Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description:
Downsized (256x256) camera trap images used for the analyses in "Can CNN-based species classification generalise across variation in habitat within a camera trap survey?", and the dataset composition for each analysis. Note that images tagged as 'human' have been removed from this dataset. Full-size images for the BorneoCam dataset will be made available at LILA.science. The full SAFE camera trap dataset metadata is available at DOI: 10.5281/zenodo.6627707.
Project: This dataset was collected as part of the following SAFE research project: Machine learning and image recognition to monitor spatio-temporal changes in the behaviour and dynamics of species interactions
Funding: These data were collected as part of research funded by:
This dataset is released under the CC-BY 4.0 licence, requiring that you cite the dataset in any outputs, but has the additional condition that you acknowledge the contribution of these funders in any outputs.
XML metadata: GEMINI compliant metadata for this dataset is available here
Files: This dataset consists of 3 files: CT_image_data_info2.xlsx, DN_256x256_image_files.zip, DN_generalisability_code.zip
CT_image_data_info2.xlsx
This file contains dataset metadata and 1 data tables:
Dataset Images (described in worksheet Dataset_images)
Description: This worksheet details the composition of each dataset used in the analyses
Number of fields: 69
Number of data rows: 270287
Fields:
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This is the public release of the Samsung Open Mean Opinion Scores (SOMOS) dataset for the evaluation of neural text-to-speech (TTS) synthesis, which consists of audio files generated with a public domain voice from trained TTS models based on bibliography, and numbers assigned to each audio as quality (naturalness) evaluations by several crowdsourced listeners.DescriptionThe SOMOS dataset contains 20,000 synthetic utterances (wavs), 100 natural utterances and 374,955 naturalness evaluations (human-assigned scores in the range 1-5). The synthetic utterances are single-speaker, generated by training several Tacotron-like acoustic models and an LPCNet vocoder on the LJ Speech voice public dataset. 2,000 text sentences were synthesized, selected from Blizzard Challenge texts of years 2007-2016, the LJ Speech corpus as well as Wikipedia and general domain data from the Internet.Naturalness evaluations were collected via crowdsourcing a listening test on Amazon Mechanical Turk in the US, GB and CA locales. The records of listening test participants (workers) are fully anonymized. Statistics on the reliability of the scores assigned by the workers are also included, generated through processing the scores and validation controls per submission page.
To listen to audio samples of the dataset, please see our Github page.
The dataset release comes with a carefully designed train-validation-test split (70%-15%-15%) with unseen systems, listeners and texts, which can be used for experimentation on MOS prediction.
This version also contains the necessary resources to obtain the transcripts corresponding to all dataset audios.
Terms of use
The dataset may be used for research purposes only, for non-commercial purposes only, and may be distributed with the same terms.
Every time you produce research that has used this dataset, please cite the dataset appropriately.
Cite as:
@inproceedings{maniati22_interspeech, author={Georgia Maniati and Alexandra Vioni and Nikolaos Ellinas and Karolos Nikitaras and Konstantinos Klapsas and June Sig Sung and Gunu Jho and Aimilios Chalamandaris and Pirros Tsiakoulis}, title={{SOMOS: The Samsung Open MOS Dataset for the Evaluation of Neural Text-to-Speech Synthesis}}, year=2022, booktitle={Proc. Interspeech 2022}, pages={2388--2392}, doi={10.21437/Interspeech.2022-10922} }
References of resources & models used
Voice & synthesized texts:K. Ito and L. Johnson, “The LJ Speech Dataset,” https://keithito.com/LJ-Speech-Dataset/, 2017.
Vocoder:J.-M. Valin and J. Skoglund, “LPCNet: Improving neural speech synthesis through linear prediction,” in Proc. ICASSP, 2019.R. Vipperla, S. Park, K. Choo, S. Ishtiaq, K. Min, S. Bhattacharya, A. Mehrotra, A. G. C. P. Ramos, and N. D. Lane, “Bunched lpcnet: Vocoder for low-cost neural text-to-speech systems,” in Proc. Interspeech, 2020.
Acoustic models:N. Ellinas, G. Vamvoukakis, K. Markopoulos, A. Chalamandaris, G. Maniati, P. Kakoulidis, S. Raptis, J. S. Sung, H. Park, and P. Tsiakoulis, “High quality streaming speech synthesis with low, sentence-length-independent latency,” in Proc. Interspeech, 2020.Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly, Z. Yang, Y. Xiao, Z. Chen, S. Bengio et al., “Tacotron: Towards End-to-End Speech Synthesis,” in Proc. Interspeech, 2017.J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen, Y. Zhang, Y. Wang, R. Skerrv-Ryan et al., “Natural TTS Synthesis by Conditioning Wavenet on MEL Spectrogram Predictions,” in Proc. ICASSP, 2018.J. Shen, Y. Jia, M. Chrzanowski, Y. Zhang, I. Elias, H. Zen, and Y. Wu, “Non-Attentive Tacotron: Robust and Controllable Neural TTS Synthesis Including Unsupervised Duration Modeling,” arXiv preprint arXiv:2010.04301, 2020.M. Honnibal and M. Johnson, “An Improved Non-monotonic Transition System for Dependency Parsing,” in Proc. EMNLP, 2015.M. Dominguez, P. L. Rohrer, and J. Soler-Company, “PyToBI: A Toolkit for ToBI Labeling Under Python,” in Proc. Interspeech, 2019.Y. Zou, S. Liu, X. Yin, H. Lin, C. Wang, H. Zhang, and Z. Ma, “Fine-grained prosody modeling in neural speech synthesis using ToBI representation,” in Proc. Interspeech, 2021.K. Klapsas, N. Ellinas, J. S. Sung, H. Park, and S. Raptis, “WordLevel Style Control for Expressive, Non-attentive Speech Synthesis,” in Proc. SPECOM, 2021.T. Raitio, R. Rasipuram, and D. Castellani, “Controllable neural text-to-speech synthesis using intuitive prosodic features,” in Proc. Interspeech, 2020.
Synthesized texts from the Blizzard Challenges 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2016:M. Fraser and S. King, "The Blizzard Challenge 2007," in Proc. SSW6, 2007.V. Karaiskos, S. King, R. A. Clark, and C. Mayo, "The Blizzard Challenge 2008," in Proc. Blizzard Challenge Workshop, 2008.A. W. Black, S. King, and K. Tokuda, "The Blizzard Challenge 2009," in Proc. Blizzard Challenge, 2009.S. King and V. Karaiskos, "The Blizzard Challenge 2010," 2010.S. King and V. Karaiskos, "The Blizzard Challenge 2011," 2011.S. King and V. Karaiskos, "The Blizzard Challenge 2012," 2012.S. King and V. Karaiskos, "The Blizzard Challenge 2013," 2013.S. King and V. Karaiskos, "The Blizzard Challenge 2016," 2016.
Contact
Alexandra Vioni - a.vioni@samsung.com
If you have any questions or comments about the dataset, please feel free to write to us.
