshot img

    Minimally Invasive Spine Surgery Market Size 2025-2029

    The minimally invasive spine surgery market size is forecast to increase by USD 1.62 billion at a CAGR of 8.4% between 2024 and 2029.

    The Minimally Invasive Spine Surgery (MISS) market is experiencing significant growth, driven primarily by the increasing incidence of spinal disorders worldwide. Another key driver in the MISS market is the integration of artificial intelligence (AI) and robotics in surgical planning and execution. These technologies enable surgeons to perform procedures more accurately and precisely, reducing the risk of complications and improving patient outcomes.
    However, the high cost of MISS procedures remains a significant challenge for both patients and healthcare providers. Despite this, the market presents numerous opportunities for companies that can offer cost-effective solutions while maintaining the clinical effectiveness of minimally invasive procedures. Companies that can successfully navigate this complex landscape by addressing the cost issue and leveraging technological advancements will be well-positioned to capitalize on the growing demand for MISS procedures.
    

    What will be the Size of the Minimally Invasive Spine Surgery Market during the forecast period?

    Request Free Sample

    The market is witnessing significant growth due to the increasing prevalence of neurological disorders, such as spinal stenosis, and the rising demand for pain management and functional rehabilitation. Orthopedic surgeons are increasingly adopting minimally invasive techniques, including robotic surgery, to improve patient outcomes and reduce complication rates, such as blood loss and surgical workflow disruptions. Spinal implants play a crucial role in minimally invasive procedures, with the use of biocompatible materials ensuring patient safety and promoting value-based care. Advanced imaging and big data analytics enable precision surgery and data-driven decision making, while evidence-based medicine and clinical practice guidelines ensure optimal patient care.
    Insurance coverage for minimally invasive spine surgery is a critical factor driving market growth, with physical therapists and pain management specialists playing essential roles in post-operative care. Minimally invasive instrumentation, such as vertebral augmentation and spinal decompression, are key areas of innovation, along with emerging technologies like artificial intelligence, 3D modeling, and remote monitoring. Functional assessment, virtual reality simulation, and spine stabilization are other areas of focus, with personalized medicine and value-based care becoming increasingly important in the US healthcare landscape.
    In summary, the market is experiencing robust growth due to the increasing prevalence of neurological disorders, the demand for pain management and functional rehabilitation, and the adoption of advanced technologies and techniques. Market dynamics, including patient safety, health economics, and value-based care, are key drivers of innovation and growth in this sector.
    

    How is this Minimally Invasive Spine Surgery Industry segmented?

    The minimally invasive spine surgery industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Application
    
      Fusion surgery
      Non-fusion surgery
    
    
    End-user
    
      Hospitals and clinics
      Ambulatory surgical centers (ASCs)
    
    
    Product Type
    
      Implants & instrumentation
      Biomaterials
      Implants & instrumentation
      Biomaterials
    
    
    Treatment
    
      Lumbar Disc Herniation
      Thoracic Disc Herniation
      Spinal Stenosis
      Degenerative Spinal Disease
      Others
      Lumbar Disc Herniation
      Thoracic Disc Herniation
      Spinal Stenosis
      Degenerative Spinal Disease
      Others
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        Italy
        UK
    
    
      APAC
    
        China
        India
        Japan
        South Korea
    

    By Application Insights

    The fusion surgery segment is estimated to witness significant growth during the forecast period.

    The fusion surgery segment is a significant area of focus and innovation in The market. Orthopedic surgeons frequently employ fusion surgeries to address various spinal pathologies, including degenerative disc disease, spinal stenosis, and spondylolisthesis, with the primary objectives of restoring stability, alleviating pain, and facilitating the fusion of affected spinal segments. The integration of minimally invasive techniques in fusion surgeries has revolutionized the field, driving the demand for advanced spine surgery machines designed to support these precise and intricate procedures. Neurological disorders and pain management are critical considerations in the context of spinal interventions, with functional rehabilitation and patient

  16. K

    A large, paired dataset of robotic and handheld lumbar spine ultrasound with...

