96 datasets found
  1. Z

    Data Cleaning, Translation & Split of the Dataset for the Automatic...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Aug 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Köhler, Juliane (2022). Data Cleaning, Translation & Split of the Dataset for the Automatic Classification of Documents for the Classification System for the Berliner Handreichungen zur Bibliotheks- und Informationswissenschaft [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6957841
    Explore at:
    Dataset updated
    Aug 8, 2022
    Authors
    Köhler, Juliane
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cleaned_Dataset.csv – The combined CSV files of all scraped documents from DABI, e-LiS, o-bib and Springer.

    Data_Cleaning.ipynb – The Jupyter Notebook with python code for the analysis and cleaning of the original dataset.

    ger_train.csv – The German training set as CSV file.

    ger_validation.csv – The German validation set as CSV file.

    en_test.csv – The English test set as CSV file.

    en_train.csv – The English training set as CSV file.

    en_validation.csv – The English validation set as CSV file.

    splitting.py – The python code for splitting a dataset into train, test and validation set.

    DataSetTrans_de.csv – The final German dataset as a CSV file.

    DataSetTrans_en.csv – The final English dataset as a CSV file.

    translation.py – The python code for translating the cleaned dataset.

  2. t

    FAIR Dataset for Disease Prediction in Healthcare Applications

    • test.researchdata.tuwien.ac.at
    bin, csv, json, png
    Updated Apr 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sufyan Yousaf; Sufyan Yousaf; Sufyan Yousaf; Sufyan Yousaf (2025). FAIR Dataset for Disease Prediction in Healthcare Applications [Dataset]. http://doi.org/10.70124/5n77a-dnf02
    Explore at:
    csv, json, bin, pngAvailable download formats
    Dataset updated
    Apr 14, 2025
    Dataset provided by
    TU Wien
    Authors
    Sufyan Yousaf; Sufyan Yousaf; Sufyan Yousaf; Sufyan Yousaf
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset Description

    Context and Methodology

    • Research Domain/Project:
      This dataset was created for a machine learning experiment aimed at developing a classification model to predict outcomes based on a set of features. The primary research domain is disease prediction in patients. The dataset was used in the context of training, validating, and testing.

    • Purpose of the Dataset:
      The purpose of this dataset is to provide training, validation, and testing data for the development of machine learning models. It includes labeled examples that help train classifiers to recognize patterns in the data and make predictions.

    • Dataset Creation:
      Data preprocessing steps involved cleaning, normalization, and splitting the data into training, validation, and test sets. The data was carefully curated to ensure its quality and relevance to the problem at hand. For any missing values or outliers, appropriate handling techniques were applied (e.g., imputation, removal, etc.).

    Technical Details

    • Structure of the Dataset:
      The dataset consists of several files organized into folders by data type:

      • Training Data: Contains the training dataset used to train the machine learning model.

      • Validation Data: Used for hyperparameter tuning and model selection.

      • Test Data: Reserved for final model evaluation.

      Each folder contains files with consistent naming conventions for easy navigation, such as train_data.csv, validation_data.csv, and test_data.csv. Each file follows a tabular format with columns representing features and rows representing individual data points.

    • Software Requirements:
      To open and work with this dataset, you need VS Code or Jupyter, which could include tools like:

      • Python (with libraries such as pandas, numpy, scikit-learn, matplotlib, etc.)

    Further Details

    • Reusability:
      Users of this dataset should be aware that it is designed for machine learning experiments involving classification tasks. The dataset is already split into training, validation, and test subsets. Any model trained with this dataset should be evaluated using the test set to ensure proper validation.

    • Limitations:
      The dataset may not cover all edge cases, and it might have biases depending on the selection of data sources. It's important to consider these limitations when generalizing model results to real-world applications.

  3. Data from: ManyTypes4Py: A benchmark Python Dataset for Machine...

    • data.europa.eu
    unknown
    Updated Feb 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenodo (2021). ManyTypes4Py: A benchmark Python Dataset for Machine Learning-Based Type Inference [Dataset]. https://data.europa.eu/88u/dataset/oai-zenodo-org-4571228
    Explore at:
    unknown(395470535)Available download formats
    Dataset updated
    Feb 28, 2021
    Dataset authored and provided by
    Zenodohttp://zenodo.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset is gathered on Sep. 17th 2020. It has more than 5.4K Python repositories that are hosted on GitHub. Check out the file ManyTypes4PyDataset.spec for repositories URL and their commit SHA. The dataset is also de-duplicated using the CD4Py tool. The list of duplicate files is provided in duplicate_files.txt file. All of its Python projects are processed in JSON-formatted files. They contain a seq2seq representation of each file, type-related hints, and information for machine learning models. The structure of JSON-formatted files is described in JSONOutput.md file. The dataset is split into train, validation and test sets by source code files. The list of files and their corresponding set is provided in dataset_split.csv file. Notable changes to each version of the dataset are documented in CHANGELOG.md.

  4. Z

    Multimodal Vision-Audio-Language Dataset

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Schaumlöffel, Timothy; Roig, Gemma; Choksi, Bhavin (2024). Multimodal Vision-Audio-Language Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10060784
    Explore at:
    Dataset updated
    Jul 11, 2024
    Dataset provided by
    Goethe University Frankfurt
    Authors
    Schaumlöffel, Timothy; Roig, Gemma; Choksi, Bhavin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Multimodal Vision-Audio-Language Dataset is a large-scale dataset for multimodal learning. It contains 2M video clips with corresponding audio and a textual description of the visual and auditory content. The dataset is an ensemble of existing datasets and fills the gap of missing modalities. Details can be found in the attached report. Annotation The annotation files are provided as Parquet files. They can be read using Python and the pandas and pyarrow library. The split into train, validation and test set follows the split of the original datasets. Installation

    pip install pandas pyarrow Example

    import pandas as pddf = pd.read_parquet('annotation_train.parquet', engine='pyarrow')print(df.iloc[0])

    dataset AudioSet filename train/---2_BBVHAA.mp3 captions_visual [a man in a black hat and glasses.] captions_auditory [a man speaks and dishes clank.] tags [Speech] Description The annotation file consists of the following fields:filename: Name of the corresponding file (video or audio file)dataset: Source dataset associated with the data pointcaptions_visual: A list of captions related to the visual content of the video. Can be NaN in case of no visual contentcaptions_auditory: A list of captions related to the auditory content of the videotags: A list of tags, classifying the sound of a file. It can be NaN if no tags are provided Data files The raw data files for most datasets are not released due to licensing issues. They must be downloaded from the source. However, due to missing files, we provide them on request. Please contact us at schaumloeffel@em.uni-frankfurt.de

  5. Prediction of Personality Traits using the Big 5 Framework

    • zenodo.org
    csv, text/x-python
    Updated Feb 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neelima Brahmbhatt; Neelima Brahmbhatt (2023). Prediction of Personality Traits using the Big 5 Framework [Dataset]. http://doi.org/10.5281/zenodo.7596072
    Explore at:
    text/x-python, csvAvailable download formats
    Dataset updated
    Feb 2, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Neelima Brahmbhatt; Neelima Brahmbhatt
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The methodology is the core component of any research-related work. The methods used to gain the results are shown in the methodology. Here, the whole research implementation is done using python. There are different steps involved to get the entire research work done which is as follows:

    1. Acquire Personality Dataset

    The kaggle machine learning dataset is a collection of datasets, data generators which are used by machine learning community for analysis purpose. The personality prediction dataset is acquired from the kaggle website. This dataset was collected (2016-2018) through an interactive on-line personality test. The personality test was constructed from the IPIP. The personality prediction dataset can be downloaded in zip file format just by clicking on the link available. The personality prediction file consists of two subject CSV files (test.csv & train.csv). The test.csv file has 0 missing values, 7 attributes, and final label output. Also, the dataset has multivariate characteristics. Here, data-preprocessing is done for checking inconsistent behaviors or trends.