We are interested in knowing if you find our dataset useful! If you use our dataset, please email us and tell us about your research.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
physioDL: A dataset for geomorphic deep learning representing a scene classification task (predict physiographic region in which a hilshade occurs)Purpose: Datasets for geomorphic deep learning. Predict the physiographic region of an area based on a hillshade image. Terrain data were derived from the 30 m (1 arc-second) 3DEP product across the entirety of CONUS. Each chip has a spatial resolution of 30 m and 256 rows and columns of pixels. As a result, each chip measures 7,680 meters-by-7,680 meters. Two datasets are provided. Chips in the hs folder represent a multidirectional hillshade while chips in the ths folder represent a tinted multidirectional hillshade. Data are represented in 8-bit (0 to 255 scale, integer values). Data are projected to the Web Mercator projection relative to the WGS84 datum. Data were split into training, test, and validation partitions using stratified random sampling by region. 70% of the samples per region were selected for training, 15% for testing, and 15% for validation. There are a total of 16,325 chips. The following 22 physiographic regions are represented: "ADIRONDACK" , "APPALACHIAN PLATEAUS", "BASIN AND RANGE", "BLUE RIDGE", "CASCADE-SIERRA MOUNTAINS", "CENTRAL LOWLAND", "COASTAL PLAIN", "COLORADO PLATEAUS", "COLUMBIA PLATEAU", "GREAT PLAINS", "INTERIOR LOW PLATEAUS", "MIDDLE ROCKY MOUNTAINS", "NEW ENGLAND", "NORTHERN ROCKY MOUNTAINS", "OUACHITA", "OZARK PLATEAUS", "PACIFIC BORDER", and "PIEDMONT", "SOUTHERN ROCKY MOUNTAINS", "SUPERIOR UPLAND", "VALLEY AND RIDGE", "WYOMING BASIN". Input digital terrain models and hillshades are not provided due to the large file size (> 100GB). FilesphysioDL.csv: Table listing all image chips and associated physiographic region (id = unique ID for each chip; region = physiographic region; fnameHS = file name of associated chip in hs folder; fnameTHS = file name of associated chip in ths folder; set = data split (train, test, or validation).chipCounts.csv: Number of chips in each data partition per physiographic province. map.png: Map of data.makeChips.R: R script used to process the data into image chips and create CSV files.inputVectorschipBounds.shp = square extent of each chipchipCenters.shp = center coordinate of each chipprovinces.shp = physiographic provincesprovinces10km.shp = physiographic provinces with a 10 km negative buffer
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Reference Paper:
M. Bechini, M. Lavagna, P. Lunghi, Dataset generation and validation for spacecraft pose estimation via monocular images processing, Acta Astronautica 204 (2023) 358–369
M. Bechini, P. Lunghi, M. Lavagna. "Spacecraft Pose Estimation via Monocular Image Processing: Dataset Generation and Validation". In 9th European Conference for Aeronautics and Aerospace Sciences (EUCASS)
General Description:
The "Tango Spacecraft Dataset for Region of Interest Estimation and Semantic Segmentation" dataset here published should be used for Region of Interest (ROI) and/or semantic segmentation tasks. It is split into 30002 train images and 3002 test images representing the Tango spacecraft from Prisma mission, being the largest publicly available dataset of synthetic space-borne noise-free images tailored to ROI extraction and Semantic Segmentation tasks (up to our knowledge). The label of each image gives, for the Bounding Box annotations, the filename of the image, the ROI top-left corner (minimum x, minimum y) in pixels, the ROI bottom-right corner (maximum x, maximum y) in pixels, and the center point of the ROI in pixels. The annotation are taken in image reference frame with the origin located at the top-left corner of the image, positive x rightward and positive y downward. Concerning the Semantic Segmentation, RGB masks are provided. Each RGB mask correspond to a single image in both train and test dataset. The RGB images are such that the R channel corresponds to the spacecraft, the G channel corresponds to the Earth (if present), and the B channel corresponds to the background (deep space). Per each channel the pixels have non-zero value only in correspondence of the object that they represent (Tango, Earth, Deep Space). More information on the dataset split and on the label format are reported below.
Images Information:
The dataset comprises 30002 synthetic grayscale images of Tango spacecraft from Prisma mission that serves as train set, while the test set is formed by 3002 synthetic grayscale images of Tango spacecraft from Prisma mission in PNG format. About 1/6 of the images both in the train and in the test set have a non-black background, obtained by rendering an Earth-like model in the raytracing process used to define the images reported. The images are noise-free to increase the flexibility of the dataset. The illumination direction of the spacecraft in the scene is uniformly distributed in the 3D space in agreement with the Sun position constraints.
Labels Information:
Labels for the bounding box extraction are here provided in separated JSON files. The files are formatted per each image as in the following example:
filename : tango_img_1 # name of the image to which the data are referred
rol_tl : [x, y] # ROI top-left corner (minimum x, minimum y) in pixels
roi_br : [x, y] # ROI bottom-right corner (maximum x, maximum y) in pixels
roi_cc : [x, y] # center point of the ROI in pixels
Notice that the annotation are taken in image reference frame with the origin located at the top-left corner of the image, positive x rightward and positive y downward.To make the usage of the dataset easier, both the training set and the test set are split in two folders containing the images with earth as background and without background.
Concerning the Semantic Segmentation Labels, they are provided as RGB masks named as "filename_mask.png" where "filename" is the filename of the image of the training set or the test set to which a specific mask is referred. The RGB images are such that the R channel corresponds to the spacecraft, the G channel corresponds to the Earth (if present), and the B channel corresponds to the background (deep space). Per each channel the pixels have non-zero value only in correspondence of the object that they represent (Tango, Earth, Deep Space).
VERSION CONTROL
v1.0: This version contains the dataset (both train and test) of full scale images with ROI annotations and RGB masks for Semantic Segmentation tasks. These images have width=height=1024 pixels. The position of tango with respect to the camera is randomly selected from a uniform distribution, but it is ensured the full visibility in all the images.
Note: this dataset contains the same images of the "Tango Spacecraft Wireframe Dataset Model for Line Segments Detection" v2.0 full-scale (DOI: https://doi.org/10.5281/zenodo.6372848) and also "Tango Spacecraft Dataset for Monocular Pose Estimation" v1.0 (DOI: https://doi.org/10.5281/zenodo.6499007) and they can be used together by combining the annotations of the relative pose and the ones of the reprojected wireframe model of Tango, with also the ones of the ROI. These three datasets give the most comprehensive dataset of space borne synthetic images ever published (up to our knowledge).
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
ContextProbing tasks are popular among NLP researchers to assess the richness of the encoded representations of linguistic information. Each probing task is a classification problem, and the model’s performance shall vary depending on the richness of the linguistic properties crammed into the representation.