    • rdr.kuleuven.be
    Updated Jul 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicola Cavalcanti; Nicola Cavalcanti; Ruixuan Li; Ruixuan Li; Laura Arango; Ayoob Davoodi; Ayoob Davoodi; Kaat Van Assche; Kaat Van Assche; Yunke Ao; Aidana Massalimova; Aidana Massalimova; Mehrdad Saleh; Lukas Zingg; Tobias Götschi; Gianni Borghesan; Gianni Borghesan; Christoph J. Laux; Reto Sutter; Reto Sutter; Mazda Farshad; Mazda Farshad; Matthias Tummers; Matthias Tummers; Philipp Fürnstahl; Philipp Fürnstahl; Emmanuel Vander Poorten; Emmanuel Vander Poorten; Fabio Carrillo; Fabio Carrillo; Laura Arango; Yunke Ao; Mehrdad Saleh; Lukas Zingg; Tobias Götschi; Christoph J. Laux (2025). A large, paired dataset of robotic and handheld lumbar spine ultrasound with ground truth CT benchmarking. [Dataset]. http://doi.org/10.48804/3XPCAE
    Explore at:
    zip(1547553733), zip(307027072), zip(358027292), zip(993718164), zip(967568745), zip(950169917), zip(591362367), zip(850872229), zip(65072931), zip(1135617429), zip(1227918852), zip(16108256), zip(1239980946), zip(621110766), zip(1237332402), zip(1545485535), zip(917126990), zip(2019076883), zip(937558219), zip(1156087347), zip(18583861), zip(1119035028), zip(927805311), zip(1104679408), zip(842490929), zip(603808877), zip(933012970), zip(829014961), zip(961085577), zip(417324008), zip(645328573), zip(17476361), zip(636133415), zip(814645954), zip(952611534), zip(13980373), zip(368629531), zip(622995078), zip(973420035), zip(943673247), zip(1711277206), zip(892961528), zip(960969167), zip(874690393), zip(387431130), zip(410608347), zip(397273255), zip(16443610), zip(1171112761), zip(1168591237), zip(1344243412), zip(801610838), zip(82763949), zip(1108822471), zip(1511489857), zip(844169979), zip(605382326), zip(853834537), zip(293400829), zip(1533028434), zip(846591821), zip(1190187133), zip(1013161162), zip(1502967505), zip(1077992096), zip(1150097350), zip(803085542), zip(943286110), zip(425548705), zip(817657362), zip(1675670157), zip(2055639936), zip(984199), zip(2420255), zip(2911568), zip(786518), zip(2187384), zip(952444606), zip(850587616), zip(1334549915), zip(592745593), zip(1126011699), zip(632609683), zip(647371419), zip(883159398), zip(1880641527), zip(129954922), zip(590838753), zip(80330499), zip(448329785), zip(847284861), zip(1524510182), zip(2093040194), zip(1261275527), zip(924606691), zip(394023800), zip(2061846122), zip(113948402), zip(400819152), zip(1277706460), zip(455869658), zip(1477474779), zip(412271025), zip(1137134510), zip(1224577300), zip(411411033), zip(810719813), zip(418938275), zip(207467463), zip(883732139), zip(1092654387), zip(794115837), zip(713551556), zip(751071790), zip(1057687733), zip(988197613), zip(914015090), zip(1027703455), zip(1686843113), zip(655577791), zip(19785657), zip(109165246), zip(993628342), zip(1013243590), zip(866661124), zip(651453336), zip(1428340126), zip(14343505), zip(934537746), zip(13894482), zip(17586175), zip(1162464696), zip(113475216), zip(50805281), zip(1895731858), zip(1867038069), zip(1119652273), zip(673966960), zip(13682730), zip(1242479891), zip(14323537), zip(398750735), zip(1215388428), zip(1125269724), zip(596992478), zip(400755539), zip(792068906), zip(706214559), zip(631530878), zip(702157807), zip(953988600), zip(690140869), zip(1544434485), zip(1335290038), zip(1042686465), zip(2184489464), zip(432344920), zip(602641108), zip(14944563), zip(622281296), zip(814769499), zip(1194150148), zip(1331114437), zip(15631937), zip(174182023), zip(923275774), zip(643007618), zip(777966974), zip(194487276), zip(1644738241), zip(805404082), zip(15290676), zip(871409741), zip(560168563), zip(619825811), zip(898328427), zip(1106488847), zip(659990062), zip(860657064), zip(894874008), zip(132377270), zip(618223249), zip(655347492), zip(1407511995), zip(947144152), zip(925137875), zip(1370841155), zip(14208017), zip(634268197), zip(944538484), zip(537011795), zip(466849621), zip(899591159), zip(433030134), zip(745542454), zip(17320136), zip(507692891), zip(1151123942), zip(1338424550), zip(2058680959), zip(713111051), zip(624824112), zip(1906815378), zip(549356280), zip(444157413), zip(399603444), zip(803217802), zip(607775993), zip(902369280), zip(1156960307), zip(799568627), zip(359037668), zip(1192340257), zip(1021460620), zip(544748313), zip(412980287), zip(20417159), zip(1125834397), zip(784530430), zip(958505641), zip(195297280), zip(1384469836), zip(373634553), zip(1915136317), zip(752164781), zip(864873623), zip(387282249), zip(533316602), zip(943362179), zip(1017492385), zip(1030061919), zip(1110531831), zip(528107861), zip(1385317919), zip(174371438), zip(873542540), zip(115218655), zip(1319170890), zip(365515606), zip(866494178), zip(795234832), zip(1159106935), zip(1470850880), zip(1058626416), zip(766301733), zip(752377137), zip(380545655), zip(3184639299), zip(1105567234), zip(1373956525), zip(2111589371), zip(1575262277), zip(621007553), zip(1198622125), zip(629304505), zip(1249229392), zip(1037497832), zip(644408533), zip(13988470), zip(604802301), zip(116946442), zip(765436256), zip(1252569048), zip(532262633), zip(868620121), zip(542037699), zip(89625988), zip(116333161), zip(875065709), zip(1175076552), zip(1258982753), zip(391604541), zip(1262580520), zip(471968655), zip(977577709), zip(348302434), zip(613835750), zip(1261440550), zip(408784181), zip(1814165010), zip(605178799), zip(917668757), zip(665565199), zip(749548214), zip(1318113898), zip(1194641406), zip(566116041), zip(764797998), zip(1060431336), zip(497891158), zip(2890436666), zip(1072890963), zip(625827640), zip(3004398), zip(2520237), zip(3441491), zip(2679309858), zip(341632819), zip(914891370), zip(2077031642), zip(1629047275), zip(2689161859), zip(621324183), zip(541178511), zip(1550023829), zip(14209859), zip(367664669), zip(610421193), zip(1029537281), zip(293393427), zip(743395846), zip(1547199327), zip(977348109), zip(1364074057), zip(760911207), zip(1303996238), zip(1016634887), zip(11551803), zip(845430006), zip(2266913018), zip(119884742), zip(1016141558), zip(430734882), zip(1186280696), zip(1153192211), zip(787984691), zip(1939052477), zip(597678219), zip(1512157538), zip(1401590853), zip(654267061), zip(1132401970), zip(873948143), zip(3094118678), zip(591803910), zip(2165745211), zip(1688666858), zip(883165231), zip(77961126), zip(107723067), zip(972983378), zip(302280096), zip(370578852), zip(1109370276), zip(327682445), zip(973492054), zip(1428700674), zip(92069842), zip(526842778), zip(934419604), zip(757513019), zip(1113837993), zip(15070090), zip(660199561), zip(429743432), zip(736718379), zip(560511222), zip(763582193), zip(2984562321), zip(512642342), zip(582925765), zip(684305744), zip(312354189), zip(604722052), zip(393670747), zip(1467988978), zip(888896251), zip(528584742), zip(537327817), zip(1170279217), zip(1143928345), zip(509166672), zip(387721660), zip(744426374), zip(1123410407), zip(507131544), zip(17141717), zip(819508600), zip(801228941), zip(413659811), zip(1003861596), zip(17562559), zip(1149164738), zip(731603776