    2. Data preprocessing

    After, Data acquisition the next step is to clean and preprocess the data. The Dataset available has numerical type features. The target value is a five-level personality consisting of serious,lively,responsible,dependable & extraverted. The preprocessed dataset is further split into training and testing datasets. This is achieved by passing feature value, target value, test size to the train-test split method of the scikit-learn package. After splitting of data, the training data is sent to the following Logistic regression & SVM design is used for training the artificial neural networks then test data is used to predict the accuracy of the trained network model.

    3. Feature Extraction

    The following items were presented on one page and each was rated on a five point scale using radio buttons. The order on page was EXT1, AGR1, CSN1, EST1, OPN1, EXT2, etc. The scale was labeled 1=Disagree, 3=Neutral, 5=Agree

            EXT1 I am the life of the party.
            EXT2  I don't talk a lot.
            EXT3  I feel comfortable around people.
            EXT4  I am quiet around strangers.
            EST1  I get stressed out easily.
            EST2  I get irritated easily.
            EST3  I worry about things.
            EST4  I change my mood a lot.
            AGR1  I have a soft heart.
            AGR2  I am interested in people.
            AGR3  I insult people.
            AGR4  I am not really interested in others.
            CSN1  I am always prepared.
            CSN2  I leave my belongings around.
            CSN3  I follow a schedule.
            CSN4  I make a mess of things.
            OPN1  I have a rich vocabulary.
            OPN2  I have difficulty understanding abstract ideas.
            OPN3  I do not have a good imagination.
            OPN4  I use difficult words.

    4. Training the Model

    Train/Test is a method to measure the accuracy of your model. It is called Train/Test because you split the the data set into two sets: a training set and a testing set. 80% for training, and 20% for testing. You train the model using the training set.In this model we trained our dataset using linear_model.LogisticRegression() & svm.SVC() from sklearn Package

    5. Personality Prediction Output

    After the training of the designed neural network, the testing of Logistic Regression & SVM is performed using Cohen_kappa_score & Accuracy Score.

  6. Llama 3.1 8B Correct Labels

    • kaggle.com
    zip
    Updated Aug 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jatin Mehra_666 (2025). Llama 3.1 8B Correct Labels [Dataset]. https://www.kaggle.com/datasets/jatinmehra666/llama-3-1-8b-correct-labels
    Explore at:
    zip(11853454078 bytes)Available download formats
    Dataset updated
    Aug 26, 2025
    Authors
    Jatin Mehra_666
    Description

    training Code ```Python

    from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split import os import pandas as pd import numpy as np os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3" TEMP_DIR = "tmp" os.makedirs(TEMP_DIR, exist_ok=True) train = pd.read_csv('input/map-charting-student-math-misunderstandings/train.csv')

    Fill missing Misconception values with 'NA'

    train.Misconception = train.Misconception.fillna('NA')

    Create a combined target label (Category:Misconception)

    train['target'] = train.Category + ":" + train.Misconception

    Encode target labels to numerical format

    le = LabelEncoder() train['label'] = le.fit_transform(train['target']) n_classes = len(le.classes_) # Number of unique target classes print(f"Train shape: {train.shape} with {n_classes} target classes") print("Train head:") train.head()

    idx = train.apply(lambda row: row.Category.split('_')[0], axis=1) == 'True' correct = train.loc[idx].copy() correct['c'] = correct.groupby(['QuestionId', 'MC_Answer']).MC_Answer.transform('count') correct = correct.sort_values('c', ascending=False) correct = correct.drop_duplicates(['QuestionId']) correct = correct[['QuestionId', 'MC_Answer']] correct['is_correct'] = 1 # Mark these as correct answers

    Merge 'is_correct' flag into the main training DataFrame

    train = train.merge(correct, on=['QuestionId', 'MC_Answer'], how='left') train.is_correct = train.is_correct.fillna(0)

    from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch

    Model_Name = "unsloth/Meta-Llama-3.1-8B-Instruct"

    model = AutoModelForSequenceClassification.from_pretrained(Model_Name, num_labels=n_classes, torch_dtype=torch.bfloat16, device_map="balanced", cache_dir=TEMP_DIR)

    tokenizer = AutoTokenizer.from_pretrained(Model_Name, cache_dir=TEMP_DIR)

    def format_input(row): x = "Yes" if not row['is_correct']: x = "No" return ( f"Question: {row['QuestionText']} " f"Answer: {row['MC_Answer']} " f"Correct? {x} " f"Student Explanation: {row['StudentExplanation']}" )

    train['text'] = train.apply(format_input,axis=1) print("Example prompt for our LLM:") print() print( train.text.values[0] )

    from datasets import Dataset

    Split data into training and validation sets

    train_df, val_df = train_test_split(train, test_size=0.2, random_state=42)

    Convert to Hugging Face Dataset

    COLS = ['text', 'label']

    Create clean DataFrame with the full training data

    train_df_clean = train[COLS].copy() # Use 'train' instead of 'train_df'

    Ensure labels are proper integers

    train_df_clean['label'] = train_df_clean['label'].astype(np.int64)

    Reset index to ensure clean DataFrame structure

    train_df_clean = train_df_clean.reset_index(drop=True)

    Create dataset with the full training data

    train_ds = Dataset.from_pandas(train_df_clean, preserve_index=False)

    def tokenize(batch): """Tokenizes a batch of text inputs.""" return tokenizer(batch["text"], truncation=True, max_length=256)

    Apply tokenization to the full dataset

    train_ds = train_ds.map(tokenize, batched=True, remove_columns=['text'])

    Add a new padding token

    tokenizer.add_special_tokens({'pad_token': '[PAD]'})

    Resize the model's token embeddings to match the new tokenizer

    model.resize_token_embeddings(len(tokenizer))

    Set the pad token id in the model's config

    model.config.pad_token_id = tokenizer.pad_token_id

    2. Clear HF cache after loading

    import os from huggingface_hub import scan_cache_dir

    Then clear cache to free ~16GB

    cache_info = scan_cache_dir() cache_info.delete_revisions(*[repo.revisions for repo in cache_info.repos]).execute()

    --- Training Arguments ---

    from transformers import TrainingArguments, Trainer, DataCollatorWithPadding import tempfile import shutil

    Ensure temp directories exist

    os.makedirs(f"{TEMP_DIR}/training_output/", exist_ok=True) os.makedirs(f"{TEMP_DIR}/logs/", exist_ok=True)

    --- Training Arguments (FIXED) ---

    training_args = TrainingArguments( output_dir=f"{TEMP_DIR}/training_output/",
    do_train=True, do_eval=False, save_strategy="no", num_train_epochs=3, per_device_train_batch_size=16, learning_rate=5e-5, logging_dir=f"{TEMP_DIR}/logs/",
    logging_steps=500, bf16=True, fp16=False, report_to="none", warmup_ratio=0.1, lr_scheduler_type="cosine", dataloader_pin_memory=False, gradient_checkpointing=True,
    )

    --- Custom Metric Computation (MAP@3) ---

    def compute_map3(eval_pred): """ Computes Mean Average Precision at 3 (MAP@3) for evaluation. """ logits, labels = eval_pred probs = torch.nn.functional.softmax(torch.tensor(logits), dim=-1).numpy()

    # Get top 3 predicted class indi...
    
  7. VegeNet - Image datasets and Codes

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Oct 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jo Yen Tan; Jo Yen Tan (2022). VegeNet - Image datasets and Codes [Dataset]. http://doi.org/10.5281/zenodo.7254508
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 27, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jo Yen Tan; Jo Yen Tan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Compilation of python codes for data preprocessing and VegeNet building, as well as image datasets (zip files).

    Image datasets:

    1. vege_original : Images of vegetables captured manually in data acquisition stage
    2. vege_cropped_renamed : Images in (1) cropped to remove background areas and image labels renamed
    3. non-vege images : Images of non-vegetable foods for CNN network to recognize other-than-vegetable foods
    4. food_image_dataset : Complete set of vege (2) and non-vege (3) images for architecture building.
    5. food_image_dataset_split : Image dataset (4) split into train and test sets
    6. process : Images created when cropping (pre-processing step) to create dataset (2).
  8. u

    Surrogate flood model comparison - Datasets and python code

    • figshare.unimelb.edu.au
    bin
    Updated Jan 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Niels Fraehr (2024). Surrogate flood model comparison - Datasets and python code [Dataset]. http://doi.org/10.26188/24312658.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    Jan 19, 2024
    Dataset provided by
    The University of Melbourne
    Authors
    Niels Fraehr
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data used for publication in "Assessment of surrogate models for flood inundation: The physics-guided LSG model vs. state-of-the-art machine learning models". Five surrogate models for flood inundation is to emulate the results of high-resolution hydrodynamic models. The surrogate models are compared based on accuracy and computational speed for three distinct case studies namely Carlisle (United Kingdom), Chowilla floodplain (Australia), and Burnett River (Australia).The dataset is structured in 5 files - "Carlisle", "Chowilla", "BurnettRV", "Comparison_results", and "Python_data". As a minimum to run the models the "Python_data" file and one of "Carlisle", "Chowilla", or "BurnettRV" are needed. We suggest to use the "Carlisle" case study for initial testing given its small size and small data requirement."Carlisle", "Chowilla", and "BurnettRV" files These files contain hydrodynamic modelling data for training and validation for each individual case study, as well as specific Python scripts for training and running the surrogate models in each case study. There are only small differences between each folder, depending on the hydrodynamic model trying to emulate and input boundary conditions (input features).Each case study file has the following folders:Geometry_data: DEM files, .npz files containing of the high-fidelity models grid (XYZ-coordinates) and areas (Same data is available for the low-fidelity model used in the LSG model), .shp files indicating location of boundaries and main flow paths (mainly used in the LSTM-SRR model). XXX_modeldata: Folder to storage trained model data for each XXX surrogate model. For example, GP_EOF_modeldata contains files used to store the trainined GP-EOF model.HD_model_data: High-fidelity (And low-fidelity) simulation results for all flood events of that case study. This folder also contains all boundary input conditions.HF_EOF_analysis: Storing of data used in the EOF analysis. EOF analysis is applied for the LSG, GP-EOF, and LSTM-EOF surrogate models. Results_data: Storing results of running the evaluation of the surrogate models.Train_test_split_data: The train-test-validation data split is the same for all surrogate models. The specific split for each cross-validation fold is stored in this folder.And Python files:YYY_event_summary, YYY_Extrap_event_summary: Files containing overview of all events, and which events are connected between the low- and high-fidelity models for each YYY case study.EOF_analysis_HFdata_preprocessing, EOF_analysis_HFdata: Preprocessing before EOF analysis and the EOF analysis of the high-fidelity data. This is used for the LSG, GP-EOF, and LSTM-EOF surrogate models.Evaluation, Evaluation_extrap: Scripts for evaluating the surrogate model for that case study and saving the results for each cross-validation fold.train_test_split: Script for splitting the flood datasets for each cross-validation fold, so all surrogate models train on the same data.XXX_training: Script for training each XXX surrogate model.XXX_preprocessing: Some surrogate models might rely on some information that needs to be generated before training. This is performed using these scripts."Comparison_results" fileFiles used for comparing surrogate models and generate the figures in the paper "Assessment of surrogate models for flood inundation: The physics-guided LSG model vs. state-of-the-art machine learning models". Figures are also included. "Python_data" fileFolder containing Python script with utility functions for setting up, training, and running the surrogate models, as well as for evaluating the surrogate models. This folder also contains a python_environment.yml file with all Python package versions and dependencies.This folder also contains two sub-folders:LSG_mods_and_func: Python scripts for using the LSG model. Some of these scripts are also utilized when working with the other surrogate models. SRR_method_master_Zhou2021: Scripts obtained from https://github.com/yuerongz/SRR-method. Small edits have for speed and use in this study.

  9. t

    Data from: Decoding Wayfinding: Analyzing Wayfinding Processes in the...

    • researchdata.tuwien.at
    html, pdf, zip
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Negar Alinaghi; Ioannis Giannopoulos; Ioannis Giannopoulos; Negar Alinaghi; Negar Alinaghi; Negar Alinaghi (2025). Decoding Wayfinding: Analyzing Wayfinding Processes in the Outdoor Environment [Dataset]. http://doi.org/10.48436/m2ha4-t1v92
    Explore at:
    html, zip, pdfAvailable download formats
    Dataset updated
    Mar 19, 2025
    Dataset provided by
    TU Wien
    Authors
    Negar Alinaghi; Ioannis Giannopoulos; Ioannis Giannopoulos; Negar Alinaghi; Negar Alinaghi; Negar Alinaghi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    How To Cite?

    Alinaghi, N., Giannopoulos, I., Kattenbeck, M., & Raubal, M. (2025). Decoding wayfinding: analyzing wayfinding processes in the outdoor environment. International Journal of Geographical Information Science, 1–31. https://doi.org/10.1080/13658816.2025.2473599

    Link to the paper: https://www.tandfonline.com/doi/full/10.1080/13658816.2025.2473599

    Folder Structure

    The folder named “submission” contains the following:

    1. “pythonProject”: This folder contains all the Python files and subfolders needed for analysis.
    2. ijgis.yml: This file lists all the Python libraries and dependencies required to run the code.

    Setting Up the Environment

    1. Use the ijgis.yml file to create a Python project and environment. Ensure you activate the environment before running the code.
    2. The pythonProject folder contains several .py files and subfolders, each with specific functionality as described below.

    Subfolders

    1. Data_4_IJGIS

    • This folder contains the data used for the results reported in the paper.
    • Note: The data analysis that we explain in this paper already begins with the synchronization and cleaning of the recorded raw data. The published data is already synchronized and cleaned. Both the cleaned files and the merged files with features extracted for them are given in this directory. If you want to perform the segmentation and feature extraction yourself, you should run the respective Python files yourself. If not, you can use the “merged_…csv” files as input for the training.

    2. results_[DateTime] (e.g., results_20240906_15_00_13)

    • This folder will be generated when you run the code and will store the output of each step.
    • The current folder contains results created during code debugging for the submission.
    • When you run the code, a new folder with fresh results will be generated.

    Python Files

    1. helper_functions.py

    • Contains reusable functions used throughout the analysis.
    • Each function includes a description of its purpose and the input parameters required.

    2. create_sanity_plots.py

    • Generates scatter plots like those in Figure 3 of the paper.
    • Although the code has been run for all 309 trials, it can be used to check the sample data provided.
    • Output: A .png file for each column of the raw gaze and IMU recordings, color-coded with logged events.
    • Usage: Run this file to create visualizations similar to Figure 3.

    3. overlapping_sliding_window_loop.py

    • Implements overlapping sliding window segmentation and generates plots like those in Figure 4.
    • Output:
      • Two new subfolders, “Gaze” and “IMU”, will be added to the Data_4_IJGIS folder.
      • Segmented files (default: 2–10 seconds with a 1-second step size) will be saved as .csv files.
      • A visualization of the segments, similar to Figure 4, will be automatically generated.

    4. gaze_features.py & imu_features.py (Note: there has been an update to the IDT function implementation in the gaze_features.py on 19.03.2025.)

    • These files compute features as explained in Tables 1 and 2 of the paper, respectively.
    • They process the segmented recordings generated by the overlapping_sliding_window_loop.py.
    • Usage: Just to know how the features are calculated, you can run this code after the segmentation with the sliding window and run these files to calculate the features from the segmented data.