This dataset contains five new probing datasets consist of noisy texts (Tweets) which can serve as a benchmark dataset for researchers to study the linguistic characteristics of unstructured and noisy texts.File StructureFormat: A tab-separated text file
Column 1: train/test/validation split (tr-train, te-test, va-validation)
Column 2: class label (refer to the content
section for the class labels of each task file)
Column 3: Tweet message (text)
Column
4: a unique ID Contentsent_len.tsvIn this classification task, the goal is to predict the sentence length in 8 possible bins (0-7) based on their lengths; 0: (5-8), 1: (9-12), 2: (13-16), 3: (17-20), 4: (21-25), 5: (26-29), 6: (30-33), 7: (34-70). This task is called “SentLen” in the paper.word_content.tsvWe consider a 10-way classifications task with 10 words as targets considering the available manually annotated instances. The task is predicting which of the target words appears on the given sentence. We have considered only the words that appear in the BERT vocabulary as target words. We constructed the data by picking the first 10 lower-cased words occurring in the corpus vocabulary ordered by frequency and having a length of at least 4 characters (to remove noise). Each sentence contains a single target word, and the word occurs precisely once in the sentence. The task is referred to as “WC” in the paper. bigram_shift.tsvThe purpose of the Bigram Shift task is to test whether an encoder is sensitive to legal word orders. Two adjacent words in a Tweet are inverted, and the classification model performs a binary classification to identify inverted (I) and non-inverted/original (O) Tweets. The task is referred to as “BShift” in the paper. tree_depth.tsvThe Tree Depth task evaluates the encoded sentence's ability to understand the hierarchical structure by allowing the classification model to predict the depth of the longest path from the root to any leaf in the Tweet's parser tree. The task is referred to as “TreeDepth” in the paper. odd_man_out.tsv
The Tweets are modified by replacing a random noun or a verb o with another noun or verb r. The task of the classifier is to identify whether the sentence gets modified due to this change. Class label O refers to the unmodified sentences while C refers to modified sentences. The task is called “SOMO” in the paper.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Processed data and code for "Transfer learning reveals sequence determinants of the quantitative response to transcription factor dosage," Naqvi et al 2024.
Directory is organized into 4 subfolders, each tar'ed and gzipped:
data_analysis.tar.gz - Processed data for modulation of TWIST1 levels and calculation of RE responsiveness to TWIST1 dosage
baseline_models.tar.gz - Code and data for training baseline models to predict RE responsiveness to SOX9/TWIST1 dosage
chrombpnet_models.tar.gz - Remainder of code, data, and models for fine-tuning and interpreting ChromBPNet mdoels to predict RE responsiveness to SOX9/TWIST1 dosage
modisco_reports.zip - TF-MoDIsCo reports from running on the fine-tuned ChromBPNet models
mirny_model.tar.gz - Code and data for analyzing and fitting Mirny model of TF-nucleosome competition to observed RE dosage response curves
Description:
This dataset was created to serve as an easy-to-use image dataset, perfect for experimenting with object detection algorithms. The main goal was to provide a simplified dataset that allows for quick setup and minimal effort in exploratory data analysis (EDA). This dataset is ideal for users who want to test and compare object detection models without spending too much time navigating complex data structures. Unlike datasets like chest x-rays, which require expert interpretation to evaluate model performance, the simplicity of balloon detection enables users to visually verify predictions without domain expertise.
The original Balloon dataset was more complex, as it was split into separate training and testing sets, with annotations stored in two separate JSON files. To streamline the experience, this updated version of the dataset merges all images into a single folder and replaces the JSON annotations with a single, easy-to-use CSV file. This new format ensures that the dataset can be loaded seamlessly with tools like Pandas, simplifying the workflow for researchers and developers.
Download Dataset
The dataset contains a total of 74 high-quality JPG images. Each featuring one or more balloons in different scenes and contexts. Accompanying the images is a CSV file that provides annotation data. Such as bounding box coordinates and labels for each balloon within the images. This structure makes the dataset easily accessible for a range of machine learning and computer vision tasks. Including object detection and image classification. The dataset is versatile and can be used to test algorithms like YOLO, Faster R-CNN, SSD, or other popular object detection models.
Key Features:
Image Format: 74 JPG images, ensuring high compatibility with most machine learning frameworks.
Annotations: A single CSV file that contains structure data. Including bounding box coordinates, class labels, and image file names, which can be load with Python libraries like Pandas.
Simplicity: Design for users to quickly start training object detection models without needing to preprocess or deeply explore the dataset.
Variety: The images feature balloons in various sizes, colors, and scenes, making it suitable for testing the robustness of detection models.
This dataset is sourced from Kaggle.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is a subsampled version of the STEAD dataset, specifically tailored for training our CDiffSD model (Cold Diffusion for Seismic Denoising). It consists of four HDF5 files, each saved in a format that requires Python's `h5py` method for opening.
The dataset includes the following files:
Each file is structured to support the training and evaluation of seismic denoising models.
The HDF5 files named noise contain two main datasets:
Similarly, the train and test files, which contain earthquake data, include the same traces and metadata datasets, but also feature two additional datasets:
To load these files in a Python environment, use the following approach:
```python
import h5py
import numpy as np
# Open the HDF5 file in read mode
with h5py.File('train_noise.hdf5', 'r') as file:
# Print all the main keys in the file
print("Keys in the HDF5 file:", list(file.keys()))
if 'traces' in file:
# Access the dataset
data = file['traces'][:10] # Load the first 10 traces
if 'metadata' in file:
# Access the dataset
trace_name = file['metadata'][:10] # Load the first 10 metadata entries```
Ensure that the path to the file is correctly specified relative to your Python script.
To use this dataset, ensure you have Python installed along with the Pandas library, which can be installed via pip if not already available:
```bash
pip install numpy
pip install h5py
```
This dataset consists of mathematical question and answer pairs, from a range of question types at roughly school-level difficulty. This is designed to test the mathematical learning and algebraic reasoning skills of learning models.
## Example questions
Question: Solve -42*r + 27*c = -1167 and 130*r + 4*c = 372 for r.
Answer: 4
Question: Calculate -841880142.544 + 411127.
Answer: -841469015.544
Question: Let x(g) = 9*g + 1. Let q(c) = 2*c + 1. Let f(i) = 3*i - 39. Let w(j) = q(x(j)). Calculate f(w(a)).
Answer: 54*a - 30
It contains 2 million (question, answer) pairs per module, with questions limited to 160 characters in length, and answers to 30 characters in length. Note the training data for each question type is split into "train-easy", "train-medium", and "train-hard". This allows training models via a curriculum. The data can also be mixed together uniformly from these training datasets to obtain the results reported in the paper. Categories:
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Welcome to the resting state EEG dataset collected at the University of San Diego and curated by Alex Rockhill at the University of Oregon.