), zip(1183006786), zip(119393727), zip(15187287), zip(1375273926), zip(17255325), zip(634088912), zip(329320533), zip(16029349), zip(884224128), zip(21234246), zip(736182489), zip(484516073), zip(1561678421), zip(2200460021), zip(387559192), zip(1414794478), zip(974147259), zip(798736383), zip(457792289), zip(912053791), zip(831768767), zip(807451764), zip(1629077318), zip(1185615388), zip(16719070), zip(919782859), zip(654383679), zip(1105706741), zip(414625678), zip(1497486847), zip(1547827198), zip(14312829), zip(13081601), zip(1661184267), zip(151303935), zip(622215680), zip(15060839), zip(1035703228), zip(706571866), zip(960110667), zip(726518244), zip(642125739), zip(341026866), zip(922695265), zip(577277274), zip(2636117673), zip(761744076), zip(1224041038), text/comma-separated-values(1688), zip(2120889749), zip(15267735), zip(1046601876), zip(864828868), zip(917498913), zip(14073912), zip(1116420287), zip(2868016879), zip(427951168), zip(874767916), zip(453705728), zip(1547356057), zip(925030296), zip(1601263705), zip(413568032), zip(957579161), zip(1248073837), zip(16976243), zip(1246006237), zip(834325952), zip(692667108), zip(1601976142), zip(889453813), zip(1018538321), zip(420490536), zip(447706186), zip(602127744), zip(1037587273), zip(1499525107), zip(1168477852), zip(1650150032), zip(2514299450), zip(1039265644), zip(1044538143), zip(722976498), zip(748260667), zip(1411319530), zip(1736160479), zip(1250116502), zip(1114401695), zip(587637614), zip(1174294108), zip(13924057), zip(931075347), zip(17093892), zip(872176342), zip(108964439), zip(1037633553), zip(813587175), zip(1830320734), zip(1998695269), zip(1028133679), zip(613564938), zip(1261580807), zip(1115417630), zip(1561765351), zip(1300408989), zip(624734007), zip(1502083793), zip(653195310), zip(778606495), zip(46412138), zip(644533970), zip(1780882398), zip(116962238), zip(1654550), zip(2913795), zip(1167323), zip(2495954), zip(2017142059), zip(1832412), zip(362915324), zip(394036138), zip(356261354), text/comma-separated-values(60811), zip(427535782), zip(12782475), text/comma-separated-values(48545), zip(374535834), zip(381463119), zip(342695392), zip(2028227), zip(1505773), zip(1675190), zip(2919532088), zip(1108885607), zip(102105935), zip(366662448), zip(681607807), zip(1282229019), zip(21770860), zip(817469960), zip(597884065), zip(806319750), zip(378144499), zip(989186846), zip(1209357538), zip(14809492), zip(1170418598), zip(1080244955), zip(232080638), zip(799619948), zip(862265280), zip(563286241), zip(1487431400), zip(796075047), zip(506449149), zip(681100603), zip(767553095), zip(1222584436), zip(1018616733), zip(657065204), zip(1688988069), zip(527106831), zip(845577165), zip(944267226), zip(1079444866), zip(1428330798), zip(1163954884), zip(433949493), zip(1228521508), zip(1012760334), zip(600373253), zip(2077823465), zip(641497696), zip(685066101), zip(981144622), zip(1015935592), zip(391094566), zip(1507217128), zip(862278137), zip(512084127), zip(969971918), zip(707171924), zip(871891701), zip(1520907368), zip(893396743), zip(15857654), zip(811866018), zip(15742902), zip(17332817), zip(419069604), zip(636786451), zip(231351732), zip(1122103106), zip(574946967), zip(1603839289), zip(14458057), zip(336045900), zip(15756324), zip(1425761153), zip(257673434), zip(841134799), zip(435211457), zip(716857968), zip(416249414), zip(13140110), zip(1188440946), zip(916156168), zip(1937184847), zip(998437930), zip(719517858), zip(956246318), zip(630611997), zip(399617641), zip(17710342), zip