    5. training_prediction.py

    • This file contains the main machine learning analysis of the paper. This file contains all the code for the training of the model, its evaluation, and its use for the inference of the “monitoring part”. It covers the following steps:
    a. Data Preparation (corresponding to Section 5.1.1 of the paper)
    • Prepares the data according to the research question (RQ) described in the paper. Since this data was collected with several RQs in mind, we remove parts of the data that are not related to the RQ of this paper.
    • A function named plot_labels_comparison(df, save_path, x_label_freq=10, figsize=(15, 5)) in line 116 visualizes the data preparation results. As this visualization is not used in the paper, the line is commented out, but if you want to see visually what has been changed compared to the original data, you can comment out this line.
    b. Training/Validation/Test Split
    • Splits the data for machine learning experiments (an explanation can be found in Section 5.1.1. Preparation of data for training and inference of the paper).
    • Make sure that you follow the instructions in the comments to the code exactly.
    • Output: The split data is saved as .csv files in the results folder.
    c. Machine and Deep Learning Experiments

    This part contains three main code blocks:

    iii. One for the XGboost code with correct hyperparameter tuning:
    Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically test the confidence threshold of

    • MLP Network (Commented Out): This code was used for classification with the MLP network, and the results shown in Table 3 are from this code. If you wish to use this model, please comment out the following blocks accordingly.
    • XGBoost without Hyperparameter Tuning: If you want to run the code but do not want to spend time on the full training with hyperparameter tuning (as was done for the paper), just uncomment this part. This will give you a simple, untuned model with which you can achieve at least some results.
    • XGBoost with Hyperparameter Tuning: If you want to train the model the way we trained it for the analysis reported in the paper, use this block (the plots in Figure 7 are from this block). We ran this block with different feature sets and different segmentation files and created a simple bar chart from the saved results, shown in Figure 6.

    Note: Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically calculated the confidence threshold of the model (explained in the paper in Section 5.2. Part II: Decoding surveillance by sequence analysis) is given in this block in lines 361 to 380.

    d. Inference (Monitoring Part)
    • Final inference is performed using the monitoring data. This step produces a .csv file containing inferred labels.
    • Figure 8 in the paper is generated using this part of the code.

    6. sequence_analysis.py

    • Performs analysis on the inferred data, producing Figures 9 and 10 from the paper.
    • This file reads the inferred data from the previous step and performs sequence analysis as described in Sections 5.2.1 and 5.2.2.

    Licenses

    The data is licensed under CC-BY, the code is licensed under MIT.

  10. n

    Data for "Prediction of Phakic Intraocular Lens Vault Using Machine Learning...

    • narcis.nl
    • data.mendeley.com
    Updated Jan 11, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yoo, T (via Mendeley Data) (2021). Data for "Prediction of Phakic Intraocular Lens Vault Using Machine Learning of Anterior Segment Optical Coherence Tomography Metrics" [Dataset]. http://doi.org/10.17632/ffn745r57z.2
    Explore at:
    Dataset updated
    Jan 11, 2021
    Dataset provided by
    Data Archiving and Networked Services (DANS)
    Authors
    Yoo, T (via Mendeley Data)
    Description

    Prediction of Phakic Intraocular Lens Vault Using Machine Learning of Anterior Segment Optical Coherence Tomography Metrics. Authors: Kazutaka Kamiya, MD, PhD, Ik Hee Ryu, MD, MS, Tae Keun Yoo, MD, Jung Sub Kim MD, In Sik Lee, MD, PhD, Jin Kook Kim MD, Wakako Ando CO, Nobuyuki Shoji, MD, PhD, Tomofusa, Yamauchi, MD, PhD, Hitoshi Tabuchi, MD, PhD.

    We hypothesize that machine learning of preoperative biometric data obtained by the As-OCT may be clinically beneficial for predicting the actual ICL vault. Therefore, we built the machine learning model using Random Forest to predict ICL vault after surgery.

    This multicenter study comprised one thousand seven hundred forty-five eyes of 1745 consecutive patients (656 men and 1089 women), who underwent EVO ICL implantation (V4c and V5 Visian ICL with KS-AquaPORT) for the correction of moderate to high myopia and myopic astigmatism, and who completed at least a 1-month follow-up, at Kitasato University Hospital (Kanagawa, Japan), or at B&VIIT Eye Center (Seoul, Korea).

    This data file (RFR_model(feature=12).mat) is the final trained random forest model for MATLAB 2020a.

    Python version:

    from sklearn.model_selection import train_test_split import pandas as pd import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor

    connect data in your google drive

    from google.colab import auth auth.authenticate_user() from google.colab import drive drive.mount('/content/gdrive')

    Change the path for the custom data

    In this case, we used ICL vault prediction using preop measurement

    dataset = pd.read_csv('gdrive/My Drive/ICL/data_icl.csv') dataset.head()

    optimal features (sorted by importance) :

    1. ICL size 2. ICL power 3. LV 4. CLR 5. ACD 6. ATA

    7. MSE 8.Age 9. Pupil size 10. WTW 11. CCT 12. ACW

    y = dataset['Vault_1M'] X = dataset.drop(['Vault_1M'], axis = 1)

    Split the dataset to train and test data, if necessary.

    For example, we can split data to 8:2 as a simple validation test

    train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2, random_state=0)

    In our study, we already defined the training (B&VIIT Eye Center, n=1455) and test (Kitasato University, n=290) dataset, this code was not necessary to perform our analysis.

    Optimal parameter search could be performed in this section

    parameters = {'bootstrap': True, 'min_samples_leaf': 3, 'n_estimators': 500, 'criterion': 'mae' 'min_samples_split': 10, 'max_features': 'sqrt', 'max_depth': 6, 'max_leaf_nodes': None}

    RF_model = RandomForestRegressor(**parameters) RF_model.fit(train_X, train_y) RF_predictions = RF_model.predict(test_X) importance = RF_model.feature_importances_

  11. g

    Data from: JSON Dataset of Simulated Building Heat Control for System of...

    • gimi9.com
    • researchdata.se
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    JSON Dataset of Simulated Building Heat Control for System of Systems Interoperability [Dataset]. https://gimi9.com/dataset/eu_https-doi-org-10-5878-1tv7-9x76/
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Interoperability in systems-of-systems is a difficult problem due to the abundance of data standards and formats. Current approaches to interoperability rely on hand-made adapters or methods using ontological metadata. This dataset was created to facilitate research on data-driven interoperability solutions. The data comes from a simulation of a building heating system, and the messages sent within control systems-of-systems. For more information see attached data documentation. The data comes in two semicolon-separated (;) csv files, training.csv and test.csv. The train/test split is not random; training data comes from the first 80% of simulated timesteps, and the test data is the last 20%. There is no specific validation dataset, the validation data should instead be randomly selected from the training data. The simulation runs for as many time steps as there are outside temperature values available. The original SMHI data only samples once every hour, which we linearly interpolate to get one temperature sample every ten seconds. The data saved at each time step consists of 34 JSON messages (four per room and two temperature readings from the outside), 9 temperature values (one per room and outside), 8 setpoint values, and 8 actuator outputs. The data associated with each of those 34 JSON-messages is stored as a single row in the tables. This means that much data is duplicated, a choice made to make it easier to use the data. The simulation data is not meant to be opened and analyzed in spreadsheet software, it is meant for training machine learning models. It is recommended to open the data with the pandas library for Python, available at https://pypi.org/project/pandas/.

  12. Fruits Classification 🍇

    • kaggle.com
    zip
    Updated Apr 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DeepNets (2023). Fruits Classification 🍇 [Dataset]. https://www.kaggle.com/datasets/utkarshsaxenadn/fruits-classification/suggestions
    Explore at:
    zip(88954615 bytes)Available download formats
    Dataset updated
    Apr 9, 2023
    Authors
    DeepNets
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The fruit classification dataset is a collection of images of various fruits used for the purpose of the training and testing computer vision models. The dataset includes five different types of fruit: * Apples * Bananas * Grapes * Mangoes * Strawberries

    Each class contains 2000 images, resulting in a total of 10,000 images in the dataset.

    The images in the dataset are of various shapes, sizes, and colors, and have been captured under different lighting conditions. The dataset is useful for training and testing models that perform tasks such as object detection, image classification, and segmentation.

    The dataset can be used for various research projects, such as developing and testing new image classification algorithms, and for benchmarking existing algorithms. The dataset can also be used to train machine learning models that can be used in real-world applications, such as in the agricultural industry for fruit grading and sorting.

    Overall, the fruit classification dataset is a valuable resource for researchers and developers working in the field of computer vision, and its availability will help advance the development of new algorithms and technologies for image analysis and classification.