Please email arockhil@uoregon.edu before submitting a manuscript to be published in a peer-reviewed journal using this data, we wish to ensure that the data to be analyzed and interpreted with scientific integrity so as not to mislead the public about findings that may have clinical relevance. The purpose of this is to be responsible stewards of the data without an "available upon reasonable request" clause that we feel doesn't fully represent the open-source, reproducible ethos. The data is freely available to download so we cannot stop your publication if we don't support your methods and interpretation of findings, however, in being good data stewards, we would like to offer suggestions in the pre-publication stage so as to reduce conflict in published scientific literature. As far as credit, there is precedent for receiving a mention in the acknowledgements section for reading and providing feedback on the paper or, for more involved consulting, being included as an author may be warranted. The purpose of asking for this is not to inflate our number of authorships; we take ethical considerations of the best way to handle intellectual property in the form of manuscripts very seriously, and, again, sharing is at the discretion of the author although we strongly recommend it. Please be ethical and considerate in your use of this data and all open-source data and be sure to credit authors by citing them.
An example of an analysis that we could consider problematic and would strongly advice to be corrected before submission to a publication would be using machine learning to classify Parkinson's patients from healthy controls using this dataset. This is because there are far too few patients for proper statistics. Parkinson's disease presents heterogeneously across patients, and, with a proper test-training split, there would be fewer than 8 patients in the testing set. Statistics on 8 or fewer patients for such a complicated diease would be inaccurate due to having too small of a sample size. Furthermore, if multiple machine learning algorithms were desired to be tested, a third split would be required to choose the best method, further lowering the number of patients in the testing set. We strongly advise against using any such approach because it would mislead patients and people who are interested in knowing if they have Parkinson's disease.
Note that UPDRS rating scales were collected by laboratory personnel who had completed online training and not a board-certified neurologist. Results should be interpreted accordingly, especially that analyses based largely on these ratings should be taken with the appropriate amount of uncertainty.
In addition to contacting the aforementioned email, please cite the following papers:
Nicko Jackson, Scott R. Cole, Bradley Voytek, Nicole C. Swann. Characteristics of Waveform Shape in Parkinson's Disease Detected with Scalp Electroencephalography. eNeuro 20 May 2019, 6 (3) ENEURO.0151-19.2019; DOI: 10.1523/ENEURO.0151-19.2019.
Swann NC, de Hemptinne C, Aron AR, Ostrem JL, Knight RT, Starr PA. Elevated synchrony in Parkinson disease detected with electroencephalography. Ann Neurol. 2015 Nov;78(5):742-50. doi: 10.1002/ana.24507. Epub 2015 Sep 2. PMID: 26290353; PMCID: PMC4623949.
George JS, Strunk J, Mak-McCully R, Houser M, Poizner H, Aron AR. Dopaminergic therapy in Parkinson's disease decreases cortical beta band coherence in the resting state and increases cortical beta band power during executive control. Neuroimage Clin. 2013 Aug 8;3:261-70. doi: 10.1016/j.nicl.2013.07.013. PMID: 24273711; PMCID: PMC3814961.
Appelhoff, S., Sanderson, M., Brooks, T., Vliet, M., Quentin, R., Holdgraf, C., Chaumon, M., Mikulan, E., Tavabi, K., Höchenberger, R., Welke, D., Brunner, C., Rockhill, A., Larson, E., Gramfort, A. and Jas, M. (2019). MNE-BIDS: Organizing electrophysiological data into the BIDS format and facilitating their analysis. Journal of Open Source Software 4: (1896).
Pernet, C. R., Appelhoff, S., Gorgolewski, K. J., Flandin, G., Phillips, C., Delorme, A., Oostenveld, R. (2019). EEG-BIDS, an extension to the brain imaging data structure for electroencephalography. Scientific Data, 6, 103. https://doi.org/10.1038/s41597-019-0104-8.
Note: see this discussion on the structure of the json files that is sufficient but not optimal and will hopefully be changed in future versions of BIDS: https://neurostars.org/t/behavior-metadata-without-tsv-event-data-related-to-a-neuroimaging-data/6768/25.
The goal of introducing the Rescaled Fashion-MNIST dataset is to provide a dataset that contains scale variations (up to a factor of 4), to evaluate the ability of networks to generalise to scales not present in the training data.
The Rescaled Fashion-MNIST dataset was introduced in the paper:
[1] A. Perzanowski and T. Lindeberg (2025) "Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations”, Journal of Mathematical Imaging and Vision, to appear.
with a pre-print available at arXiv:
[2] Perzanowski and Lindeberg (2024) "Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations”, arXiv preprint arXiv:2409.11140.
Importantly, the Rescaled Fashion-MNIST dataset is more challenging than the MNIST Large Scale dataset, introduced in:
[3] Y. Jansson and T. Lindeberg (2022) "Scale-invariant scale-channel networks: Deep networks that generalise to previously unseen scales", Journal of Mathematical Imaging and Vision, 64(5): 506-536, https://doi.org/10.1007/s10851-022-01082-2.
The Rescaled Fashion-MNIST dataset is provided on the condition that you provide proper citation for the original Fashion-MNIST dataset:
[4] Xiao, H., Rasul, K., and Vollgraf, R. (2017) “Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms”, arXiv preprint arXiv:1708.07747
and also for this new rescaled version, using the reference [1] above.
The data set is made available on request. If you would be interested in trying out this data set, please make a request in the system below, and we will grant you access as soon as possible.
The Rescaled FashionMNIST dataset is generated by rescaling 28×28 gray-scale images of clothes from the original FashionMNIST dataset [4]. The scale variations are up to a factor of 4, and the images are embedded within black images of size 72x72, with the object in the frame always centred. The imresize() function in Matlab was used for the rescaling, with default anti-aliasing turned on, and bicubic interpolation overshoot removed by clipping to the [0, 255] range. The details of how the dataset was created can be found in [1].
There are 10 different classes in the dataset: “T-shirt/top”, “trouser”, “pullover”, “dress”, “coat”, “sandal”, “shirt”, “sneaker”, “bag” and “ankle boot”. In the dataset, these are represented by integer labels in the range [0, 9].
The dataset is split into 50 000 training samples, 10 000 validation samples and 10 000 testing samples. The training dataset is generated using the initial 50 000 samples from the original Fashion-MNIST training set. The validation dataset, on the other hand, is formed from the final 10 000 images of that same training set. For testing, all test datasets are built from the 10 000 images contained in the original Fashion-MNIST test set.
The training dataset file (~2.9 GB) for scale 1, which also contains the corresponding validation and test data for the same scale, is:
fashionmnist_with_scale_variations_tr50000_vl10000_te10000_outsize72-72_scte1p000_scte1p000.h5
Additionally, for the Rescaled FashionMNIST dataset, there are 9 datasets (~415 MB each) for testing scale generalisation at scales not present in the training set. Each of these datasets is rescaled using a different image scaling factor, 2k/4, with k being integers in the range [-4, 4]:
fashionmnist_with_scale_variations_te10000_outsize72-72_scte0p500.h5
fashionmnist_with_scale_variations_te10000_outsize72-72_scte0p595.h5
fashionmnist_with_scale_variations_te10000_outsize72-72_scte0p707.h5
fashionmnist_with_scale_variations_te10000_outsize72-72_scte0p841.h5
fashionmnist_with_scale_variations_te10000_outsize72-72_scte1p000.h5
fashionmnist_with_scale_variations_te10000_outsize72-72_scte1p189.h5
fashionmnist_with_scale_variations_te10000_outsize72-72_scte1p414.h5
fashionmnist_with_scale_variations_te10000_outsize72-72_scte1p682.h5
fashionmnist_with_scale_variations_te10000_outsize72-72_scte2p000.h5
These dataset files were used for the experiments presented in Figures 6, 7, 14, 16, 19 and 23 in [1].