(400103701), zip(1144764904), zip(806334709), zip(936051604), zip(15838010), zip(752442440), zip(671628889), zip(1069516672), zip(605769346), zip(475467455), zip(455082800), zip(1131204245), zip(13859994), zip(12768977), zip(15087169), zip(891669293), zip(2243440295), zip(18482166), zip(135247178), zip(380510980), zip(347852474), zip(1302144468), zip(963877764), zip(404230717), zip(842408214), zip(1299648390), zip(706352203), zip(369823591), zip(2058347405), zip(689203626), zip(631177904), zip(348930014), zip(920204770), zip(236655128), zip(1441033834), zip(561532), zip(620008299), zip(1649955289), zip(383549229), zip(615198995), zip(565700324), zip(1122987264), zip(3267664514), zip(1478154068), zip(584876935), zip(415163451), zip(13066656), zip(1499372152), zip(917874894), zip(429728914), zip(661312122), zip(1145242445), zip(2038669689), zip(586551129), zip(433919318), zip(522912904), zip(1571091575), zip(1028664031), zip(786941429), zip(904239419), zip(14674654), zip(2884427003), zip(1310036469), zip(950479794), zip(791130784), zip(1179268357), zip(504863269), zip(69409052), zip(441253020), zip(14942607), zip(517542863), zip(23235773), zip(385628759), zip(957140768), zip(1297074278), zip(874524794), zip(373953452), zip(311956468), zip(2102275477), zip(18774547), zip(853217768), zip(536066636), zip(330824393), zip(1299058802), zip(988339308), zip(908706753), zip(16186365), zip(1397430646), zip(15604467), zip(15736193), zip(1972952033), zip(17324910), zip(17058547), zip(1327047262), zip(407942380), zip(523080516), zip(1637377925), zip(736723613), zip(893744967), zip(1250579398), zip(500409184), zip(1174002882), zip(1904661629), zip(667923128), zip(871187747), zip(2052297880), zip(1299529823), zip(803432613), zip(932041026), zip(447393801), zip(376234695), zip(684671851), zip(594875762), zip(1069470447), zip(2403033908), zip(617734484), zip(1245455427), zip(753216489), zip(1189455107), zip(682071016), zip(1129041007), zip(2130226622), zip(1145116487), zip(967160004), zip(407786659), zip(1574827563), zip(376298967), zip(692435598), zip(1003303799), zip(387261253), zip(1349076803), zip(506586415), zip(1204360334), zip(1409863396), zip(1017859049), zip(1240988574), zip(634464294), zip(362761007), zip(783891902), zip(375682025), zip(1084346057), zip(12994556), zip(1068667127), zip(1269840034), zip(1261463799), zip(293393633), zip(911917558), zip(399441078), zip(665543159), zip(860495749), zip(874748008), zip(2062966879), zip(312382554), txt(3482), zip(513941296), zip(621890384), zip(18318843), zip(942234690), zip(455608907), zip(1384738148), zip(12548424), zip(969984259), zip(4005138), zip(1577127), zip(354284380), zip(415388708)Available download formats
    Dataset updated
    Jul 1, 2025
    Dataset provided by
    KU Leuven RDR
    Authors
    Nicola Cavalcanti; Nicola Cavalcanti; Ruixuan Li; Ruixuan Li; Laura Arango; Ayoob Davoodi; Ayoob Davoodi; Kaat Van Assche; Kaat Van Assche; Yunke Ao; Aidana Massalimova; Aidana Massalimova; Mehrdad Saleh; Lukas Zingg; Tobias Götschi; Gianni Borghesan; Gianni Borghesan; Christoph J. Laux; Reto Sutter; Reto Sutter; Mazda Farshad; Mazda Farshad; Matthias Tummers; Matthias Tummers; Philipp Fürnstahl; Philipp Fürnstahl; Emmanuel Vander Poorten; Emmanuel Vander Poorten; Fabio Carrillo; Fabio Carrillo; Laura Arango; Yunke Ao; Mehrdad Saleh; Lukas Zingg; Tobias Götschi; Christoph J. Laux
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Dataset funded by
    European Union’s Horizon 2020 research and innovation programme
    Description