    Data Structure

    The data is split into three sets: training, validation, and testing. The training set is used to train the model, while the validation set is used to evaluate the model's performance during training and make adjustments as necessary. The testing set is used to evaluate the final performance of the model after training is complete.

    The dataset is split based on a ratio of 97% for training, 2% for validation, and 1% for testing. This means that the training set contains 9700 images (97% of the total), the validation set contains 200 images (2% of the total), and the testing set contains 100 images (1% of the total).

    Each class in the dataset is split into three sets based on the ratio. For example, for the "Apple" class, 97% (1940 images) are used for training, 2% (40 images) are used for validation, and 1% (20 images) are used for testing. This ensures that the distribution of classes is consistent across all three sets and that the model is trained on a representative sample of all classes.

    Overall, the split of the dataset into training, validation, and testing sets ensures that the model is robust and generalizes well to new, unseen data.

    Python Script

    The script provided creates train, validation, and test sets from a fruit image dataset by splitting the dataset into predetermined ratios, shuffling the images, and moving them to their respective directories.

  13. Rescaled CIFAR-10 dataset

    • zenodo.org
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrzej Perzanowski; Andrzej Perzanowski; Tony Lindeberg; Tony Lindeberg (2025). Rescaled CIFAR-10 dataset [Dataset]. http://doi.org/10.5281/zenodo.15188748
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Andrzej Perzanowski; Andrzej Perzanowski; Tony Lindeberg; Tony Lindeberg
    Description

    Motivation

    The goal of introducing the Rescaled CIFAR-10 dataset is to provide a dataset that contains scale variations (up to a factor of 4), to evaluate the ability of networks to generalise to scales not present in the training data.

    The Rescaled CIFAR-10 dataset was introduced in the paper:

    [1] A. Perzanowski and T. Lindeberg (2025) "Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations”, Journal of Mathematical Imaging and Vision, 67(29), https://doi.org/10.1007/s10851-025-01245-x.

    with a pre-print available at arXiv:

    [2] Perzanowski and Lindeberg (2024) "Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations”, arXiv preprint arXiv:2409.11140.

    Importantly, the Rescaled CIFAR-10 dataset contains substantially more natural textures and patterns than the MNIST Large Scale dataset, introduced in:

    [3] Y. Jansson and T. Lindeberg (2022) "Scale-invariant scale-channel networks: Deep networks that generalise to previously unseen scales", Journal of Mathematical Imaging and Vision, 64(5): 506-536, https://doi.org/10.1007/s10851-022-01082-2

    and is therefore significantly more challenging.

    Access and rights

    The Rescaled CIFAR-10 dataset is provided on the condition that you provide proper citation for the original CIFAR-10 dataset:

    [4] Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny images. Tech. rep., University of Toronto.

    and also for this new rescaled version, using the reference [1] above.

    The data set is made available on request. If you would be interested in trying out this data set, please make a request in the system below, and we will grant you access as soon as possible.

    The dataset

    The Rescaled CIFAR-10 dataset is generated by rescaling 32Ă—32 RGB images of animals and vehicles from the original CIFAR-10 dataset [4]. The scale variations are up to a factor of 4. In order to have all test images have the same resolution, mirror extension is used to extend the images to size 64x64. The imresize() function in Matlab was used for the rescaling, with default anti-aliasing turned on, and bicubic interpolation overshoot removed by clipping to the [0, 255] range. The details of how the dataset was created can be found in [1].

    There are 10 distinct classes in the dataset: “airplane”, “automobile”, “bird”, “cat”, “deer”, “dog”, “frog”, “horse”, “ship” and “truck”. In the dataset, these are represented by integer labels in the range [0, 9].

    The dataset is split into 40 000 training samples, 10 000 validation samples and 10 000 testing samples. The training dataset is generated using the initial 40 000 samples from the original CIFAR-10 training set. The validation dataset, on the other hand, is formed from the final 10 000 image batch of that same training set. For testing, all test datasets are built from the 10 000 images contained in the original CIFAR-10 test set.

    The h5 files containing the dataset

    The training dataset file (~5.9 GB) for scale 1, which also contains the corresponding validation and test data for the same scale, is:

    cifar10_with_scale_variations_tr40000_vl10000_te10000_outsize64-64_scte1p000_scte1p000.h5

    Additionally, for the Rescaled CIFAR-10 dataset, there are 9 datasets (~1 GB each) for testing scale generalisation at scales not present in the training set. Each of these datasets is rescaled using a different image scaling factor, 2k/4, with k being integers in the range [-4, 4]:

    cifar10_with_scale_variations_te10000_outsize64-64_scte0p500.h5
    cifar10_with_scale_variations_te10000_outsize64-64_scte0p595.h5
    cifar10_with_scale_variations_te10000_outsize64-64_scte0p707.h5
    cifar10_with_scale_variations_te10000_outsize64-64_scte0p841.h5
    cifar10_with_scale_variations_te10000_outsize64-64_scte1p000.h5
    cifar10_with_scale_variations_te10000_outsize64-64_scte1p189.h5
    cifar10_with_scale_variations_te10000_outsize64-64_scte1p414.h5
    cifar10_with_scale_variations_te10000_outsize64-64_scte1p682.h5
    cifar10_with_scale_variations_te10000_outsize64-64_scte2p000.h5

    These dataset files were used for the experiments presented in Figures 9, 10, 15, 16, 20 and 24 in [1].

    Instructions for loading the data set

    The datasets are saved in HDF5 format, with the partitions in the respective h5 files named as
    ('/x_train', '/x_val', '/x_test', '/y_train', '/y_test', '/y_val'); which ones exist depends on which data split is used.

    The training dataset can be loaded in Python as:

    with h5py.File(`

    x_train = np.array( f["/x_train"], dtype=np.float32)
    x_val = np.array( f["/x_val"], dtype=np.float32)
    x_test = np.array( f["/x_test"], dtype=np.float32)
    y_train = np.array( f["/y_train"], dtype=np.int32)
    y_val = np.array( f["/y_val"], dtype=np.int32)
    y_test = np.array( f["/y_test"], dtype=np.int32)

    We also need to permute the data, since Pytorch uses the format [num_samples, channels, width, height], while the data is saved as [num_samples, width, height, channels]:

    x_train = np.transpose(x_train, (0, 3, 1, 2))
    x_val = np.transpose(x_val, (0, 3, 1, 2))
    x_test = np.transpose(x_test, (0, 3, 1, 2))

    The test datasets can be loaded in Python as:

    with h5py.File(`

    x_test = np.array( f["/x_test"], dtype=np.float32)
    y_test = np.array( f["/y_test"], dtype=np.int32)

    The test datasets can be loaded in Matlab as:

    x_test = h5read(`

    The images are stored as [num_samples, x_dim, y_dim, channels] in HDF5 files. The pixel intensity values are not normalised, and are in a [0, 255] range.

  14. E

    Data from: Keyword extraction datasets for Croatian, Estonian, Latvian and...

    • live.european-language-grid.eu
    binary format
    Updated Jun 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Keyword extraction datasets for Croatian, Estonian, Latvian and Russian 1.0 [Dataset]. https://live.european-language-grid.eu/catalogue/corpus/8369
    Explore at:
    binary formatAvailable download formats
    Dataset updated
    Jun 3, 2021
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Area covered
    Estonia
    Description

    EACL Hackashop Keyword Challenge Datasets

    In this repository you can find ids of articles used for the keyword extraction challenge at

    EACL Hackashop on News Media Content Analysis and Automated Report Generation (http://embeddia.eu/hackashop2021/). The article ids can be used to generate train-test split used in paper:

    Koloski, B., Pollak, S., Škrlj, B., & Martinc, M. (2021). Extending Neural Keyword Extraction with TF-IDF tagset matching. In: Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, Kiev, Ukraine, pages 22–29.

    Train and test splits are provided for Latvian, Estonian, Russian and Croatian.