The datasets are saved in HDF5 format, with the partitions in the respective h5 files named as
('/x_train', '/x_val', '/x_test', '/y_train', '/y_test', '/y_val'); which ones exist depends on which data split is used.
The training dataset can be loaded in Python as:
with h5py.File(`
x_train = np.array( f["/x_train"], dtype=np.float32)
x_val = np.array( f["/x_val"], dtype=np.float32)
x_test = np.array( f["/x_test"], dtype=np.float32)
y_train = np.array( f["/y_train"], dtype=np.int32)
y_val = np.array( f["/y_val"], dtype=np.int32)
y_test = np.array( f["/y_test"], dtype=np.int32)
We also need to permute the data, since Pytorch uses the format [num_samples, channels, width, height], while the data is saved as [num_samples, width, height, channels]:
x_train = np.transpose(x_train, (0, 3, 1, 2))
x_val = np.transpose(x_val, (0, 3, 1, 2))
x_test = np.transpose(x_test, (0, 3, 1, 2))
The test datasets can be loaded in Python as:
with h5py.File(`
x_test = np.array( f["/x_test"], dtype=np.float32)
y_test = np.array( f["/y_test"], dtype=np.int32)
The test datasets can be loaded in Matlab as:
x_test = h5read(`
The images are stored as [num_samples, x_dim, y_dim, channels] in HDF5 files. The pixel intensity values are not normalised, and are in a [0, 255] range.
There is also a closely related Fashion-MNIST with translations dataset, which in addition to scaling variations also comprises spatial translations of the objects.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The data used in this paper is from the 16th issue of SDSS. SDSS-DR16 contains a total of 930,268 photometric images, with 1.2 billion observation sources and tens of millions of spectra. The data obtained in this paper is downloaded from the official website of SDSS. Specifically, the data is obtained through the SkyServerAPI structure by using SQL query statements in the subwebsite CasJobs. As the current SDSS photometric table PhotoObj can only classify all observed sources as point sources and surface sources, the target sources can be better classified as galaxies, stars and quasars through spectra. Therefore, we obtain calibrated sources in CasJobs by crossing SpecPhoto with the PhotoObj star list, and obtain target position information (right ascension and declination). Calibrated sources can tell them apart precisely and quickly. Each calibrated source is labeled with the parameter "Class" as "galaxy", "star", or "quasar". In this paper, observation day area 3462, 3478, 3530 and other 4 areas in SDSS-DR16 are selected as experimental data, because a large number of sources can be obtained in these areas to provide rich sample data for the experiment. For example, there are 9891 sources in the 3462-day area, including 2790 galactic sources, 2378 stellar sources and 4723 quasar sources. There are 3862 sources in the 3478 day area, including 1759 galactic sources, 577 stellar sources and 1526 quasar sources. FITS files are a commonly used data format in the astronomical community. By cross-matching the star list and FITS files in the local celestial region, we obtained images of 5 bands of u, g, r, i and z of 12499 galaxy sources, 16914 quasar sources and 16908 star sources as training and testing data.1.1 Image SynthesisSDSS photometric data includes photometric images of five bands u, g, r, i and z, and these photometric image data are respectively packaged in single-band format in FITS files. Images of different bands contain different information. Since the three bands g, r and i contain more feature information and less noise, Astronomical researchers typically use the g, r, and i bands corresponding to the R, G, and B channels of the image to synthesize photometric images. Generally, different bands cannot be directly synthesized. If three bands are directly synthesized, the image of different bands may not be aligned. Therefore, this paper adopts the RGB multi-band image synthesis software written by He Zhendong et al. to synthesize images in g, r and i bands. This method effectively avoids the problem that images in different bands cannot be aligned. The pixel of each photometry image in this paper is 2048×1489.1.2 Data tailoringThis paper first clipped the target image, image clipping can use image segmentation tools to solve this problem, this paper uses Python to achieve this process. In the process of clipping, we convert the right ascension and declination of the source in the star list into pixel coordinates on the photometric image through the coordinate conversion formula, and determine the specific position of the source through the pixel coordinates. The coordinates are regarded as the center point and clipping is carried out in the form of a rectangular box. We found that the input image size affects the experimental results. Therefore, according to the target size of the source, we selected three different cutting sizes, 40×40, 60×60 and 80×80 respectively. Through experiment and analysis, we find that convolutional neural network has better learning ability and higher accuracy for data with small image size. In the end, we chose to divide the surface source galaxies, point source quasars, and stars into 40×40 sizes.1.3 Division of training and test dataIn order to make the algorithm have more accurate recognition performance, we need enough image samples. The selection of training set, verification set and test set is an important factor affecting the final recognition accuracy. In this paper, the training set, verification set and test set are set according to the ratio of 8:1:1. The purpose of verification set is used to revise the algorithm, and the purpose of test set is used to evaluate the generalization ability of the final algorithm. Table 1 shows the specific data partitioning information. The total sample size is 34,000 source images, including 11543 galaxy sources, 11967 star sources, and 10490 quasar sources.1.4 Data preprocessingIn this experiment, the training set and test set can be used as the training and test input of the algorithm after data preprocessing. The data quantity and quality largely determine the recognition performance of the algorithm. The pre-processing of the training set and the test set are different. In the training set, we first perform vertical flip, horizontal flip and scale on the cropped image to enrich the data samples and enhance the generalization ability of the algorithm. Since the features in the celestial object source have the flip invariability, the labels of galaxies, stars and quasars will not change after rotation. In the test set, our preprocessing process is relatively simple compared with the training set. We carry out simple scaling processing on the input image and test input the obtained image.
Dataset contains light curves of 6 rocket body types from Mini Mega Tortora database (MMT)1. The dataset was created to be used as a benchmark for rocket body light curve classification. For more informations follow the original paper: RoBo6: Standardized MMT Light Curve Dataset for Rocket Body Classification2
Class labels: - ARIANE 5 R/B - ATLAS 5 CENTAUR R/B - CZ-3B R/B - DELTA 4 R/B - FALCON 9 R/B - H-2A R/B
Dataset description Usage ```python
from datasets import load_dataset
dataset = load_dataset("kyselica/RoBo6", data_files={"train": "train.csv", "test": "test.csv"}) dataset DatasetDict({ train: Dataset({ features: ['label', ' id', ' part', ' period', ' mag', ' phase', ' time'], num_rows: 5676 }) test: Dataset({ features: ['label', ' id', ' part', ' period', ' mag', ' phase', ' time'], num_rows: 1404 }) }) ```
label - class name id - unique identifier of the light curve from MMT part - part number of the light curve period - rotational period of the object mag - relative path to the magnitude values file phase - relative path to the phase values file time - relative path to the time values file
Mean and standard deviation of magnitudes are stored in mean_std.csv file.