    Musculoskeletal disorders present significant health and economic challenges on a global scale. Current intraoperative imaging techniques, including computed tomography (CT) and radiography, involve high radiation exposure and limited soft tissue visualization. Ultrasound (US) offers a non-invasive, real-time alternative but is highly observer-dependent and underutilized intraoperatively. US enhanced by artificial intelligence shows high potential for observer-independent pattern recognition and robot-assisted applications in orthopedics. Given the limited availability of in-vivo imaging data, we introduce a comprehensive dataset from a comparative collection of handheld US (HUS) and robot-assisted ultrasound (RUS) lumbar spine imaging in 63 healthy volunteers. This dataset includes demographic data, paired CT, HUS, RUS imaging, synchronized tracking data for HUS and RUS, and 3D-CT-segmentations. It establishes a robust baseline for machine learning algorithms by focusing on healthy individuals, circumventing the limitations of simulations and pathological anatomy. To our knowledge, this extensive collection is the first healthy anatomy dataset for the lumbar spine that includes paired CT, HUS, and RUS imaging, supporting advancements in computer- and robotic-assisted diagnostic and intraoperative techniques for musculoskeletal disorders.

  17. d

    Replication Data for: Association between Android/Gynoid ratio and lumbar...

    • search.dataone.org
    Updated Mar 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wu, Desheng; Li, Wenwen; Cai, Liquan (2024). Replication Data for: Association between Android/Gynoid ratio and lumbar spine bone mineral density in non-elderly American adults [Dataset]. http://doi.org/10.7910/DVN/3PUZM3
    Explore at:
    Dataset updated
    Mar 6, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Wu, Desheng; Li, Wenwen; Cai, Liquan
    Description

    This dataset included original demographic data, examination data, laboratory data and questionnaire datadata from NHANES 2011-2018.

  18. m

    Spinal Surgery Devices Market Size, Analysis | Share & Growth Report 2030

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). Spinal Surgery Devices Market Size, Analysis | Share & Growth Report 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/global-spinal-surgery-market-industry
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Global
    Description

    The Spine Surgery Devices Market Report is Segmented by Device Type (Spinal Decompression Devices and More), Procedure Type (Open Spine Surgery and More), Surgical Technology (Robotic-Assisted Systems and More), Surgery Setting (Hospitals and More), and Geography (North America, Europe, Asia-Pacific, and More). The Market Forecasts are Provided in Terms of Value (USD).

  19. f

    Data from: THE “PENDULUM LAW” - HOW TO EXPLAIN THE SPINAL SHAPE? PART I

    • scielo.figshare.com
    jpeg
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GILLES NOROTTE (2023). THE “PENDULUM LAW” - HOW TO EXPLAIN THE SPINAL SHAPE? PART I [Dataset]. http://doi.org/10.6084/m9.figshare.6179390.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    SciELO journals
    Authors
    GILLES NOROTTE
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ABSTRACT The author uses the classical parameters that allow studying the sagittal form of the spine, following a vertebral semantics (lordosis, kyphosis, spinopelvic parameters, and sagittal balance). Then he proposes a very different perspective that analyzes the shape of the column, not in the sagittal-coronal plane but in the vertical plane, that is, integrating gravity as a three-dimensional construction axis. Beginning with an analysis of the global body scheme of which the column is part, the muscular synergies are introduced using reference points, defining tension lines, anatomical and functional arches, highlighting the importance of the respiratory function that stabilizes the shape of the thoracolumbar spine. This shows that, whatever the pelvic or frequent anomalies, the biomechanical scheme depends on a single unique law related to gravity: the “pendulum law”. This allows us to define an ideal shaped spine, in comparison to different models, evoking the semantic practical and therapeutic interest of such a perspective.

  20. Professional spine and scoliosis ce USA Import & Buyer Data

    • seair.co.in
    Updated Apr 12, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seair Exim (2014). Professional spine and scoliosis ce USA Import & Buyer Data [Dataset]. https://www.seair.co.in
    Explore at:
    .bin, .xml, .csv, .xlsAvailable download formats
    Dataset updated
    Apr 12, 2014
    Dataset provided by
    Seair Exim Solutions
    Authors
    Seair Exim
    Area covered
    United States
    Description

    Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Training Data (2023). ct-of-the-spine-scoliosis [Dataset]. https://huggingface.co/datasets/TrainingDataPro/ct-of-the-spine-scoliosis

ct-of-the-spine-scoliosis

TrainingDataPro/ct-of-the-spine-scoliosis

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Oct 26, 2023
Authors
Training Data
License

Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically

Description

Computed Tomography (CT) of the Spine - Scoliosis

The dataset consists of CT spine scans of people with scoliosis. images that aid in the assessment and diagnosis of scoliosis. Each scan consists of multiple slices capturing various sections of the spine, including the cervical (neck), thoracic (upper back), and lumbar (lower back) regions. The data are presented in 2 different formats: .jpg and .dcm. The dataset of CT spine scans is valuable for research in automated scoliosis… See the full description on the dataset page: https://huggingface.co/datasets/TrainingDataPro/ct-of-the-spine-scoliosis.

Search
Clear search
Close search
Google apps
Main menu