    The articles with the corresponding ID-s can be extracted from the following datasets:

    - Estonian and Russian (use the eearticles2015-2019 dataset): https://www.clarin.si/repository/xmlui/handle/11356/1408

    - Latvian: https://www.clarin.si/repository/xmlui/handle/11356/1409

    - Croatian: https://www.clarin.si/repository/xmlui/handle/11356/1410

    dataset_ids folder is organized in the following way:

    - latvian – containing latvian_train.json: a json file with ids from train articles to replicate the data used in Koloski et al. (2020), the latvian_test.json: a json file with ids from test articles to replicate the data

    - estonian – containing estonian_train.json: a json file with ids from train articles to replicate the data used in Koloski et al. (2020), the estonian_test.json: a json file with ids from test articles to replicate the data

    - russian – containing russian_train.json: a json file with ids from train articles to replicate the train data used in Koloski et al. (2020), the russian_test.json: a json file with ids from test articles to replicate the data

    - croatian - containing croatian_id_train.tsv file with sites and ids (note that just ids are not unique across dataset, therefore site information also needs to be included to obtain a unique article identifier) of articles in the train set, and the croatian_id_test.tsv file with sites and ids of articles in the test set.

    In addition, scripts are provided for extracting articles (see folder parse containing scripts parse.py and build_croatian_dataset.py, requirements for scripts are pandas and bs4 Python libraries):

    parse.py is used for extraction of Estonian, Russian and Latvian train and test datasets:

    Instructions:

    ESTONIAN-RUSSIAN

    1) Retrieve the data ee_articles_2015_2019.zip

    2) Create a folder 'data' and subfolder 'ee'

    3) Unzip them in the 'data/ee' folder

    To extract train/test Estonian articles:

    run function 'build_dataset(lang="ee", opt="nat")' in the parse.py script

    To extract train/test Russian articles:

    run function 'build_dataset(lang="ee", opt="rus")' in the parse.py script

    LATVIAN:

    1) Retrieve the latvian data

    2) Unzip it in 'data/lv' folder

    3) To extract train/test Latvian articles:

    run function 'build_dataset(lang="lv", opt="nat")' in the parse.py script

    build_croatian_dataset.py is used for extraction of Croatian train and test datasets:

    Instructions:

    CROATIAN:

    1) Retrieve the Croatian data (file 'STY_24sata_articles_hr_PUB-01.csv')

    2) put the script 'build_croatian_dataset.py' in the same folder as the extracted data and run it (e.g., python build_croatian_dataset.py).

    For additional questions: {Boshko.Koloski,Matej.Martinc,Senja.Pollak}@ijs.si

  15. feral-cat-segmentation_dataset

    • kaggle.com
    • universe.roboflow.com
    zip
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    lu hou yang (2025). feral-cat-segmentation_dataset [Dataset]. https://www.kaggle.com/datasets/luhouyang/feral-cat-segmentation-dataset
    Explore at:
    zip(971125684 bytes)Available download formats
    Dataset updated
    Mar 18, 2025
    Authors
    lu hou yang
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Feral Cat Segmentation Dataset

    Overview

    This dataset provides image segmentation data for feral cats, designed for computer vision and machine learning tasks. It builds upon the original public domain dataset by Paul Cashman from Roboflow, with additional preprocessing and multiple data formats for easier consumption.

    Dataset Source

    Dataset Contents

    The dataset is organized into three standard splits: - Train set - Validation set - Test set

    Each split contains data in multiple formats: 1. Original JPG images 2. Segmentation mask JPG images 3. Parquet files containing flattened image and mask data 4. Pickle files containing serialized image and mask data

    Data Formats

    1. Image Files

    • Format: JPG
    • Resolution: 224Ă—224 pixels
    • Directory Structure:
      • train/: Original training images
      • valid/: Original validation images
      • test/: Original test images
      • train_mask/: Corresponding segmentation masks for training
      • valid_mask/: Corresponding segmentation masks for validation
      • test_mask/: Corresponding segmentation masks for testing

    2. Parquet Files

    • Files: train_dataset.parquet, valid_dataset.parquet, test_dataset.parquet
    • Content: Flattened image data and corresponding masks combined in a single table
    • Structure: Each row contains the flattened pixel values of an image followed by the flattened pixel values of its mask
    • Data Division: Image and mask data are split at index split_at = image_size[0] * image_size[1] * image_channels
      • Data before this index: image pixel values (reshaped to [-1, 224, 224, 3])
      • Data after this index: mask pixel values (reshaped to [-1, 224, 224, 1])
    • Benefits: Efficient storage and faster loading compared to individual image files

    3. Pickle Files

    • Files: train_dataset.pkl, valid_dataset.pkl, test_dataset.pkl
    • Content: Serialized Python objects containing images and their corresponding masks
    • Structure: List of [image, mask] pairs, where each image and mask is serialized using Python's pickle
    • Data Access: Similar to parquet files, when loaded through the provided dataset class, data is split at the same index: split_at = image_size[0] * image_size[1] * image_channels
    • Benefits: Preserves original data structure and enables quick loading in Python

    4. CSV Files

    • Files: train_dataset.csv, valid_dataset.csv, test_dataset.csv
    • Content: Same data as parquet files but in CSV format
    • Structure: No headers, raw flattened pixel values
    • Data Division: Same split point as parquet files

    Image Preprocessing

    All images were preprocessed with the following operations: - Resized to 224Ă—224 pixels using bilinear interpolation - Segmentation masks were also resized to match the images using nearest neighbor interpolation - Original RLE (Run-Length Encoding) segmentation data converted to binary masks

    Data Normalization

    When used with the provided PyTorch dataset class, images are normalized with: - Mean: [0.48235, 0.45882, 0.40784] - Standard Deviation: [0.00392156862745098, 0.00392156862745098, 0.00392156862745098]

    PyTorch Integration

    A custom CatDataset class is included for easy integration with PyTorch:

    from cat_dataset import CatDataset
    
    # Load from parquet format
    dataset = CatDataset(
      root="path/to/dataset",
      split="train", # Options: "train", "valid", "test"
      format="parquet", # Options: "parquet", "pkl"
      image_size=[224, 224],
      image_channels=3,
      mask_channels=1
    )
    
    # Use with PyTorch DataLoader
    from torch.utils.data import DataLoader
    dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
    

    Performance Comparison

    Loading time benchmarks from the original implementation: - Parquet format: ~1.29 seconds per iteration - Pickle format: ~0.71 seconds per iteration

    The pickle format provides the fastest loading times and is recommended for most use cases.

    Citation

    If you use this dataset in your research or projects, please cite:

    @misc{feral-cat-segmentation_dataset,
     title = {feral-cat-segmentation Dataset},
     type = {Open Source Dataset},
     author = {Paul Cashman},
     howpublished = {\url{https://universe.roboflow.com/paul-cashman-mxgwb/feral-cat-segmentation}},
     url = {https://universe.roboflow.com/paul-cashman-mxgwb/feral-cat-segmentation},
     journal = {Roboflow Universe},
     publisher = {Roboflow},
     year = {2025},
     month = {mar},
     note = {visited on 2025-03-19},
    }
    

    Sample Usage Code

    Basic Dataset Loading

    from ca...
    
  16. Dataset for Cost-effective Simulation-based Test Selection in Self-driving...

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    pdf, zip
    Updated Jul 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christian Birchler; Nicolas Ganz; Sajad Khatiri; Alessio Gambi; Sebastiano Panichella; Christian Birchler; Nicolas Ganz; Sajad Khatiri; Alessio Gambi; Sebastiano Panichella (2024). Dataset for Cost-effective Simulation-based Test Selection in Self-driving Cars Software with SDC-Scissor [Dataset]. http://doi.org/10.5281/zenodo.5914130
    Explore at:
    zip, pdfAvailable download formats
    Dataset updated
    Jul 17, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Christian Birchler; Nicolas Ganz; Sajad Khatiri; Alessio Gambi; Sebastiano Panichella; Christian Birchler; Nicolas Ganz; Sajad Khatiri; Alessio Gambi; Sebastiano Panichella
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    SDC-Scissor tool for Cost-effective Simulation-based Test Selection in Self-driving Cars Software

    This dataset provides test cases for self-driving cars with the BeamNG simulator. Check out the repository and demo video to get started.