File structure
data directory contains 5 subdirectories, one for each class. Light curves are stored in file triplets in the following format:
where
MMT Rocket Bodies ├── README.md ├── train.csv ├── test.csv ├── mean_std.csv ├── data │ ├── ARIANE 5 R_B │ │ ├──
Data preprocessing To create data sutable for both CNN and RNN based models, the light curves were preprocessed in the following way:
Split the light curves if the gap between two consecutive measurements is larger than object's rotational period. Split the light curves to have maximum span 1_000 seconds. Filter out light curves which folded form divided into 100 bins has more than 25% of bins empty. Resample the light curves to 10_000 points with step 0.1 seconds. Filter out light curves with less than 100 measurements.
Citation @article{kyselica2024robo6, title={RoBo6: Standardized MMT Light Curve Dataset for Rocket Body Classification}, author={Kyselica, Daniel and {\v{S}}uppa, Marek and {\v{S}}ilha, Ji{\v{r}}{\'\i} and {\v{D}}urikovi{\v{c}}, Roman}, journal={arXiv preprint arXiv:2412.00544}, year={2024} }
References
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository contains the Wallhack1.8k dataset for WiFi-based long-range activity recognition in Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS)/Through-Wall scenarios, as proposed in [1,2], as well as the CAD models (of 3D-printable parts) of the WiFi systems proposed in [2].
PyTroch Dataloader
A minimal PyTorch dataloader for the Wallhack1.8k dataset is provided at: https://github.com/StrohmayerJ/wallhack1.8k
Dataset Description
The Wallhack1.8k dataset comprises 1,806 CSI amplitude spectrograms (and raw WiFi packet time series) corresponding to three activity classes: "no presence," "walking," and "walking + arm-waving." WiFi packets were transmitted at a frequency of 100 Hz, and each spectrogram captures a temporal context of approximately 4 seconds (400 WiFi packets).
To assess cross-scenario and cross-system generalization, WiFi packet sequences were collected in LoS and through-wall (NLoS) scenarios, utilizing two different WiFi systems (BQ: biquad antenna and PIFA: printed inverted-F antenna). The dataset is structured accordingly:
LOS/BQ/ <- WiFi packets collected in the LoS scenario using the BQ system
LOS/PIFA/ <- WiFi packets collected in the LoS scenario using the PIFA system
NLOS/BQ/ <- WiFi packets collected in the NLoS scenario using the BQ system
NLOS/PIFA/ <- WiFi packets collected in the NLoS scenario using the PIFA system
These directories contain the raw WiFi packet time series (see Table 1). Each row represents a single WiFi packet with the complex CSI vector H being stored in the "data" field and the class label being stored in the "class" field. H is of the form [I, R, I, R, ..., I, R], where two consecutive entries represent imaginary and real parts of complex numbers (the Channel Frequency Responses of subcarriers). Taking the absolute value of H (e.g., via numpy.abs(H)) yields the subcarrier amplitudes A.
To extract the 52 L-LTF subcarriers used in [1], the following indices of A are to be selected:
csi_valid_subcarrier_index = [] csi_valid_subcarrier_index += [i for i in range(6, 32)] csi_valid_subcarrier_index += [i for i in range(33, 59)]
Additional 56 HT-LTF subcarriers can be selected via:
csi_valid_subcarrier_index += [i for i in range(66, 94)]
csi_valid_subcarrier_index += [i for i in range(95, 123)]
For more details on subcarrier selection, see ESP-IDF (Section Wi-Fi Channel State Information) and esp-csi.
Extracted amplitude spectrograms with the corresponding label files of the train/validation/test split: "trainLabels.csv," "validationLabels.csv," and "testLabels.csv," can be found in the spectrograms/ directory.
The columns in the label files correspond to the following: [Spectrogram index, Class label, Room label]
Spectrogram index: [0, ..., n]
Class label: [0,1,2], where 0 = "no presence", 1 = "walking", and 2 = "walking + arm-waving."
Room label: [0,1,2,3,4,5], where labels 1-5 correspond to the room number in the NLoS scenario (see Fig. 3 in [1]). The label 0 corresponds to no room and is used for the "no presence" class.
Dataset Overview:
Table 1: Raw WiFi packet sequences.
Scenario System "no presence" / label 0 "walking" / label 1 "walking + arm-waving" / label 2 Total
LoS BQ b1.csv w1.csv, w2.csv, w3.csv, w4.csv and w5.csv ww1.csv, ww2.csv, ww3.csv, ww4.csv and ww5.csv
LoS PIFA b1.csv w1.csv, w2.csv, w3.csv, w4.csv and w5.csv ww1.csv, ww2.csv, ww3.csv, ww4.csv and ww5.csv
NLoS BQ b1.csv w1.csv, w2.csv, w3.csv, w4.csv and w5.csv ww1.csv, ww2.csv, ww3.csv, ww4.csv and ww5.csv
NLoS PIFA b1.csv w1.csv, w2.csv, w3.csv, w4.csv and w5.csv ww1.csv, ww2.csv, ww3.csv, ww4.csv and ww5.csv
4 20 20 44
Table 2: Sample/Spectrogram distribution across activity classes in Wallhack1.8k.
Scenario System
"no presence" / label 0
"walking" / label 1
"walking + arm-waving" / label 2 Total
LoS BQ 149 154 155
LoS PIFA 149 160 152
NLoS BQ 148 150 152
NLoS PIFA 143 147 147
589 611 606 1,806
Download and UseThis data may be used for non-commercial research purposes only. If you publish material based on this data, we request that you include a reference to one of our papers [1,2].
[1] Strohmayer, Julian, and Martin Kampel. (2024). “Data Augmentation Techniques for Cross-Domain WiFi CSI-Based Human Activity Recognition”, In IFIP International Conference on Artificial Intelligence Applications and Innovations (pp. 42-56). Cham: Springer Nature Switzerland, doi: https://doi.org/10.1007/978-3-031-63211-2_4.
[2] Strohmayer, Julian, and Martin Kampel., “Directional Antenna Systems for Long-Range Through-Wall Human Activity Recognition,” 2024 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 2024, pp. 3594-3599, doi: https://doi.org/10.1109/ICIP51287.2024.10647666.