    GitHub: github.com/ChristianBirchler/sdc-scissor

    This project extends the tool competition platform from the Cyber-Phisical Systems Testing Competition which was part of the SBST Workshop in 2021.

    Usage

    Demo

    YouTube Link

    Installation

    The tool can either be run with Docker or locally using Poetry.

    When running the simulations a working installation of BeamNG.research is required. Additionally, this simulation cannot be run in a Docker container but must run locally.

    To install the application use one of the following approaches:

    • Docker: docker build --tag sdc-scissor .
    • Poetry: poetry install

    Using the Tool

    The tool can be used with the following two commands:

    • Docker: docker run --volume "$(pwd)/results:/out" --rm sdc-scissor [COMMAND] [OPTIONS] (this will write all files written to /out to the local folder results)
    • Poetry: poetry run python sdc-scissor.py [COMMAND] [OPTIONS]

    There are multiple commands to use. For simplifying the documentation only the command and their options are described.

    • Generation of tests:
      • generate-tests --out-path /path/to/store/tests
    • Automated labeling of Tests:
      • label-tests --road-scenarios /path/to/tests --result-folder /path/to/store/labeled/tests
      • Note: This only works locally with BeamNG.research installed
    • Model evaluation:
      • evaluate-models --dataset /path/to/train/set --save
    • Split train and test data:
      • split-train-test-data --scenarios /path/to/scenarios --train-dir /path/for/train/data --test-dir /path/for/test/data --train-ratio 0.8
    • Test outcome prediction:
      • predict-tests --scenarios /path/to/scenarios --classifier /path/to/model.joblib
    • Evaluation based on random strategy:
      • evaluate --scenarios /path/to/test/scenarios --classifier /path/to/model.joblib

    The possible parameters are always documented with --help.

    Linting

    The tool is verified the linters flake8 and pylint. These are automatically enabled in Visual Studio Code and can be run manually with the following commands:

    poetry run flake8 .
    poetry run pylint **/*.py

    License

    The software we developed is distributed under GNU GPL license. See the LICENSE.md file.

    Contacts

    Christian Birchler - Zurich University of Applied Science (ZHAW), Switzerland - birc@zhaw.ch

    Nicolas Ganz - Zurich University of Applied Science (ZHAW), Switzerland - gann@zhaw.ch

    Sajad Khatiri - Zurich University of Applied Science (ZHAW), Switzerland - mazr@zhaw.ch

    Dr. Alessio Gambi - Passau University, Germany - alessio.gambi@uni-passau.de

    Dr. Sebastiano Panichella - Zurich University of Applied Science (ZHAW), Switzerland - panc@zhaw.ch

    References

    • Christian Birchler, Nicolas Ganz, Sajad Khatiri, Alessio Gambi, and Sebastiano Panichella. 2022. Cost-effective Simulation-based Test Selection in Self-driving Cars Software with SDC-Scissor. In 2022 IEEE 29th International Conference on Software Analysis, Evolution and Reengineering (SANER), IEEE.

    If you use this tool in your research, please cite the following papers:

    @INPROCEEDINGS{Birchler2022,
     author={Birchler, Christian and Ganz, Nicolas and Khatiri, Sajad and Gambi, Alessio, and Panichella, Sebastiano},
     booktitle={2022 IEEE 29th International Conference on Software Analysis, Evolution and Reengineering (SANER), 
     title={Cost-effective Simulationbased Test Selection in Self-driving Cars Software with SDC-Scissor}, 
     year={2022},
    }
  17. d

    MC-LSTM papers, model runs

    • search.dataone.org
    • hydroshare.org
    Updated Dec 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan Martin Frame (2023). MC-LSTM papers, model runs [Dataset]. http://doi.org/10.4211/hs.d750278db868447dbd252a8c5431affd
    Explore at:
    Dataset updated
    Dec 30, 2023
    Dataset provided by
    Hydroshare
    Authors
    Jonathan Martin Frame
    Time period covered
    Jan 1, 1989 - Jan 1, 2015
    Area covered
    Description

    Runs from two papers exploring the use of mass conserving LSTM. Model results used in the papers are 1) model_outputs_for_analysis_extreme_events_paper.tar.gz, and 2) model_outputs_for_analysis_mass_balance_paper.tar.gz.

    The models here are trained/calibrated on three different time periods. Standard Time Split (time split 1): test period(1989-1999) is the same period used by previous studies which allows us to confirm that the deep learning models (LSTM andMC-LSTM) trained for this project perform as expected relative to prior work. NWM Time Split (time split 2): The second test period (1995-2014) allows us to benchmark against the NWM-Rv2, which does not provide data prior to 1995. Return period split: The third test period (based on return periods) allows us to benchmark only on water years that contain streamflow events that are larger (per basin) than anything seen in the training data (<= 5-year return periods in training and > 5-year return periods in testing).

    Also included are an ensemble of model runs for LSTM, MC-LSTM for the "standard" training period and two forcing products. These files are provided in the format "

    IMPORTANT NOTE: This python environment should be used to extract and load the data: https://github.com/jmframe/mclstm_2021_extrapolate/blob/main/python_environment.yml, as the pickle files serialized the data with specific versions of python libraries. Specifically, the pickle serialization was done with xarray=0.16.1.

    Code to interpret these runs can be found here: https://github.com/jmframe/mclstm_2021_extrapolate https://github.com/jmframe/mclstm_2021_mass_balance

    Papers are available here: https://hess.copernicus.org/preprints/hess-2021-423/

  18. Rescaled Fashion-MNIST dataset

    • zenodo.org
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrzej Perzanowski; Andrzej Perzanowski; Tony Lindeberg; Tony Lindeberg (2025). Rescaled Fashion-MNIST dataset [Dataset]. http://doi.org/10.5281/zenodo.15187793
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Andrzej Perzanowski; Andrzej Perzanowski; Tony Lindeberg; Tony Lindeberg
    Time period covered
    Apr 10, 2025
    Description

    Motivation

    The goal of introducing the Rescaled Fashion-MNIST dataset is to provide a dataset that contains scale variations (up to a factor of 4), to evaluate the ability of networks to generalise to scales not present in the training data.

    The Rescaled Fashion-MNIST dataset was introduced in the paper:

    [1] A. Perzanowski and T. Lindeberg (2025) "Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations”, Journal of Mathematical Imaging and Vision, 67(29), https://doi.org/10.1007/s10851-025-01245-x.

    with a pre-print available at arXiv:

    [2] Perzanowski and Lindeberg (2024) "Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations”, arXiv preprint arXiv:2409.11140.

    Importantly, the Rescaled Fashion-MNIST dataset is more challenging than the MNIST Large Scale dataset, introduced in:

    [3] Y. Jansson and T. Lindeberg (2022) "Scale-invariant scale-channel networks: Deep networks that generalise to previously unseen scales", Journal of Mathematical Imaging and Vision, 64(5): 506-536, https://doi.org/10.1007/s10851-022-01082-2.

    Access and rights

    The Rescaled Fashion-MNIST dataset is provided on the condition that you provide proper citation for the original Fashion-MNIST dataset:

    [4] Xiao, H., Rasul, K., and Vollgraf, R. (2017) “Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms”, arXiv preprint arXiv:1708.07747

    and also for this new rescaled version, using the reference [1] above.

    The data set is made available on request. If you would be interested in trying out this data set, please make a request in the system below, and we will grant you access as soon as possible.

    The dataset

    The Rescaled FashionMNIST dataset is generated by rescaling 28Ă—28 gray-scale images of clothes from the original FashionMNIST dataset [4]. The scale variations are up to a factor of 4, and the images are embedded within black images of size 72x72, with the object in the frame always centred. The imresize() function in Matlab was used for the rescaling, with default anti-aliasing turned on, and bicubic interpolation overshoot removed by clipping to the [0, 255] range. The details of how the dataset was created can be found in [1].

    There are 10 different classes in the dataset: “T-shirt/top”, “trouser”, “pullover”, “dress”, “coat”, “sandal”, “shirt”, “sneaker”, “bag” and “ankle boot”. In the dataset, these are represented by integer labels in the range [0, 9].

    The dataset is split into 50 000 training samples, 10 000 validation samples and 10 000 testing samples. The training dataset is generated using the initial 50 000 samples from the original Fashion-MNIST training set. The validation dataset, on the other hand, is formed from the final 10 000 images of that same training set. For testing, all test datasets are built from the 10 000 images contained in the original Fashion-MNIST test set.

    The h5 files containing the dataset

    The training dataset file (~2.9 GB) for scale 1, which also contains the corresponding validation and test data for the same scale, is:

    fashionmnist_with_scale_variations_tr50000_vl10000_te10000_outsize72-72_scte1p000_scte1p000.h5

    Additionally, for the Rescaled FashionMNIST dataset, there are 9 datasets (~415 MB each) for testing scale generalisation at scales not present in the training set. Each of these datasets is rescaled using a different image scaling factor, 2k/4, with k being integers in the range [-4, 4]:

    fashionmnist_with_scale_variations_te10000_outsize72-72_scte0p500.h5
    fashionmnist_with_scale_variations_te10000_outsize72-72_scte0p595.h5
    fashionmnist_with_scale_variations_te10000_outsize72-72_scte0p707.h5
    fashionmnist_with_scale_variations_te10000_outsize72-72_scte0p841.h5
    fashionmnist_with_scale_variations_te10000_outsize72-72_scte1p000.h5
    fashionmnist_with_scale_variations_te10000_outsize72-72_scte1p189.h5
    fashionmnist_with_scale_variations_te10000_outsize72-72_scte1p414.h5
    fashionmnist_with_scale_variations_te10000_outsize72-72_scte1p682.h5
    fashionmnist_with_scale_variations_te10000_outsize72-72_scte2p000.h5

    These dataset files were used for the experiments presented in Figures 6, 7, 14, 16, 19 and 23 in [1].

    Instructions for loading the data set

    The datasets are saved in HDF5 format, with the partitions in the respective h5 files named as
    ('/x_train', '/x_val', '/x_test', '/y_train', '/y_test', '/y_val'); which ones exist depends on which data split is used.

    The training dataset can be loaded in Python as:

    with h5py.File(`

    x_train = np.array( f["/x_train"], dtype=np.float32)
    x_val = np.array( f["/x_val"], dtype=np.float32)
    x_test = np.array( f["/x_test"], dtype=np.float32)
    y_train = np.array( f["/y_train"], dtype=np.int32)
    y_val = np.array( f["/y_val"], dtype=np.int32)
    y_test = np.array( f["/y_test"], dtype=np.int32)

    We also need to permute the data, since Pytorch uses the format [num_samples, channels, width, height], while the data is saved as [num_samples, width, height, channels]:

    x_train = np.transpose(x_train, (0, 3, 1, 2))
    x_val = np.transpose(x_val, (0, 3, 1, 2))
    x_test = np.transpose(x_test, (0, 3, 1, 2))

    The test datasets can be loaded in Python as:

    with h5py.File(`

    x_test = np.array( f["/x_test"], dtype=np.float32)
    y_test = np.array( f["/y_test"], dtype=np.int32)

    The test datasets can be loaded in Matlab as:

    x_test = h5read(`

    The images are stored as [num_samples, x_dim, y_dim, channels] in HDF5 files. The pixel intensity values are not normalised, and are in a [0, 255] range.

    There is also a closely related Fashion-MNIST with translations dataset, which in addition to scaling variations also comprises spatial translations of the objects.

  19. T

    wiki_table_questions

    • tensorflow.org
    Updated Dec 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). wiki_table_questions [Dataset]. https://www.tensorflow.org/datasets/catalog/wiki_table_questions
    Explore at:
    Dataset updated
    Dec 6, 2022
    Description

    The dataset contains pairs table-question, and the respective answer. The questions require multi-step reasoning and various data operations such as comparison, aggregation, and arithmetic computation. The tables were randomly selected among Wikipedia tables with at least 8 rows and 5 columns.

    (As per the documentation usage notes)

    • Dev: Mean accuracy over three (not five) splits of the training data. In other words, train on 'split-{1,2,3}-train' and test on 'split-{1,2,3}-dev', respectively, then average the accuracy.

    • Test: Train on 'train' and test on 'test'.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('wiki_table_questions', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

  20. m

    BSL-Static-48: A Dataset of Anonymized Images and MediaPipe Hand Landmarks...

    • data.mendeley.com
    Updated Oct 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nahid Khan (2025). BSL-Static-48: A Dataset of Anonymized Images and MediaPipe Hand Landmarks for BSL Recognition [Dataset]. http://doi.org/10.17632/ms5phkw8sr.1
    Explore at:
    Dataset updated
    Oct 30, 2025
    Authors
    Nahid Khan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset provides a collection of images and extracted landmark features for 48 fundamental static signs in Bangla Sign Language (BSL), including 38 alphabets and 10 digits (0-9). It was created to support research in isolated sign language recognition (SLR) for BSL and provide a benchmark resource for the research community. In total, the dataset comprises 14,566 raw images, 14,566 mirrored images, and 29,132 processed feature samples.

    Data Contents: The dataset is organized into two main folders: 01_Images: Contains 29,132 images in .jpg format (14,566 raw + 14,566 mirrored). • Raw_Images: Contains 14,566 original images collected from participants. • Mirrored_Images: Contains 14,566 horizontally flipped versions of the raw images for data augmentation purposes. • Privacy Note: Facial regions in all images within this folder have been anonymized (blurred) to protect participant privacy, as formal
    informed consent for sharing identifiable images was not obtained prior to collection.

    02_Processed_Features_NPY: Contains 29,132 126-dimensional hand landmark features saved as NumPy arrays in .npy format. Features were extracted using MediaPipe Holistic (capturing 21 landmarks each for the left and right hands, resulting in 63 + 63 = 126 features per image). These feature files are pre-split into train (23,293 samples), val (2,911 samples), and test (2,928 samples) subdirectories (approximately 80%/10%/10%) for standardized model evaluation and benchmarking .

    Data Collection: Images were collected from 5 volunteers using a Macbook Air M3 camera. Data collection took place indoors under room lighting conditions against a white background. Images were captured manually using a Python script to ensure clarity.

    Potential Use: Researchers can utilize the anonymized raw and mirrored images (01_Images) to develop or test novel feature extraction techniques or multimodal recognition systems. Alternatively, the pre-processed and split .npy feature files (02_Processed_Features_NPY) can be directly used to efficiently train and evaluate machine learning models for static BSL recognition, facilitating reproducible research and benchmarking.

    Further Details: Please refer to the README.md file included within the dataset for detailed class mapping (e.g., L1='অ', D0='০'), comprehensive file statistics per class , specifics on the data processing pipeline, and citation guidelines.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Köhler, Juliane (2022). Data Cleaning, Translation & Split of the Dataset for the Automatic Classification of Documents for the Classification System for the Berliner Handreichungen zur Bibliotheks- und Informationswissenschaft [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6957841

Data Cleaning, Translation & Split of the Dataset for the Automatic Classification of Documents for the Classification System for the Berliner Handreichungen zur Bibliotheks- und Informationswissenschaft

Explore at:
Dataset updated
Aug 8, 2022
Authors
Köhler, Juliane
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Cleaned_Dataset.csv – The combined CSV files of all scraped documents from DABI, e-LiS, o-bib and Springer.

Data_Cleaning.ipynb – The Jupyter Notebook with python code for the analysis and cleaning of the original dataset.

ger_train.csv – The German training set as CSV file.

ger_validation.csv – The German validation set as CSV file.

en_test.csv – The English test set as CSV file.

en_train.csv – The English training set as CSV file.

en_validation.csv – The English validation set as CSV file.

splitting.py – The python code for splitting a dataset into train, test and validation set.

DataSetTrans_de.csv – The final German dataset as a CSV file.

DataSetTrans_en.csv – The final English dataset as a CSV file.

translation.py – The python code for translating the cleaned dataset.

Search
Clear search
Close search
Google apps
Main menu