BibTeX citations:
@inproceedings{strohmayer2024data, title={Data Augmentation Techniques for Cross-Domain WiFi CSI-Based Human Activity Recognition}, author={Strohmayer, Julian and Kampel, Martin}, booktitle={IFIP International Conference on Artificial Intelligence Applications and Innovations}, pages={42--56}, year={2024}, organization={Springer}}@INPROCEEDINGS{10647666, author={Strohmayer, Julian and Kampel, Martin}, booktitle={2024 IEEE International Conference on Image Processing (ICIP)}, title={Directional Antenna Systems for Long-Range Through-Wall Human Activity Recognition}, year={2024}, volume={}, number={}, pages={3594-3599}, keywords={Visualization;Accuracy;System performance;Directional antennas;Directive antennas;Reflector antennas;Sensors;Human Activity Recognition;WiFi;Channel State Information;Through-Wall Sensing;ESP32}, doi={10.1109/ICIP51287.2024.10647666}}
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The scripts and the data provided in this depository demonstrate how to apply the approach described in the paper "Common to rare transfer learning (CORAL) enables inference and prediction for a quarter million rare Malagasy arthropods" by Ovaskainen et al. Here we summarize how to use the software with a small, simulated dataset, with running time less than a minute in a typical laptop (Demo 1); (2) how to apply the analyses presented in the paper for a small subset of the data, with running time of ca. one hour in a powerful laptop (Demo 2); how to reproduce the full analyses presented in the paper, with running time up to several days, depending on the computational resources (Demo 3). The Demos 1 and 2 are aimed to be user-friendly starting points for understanding and testing how to implement CORAL. The Demo 3 is included mainly for reproducibility.
System requirements
· The software can be used in any operating system where R can be installed.
· We have developed and tested the software in a windows environment with R version 4.3.1.
· Demo 1 requires the R-packages phytools (2.1-1), MASS (7.3-60), Hmsc (3.3-3), pROC (1.18.5) and MCMCpack (1.7-0).
· Demo 2 requires the R-packages phytools (2.1-1), MASS (7.3-60), Hmsc (3.3-3), pROC (1.18.5) and MCMCpack (1.7-0).
· Demo 3 requires the R-packages phytools (2.1-1), MASS (7.3-60), Hmsc (3.3-3), pROC (1.18.5) and MCMCpack (1.7-0), jsonify (1.2.2), buildmer (2.11), colorspace (2.1-0), matlib (0.9.6), vioplot (0.4.0), MLmetrics (1.1.3) and ggplot2 (3.5.0).
· The use of the software does not require any non-standard hardware.
Installation guide
· The CORAL functions are implemented in Hmsc (3.3-3). The software that applies the is presented as a R-pipeline and thus it does not require any installation other than installation of R.
Demo 1: Software demo with simulated data
The software demonstration consists of two R-markdown files:
· D01_software_demo_simulate_data. This script creates a simulated dataset of 100 species on 200 sampling units. The species occurrences are simulated with a probit model that assumes phylogenetically structured responses to two environmental predictors. The pipeline saves all the data needed to data analysis in the file allDataDemo.RData: XData (the first predictor; the second one is not provided in the dataset as it is assumed to remain unknown for the user), Y (species occurrence data), phy (phylogenetic tree), studyDesign (list of sampling units). Additionally, true values used for data generation are save in the file trueValuesDemo.RData: LF (the second environmental predictor that will be estimated through a latent factor approach), and beta (species responses to environmental predictors).
· D02_software_demo_apply_CORAL. This script loads the data generated by the script D01 and applies the CORAL approach to it. The script demonstrates the informativeness of the CORAL priors, the higher predictive power of CORAL models than baseline models, and the ability of CORAL to estimate the true values used for data generation.
Both markdown files provide more detailed information and illustrations. The provided html file shows the expected output. The running time of the demonstration is very short, from few seconds to at most one minute.
Demo 2: Software demo with a small subset of the data used in the paper
The software demonstration consists of one R-markdown file:
MA_small_demo. This script uses the CORAL functions in HMSC to analyze a small subset of the Malagasy arthropod data. In this demo, we define rare species as those with prevalence at least 40 and less than 50, and common species as those with prevalence at least 200. This leaves 51 species to the backbone model and 460 rare species modelled through the CORAL approach. The script assess model fit for CORAL priors, CORAL posteriors, and null models. It further visualizes the responses of both the common and the rare species to the included predictors.
Scripts and data for reproducing the results presented in the paper (Demo 3)
The input data for the script pipeline is the file “allData.RData”. This file includes the metadata (meta), the response matrix (Y), and the taxonomical information (taxonomy). Each file in the pipeline below depends on the outputs of previous files: they must be run in order. The first six files are used for fitting the backbone HMSC model and calculating parameters for the CORAL prior:
· S01_define_Hmsc_model - defines the initial HMSC model with fixed effects and sample- and site-level random effects.
· S02_export_Hmsc_model - prepares the initial model for HPC sampling for fitting with Hmsc-HPC. Fitting of the model can be then done in an HPC environment with the bash file generated by the script. Computationally intensive.
· S03_import_posterior – imports the posterior distributions sampled by the initial model.
· S04_define_second_stage_Hmsc_model - extracts latent factors from the initial model and defines the backbone model. This is then sampled using the same S02 export + S03 import scripts. Computationally intensive.
· S05_visualize_backbone_model – check backbone model quality with visual/numerical summaries. Generates Fig. 2 of the paper.
· S06_construct_coral_priors – calculate CORAL prior parameters.
The remaining scripts evaluate the model:
· S07_evaluate_prior_predictionss – use the CORAL prior to predict rare species presence/absences and evaluate the predictions in terms of AUC. Generates Fig. 3 of the paper.
· S08_make_training_test_split – generate train/test splits for cross-validation ensuring at least 40% of positive samples are in each partition.
· S09_cross-validate – fit CORAL and the baseline model to the train/test splits and calculate performance summaries. Note: we ran this once with the initial train/test split and then again with on the inverse split (i.e., training = ! training in the code, see comment). The paper presents the average results across these two splits. Computationally intensive.
· S10_show_cross-validation_results – Make plots visualizing AUC/Tjur’s R2 produced by cross-validation. Generates Fig. 4 of the paper.
· S11a_fit_coral_models – Fit the CORAL model to all 250k rare species. Computationally intensive.
· S11b_fit_baseline_models – Fit the baseline model to all 250k rare species. Computationally intensive.
· S12_compare_posterior_inference – compare posterior climate predictions using CORAL and baseline models on selected species, as well as variance reduction for all species. Generates Fig. 5 of the paper.
Pre-processing scripts:
· P01_preprocess_sequence_data.R – Reads in the outputs of the bioinformatics pipeline and converts them into R-objects.
· P02_download_climatic_data.R – Downloads the climatic data from "sis-biodiversity-era5-global” and adds that to metadata.
· P03_construct_Y_matrix.R – Converts the response matrix from a sparse data format to regular matrix. Saves “allData.RData”, which includes the metadata (meta), the response matrix (Y), and the taxonomical information (taxonomy).
Computationally intensive files had runtimes of 5-24 hours on high-performance machines. Preliminary testing suggests runtimes of over 100 hours on a standard laptop.
ENA Accession numbers
All raw sequence data are archived on mBRAVE and are publicly available in the European Nucleotide Archive (ENA; https://www.ebi.ac.uk/ena; project accession number PRJEB86111; run accession numbers ERR15018787-ERR15009869; sample IDs for each accession and download URLs are provided in the file ENA_read_accessions.tsv).
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Training.gov.au (TGA) is the National Register of Vocational Education and Training in Australia and contains authoritative information about Registered Training Organisations (RTOs), Nationally Recognised Training (NRT) and the approved scope of each RTO to deliver NRT as required in national and jurisdictional legislation.\r \r
TGA has a web service available to allow external systems to access and utilise information stored in TGA through an external system. The TGA web service is exposed through a single interface and web service users are assigned a data reader role which will apply to all data stored in the TGA.\r \r The web service can be broadly split into three categories:\r \r 1. RTOs and other organisation types;\r \r 2. Training components including Accredited courses, Accredited course Modules Training Packages, Qualifications, Skill Sets and Units of Competency;\r \r 3. System metadata including static data and statistical classifications.\r \r Users will gain access to the TGA web service by first passing a user name and password through to the web server. The web server will then authenticate the user against the TGA security provider before passing the request to the application that supplies the web services.\r \r There are two web services environments:\r \r 1. Production - ws.training.gov.au – National Register production web services\r \r 2. Sandbox - ws.sandbox.training.gov.au – National Register sandbox web services. \r \r The National Register sandbox web service is used to test against the current version of the web services where the functionality will be identical to the current production release. The web service definition and schema of the National Register sandbox database will also be identical to that of production release at any given point in time. The National Register sandbox database will be cleared down at regular intervals and realigned with the National Register production environment.\r \r Each environment has three configured services:\r \r 1. Organisation Service;\r \r 2. Training Component Service; and\r \r 3. Classification Service.\r \r
To access the download area for web services, navigate to http://tga.hsd.com.au and use the below name and password:\r \r Username: WebService.Read (case sensitive)\r \r Password: Asdf098 (case sensitive)\r \r This download area contains various versions of the following artefacts that you may find useful\r \r • Training.gov.au web service specification document;\r \r • Training.gov.au logical data model and definitions document;\r \r • .NET web service SDK sample app (with source code);\r \r • Java sample client (with source code);\r \r • How to setup web service client in VS 2010 video; and\r \r • Web services WSDL's and XSD's.\r \r For the business areas, the specification/definition documents and the sample application is a good place to start while the IT areas will find the sample source code and the video useful to start developing against the TGA web services.\r \r The web services Sandbox end point is: https://ws.sandbox.training.gov.au/Deewr.Tga.Webservices \r \r
Once you are ready to access the production web service, please email the TGA team at tgaproject@education.gov.au to obtain a unique user name and password.\r
The goal of introducing the Rescaled CIFAR-10 dataset is to provide a dataset that contains scale variations (up to a factor of 4), to evaluate the ability of networks to generalise to scales not present in the training data.
The Rescaled CIFAR-10 dataset was introduced in the paper:
[1] A. Perzanowski and T. Lindeberg (2025) "Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations”, Journal of Mathematical Imaging and Vision, to appear.
with a pre-print available at arXiv:
[2] Perzanowski and Lindeberg (2024) "Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations”, arXiv preprint arXiv:2409.11140.
Importantly, the Rescaled CIFAR-10 dataset contains substantially more natural textures and patterns than the MNIST Large Scale dataset, introduced in:
[3] Y. Jansson and T. Lindeberg (2022) "Scale-invariant scale-channel networks: Deep networks that generalise to previously unseen scales", Journal of Mathematical Imaging and Vision, 64(5): 506-536, https://doi.org/10.1007/s10851-022-01082-2
and is therefore significantly more challenging.
The Rescaled CIFAR-10 dataset is provided on the condition that you provide proper citation for the original CIFAR-10 dataset:
[4] Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny images. Tech. rep., University of Toronto.
and also for this new rescaled version, using the reference [1] above.
The data set is made available on request. If you would be interested in trying out this data set, please make a request in the system below, and we will grant you access as soon as possible.
The Rescaled CIFAR-10 dataset is generated by rescaling 32×32 RGB images of animals and vehicles from the original CIFAR-10 dataset [4]. The scale variations are up to a factor of 4. In order to have all test images have the same resolution, mirror extension is used to extend the images to size 64x64. The imresize() function in Matlab was used for the rescaling, with default anti-aliasing turned on, and bicubic interpolation overshoot removed by clipping to the [0, 255] range. The details of how the dataset was created can be found in [1].
There are 10 distinct classes in the dataset: “airplane”, “automobile”, “bird”, “cat”, “deer”, “dog”, “frog”, “horse”, “ship” and “truck”. In the dataset, these are represented by integer labels in the range [0, 9].
The dataset is split into 40 000 training samples, 10 000 validation samples and 10 000 testing samples. The training dataset is generated using the initial 40 000 samples from the original CIFAR-10 training set. The validation dataset, on the other hand, is formed from the final 10 000 image batch of that same training set. For testing, all test datasets are built from the 10 000 images contained in the original CIFAR-10 test set.
The training dataset file (~5.9 GB) for scale 1, which also contains the corresponding validation and test data for the same scale, is:
cifar10_with_scale_variations_tr40000_vl10000_te10000_outsize64-64_scte1p000_scte1p000.h5
Additionally, for the Rescaled CIFAR-10 dataset, there are 9 datasets (~1 GB each) for testing scale generalisation at scales not present in the training set. Each of these datasets is rescaled using a different image scaling factor, 2k/4, with k being integers in the range [-4, 4]:
cifar10_with_scale_variations_te10000_outsize64-64_scte0p500.h5
cifar10_with_scale_variations_te10000_outsize64-64_scte0p595.h5
cifar10_with_scale_variations_te10000_outsize64-64_scte0p707.h5
cifar10_with_scale_variations_te10000_outsize64-64_scte0p841.h5
cifar10_with_scale_variations_te10000_outsize64-64_scte1p000.h5
cifar10_with_scale_variations_te10000_outsize64-64_scte1p189.h5
cifar10_with_scale_variations_te10000_outsize64-64_scte1p414.h5
cifar10_with_scale_variations_te10000_outsize64-64_scte1p682.h5
cifar10_with_scale_variations_te10000_outsize64-64_scte2p000.h5
These dataset files were used for the experiments presented in Figures 9, 10, 15, 16, 20 and 24 in [1].
The datasets are saved in HDF5 format, with the partitions in the respective h5 files named as
('/x_train', '/x_val', '/x_test', '/y_train', '/y_test', '/y_val'); which ones exist depends on which data split is used.
The training dataset can be loaded in Python as:
with h5py.File(`
x_train = np.array( f["/x_train"], dtype=np.float32)
x_val = np.array( f["/x_val"], dtype=np.float32)
x_test = np.array( f["/x_test"], dtype=np.float32)
y_train = np.array( f["/y_train"], dtype=np.int32)
y_val = np.array( f["/y_val"], dtype=np.int32)
y_test = np.array( f["/y_test"], dtype=np.int32)
We also need to permute the data, since Pytorch uses the format [num_samples, channels, width, height], while the data is saved as [num_samples, width, height, channels]:
x_train = np.transpose(x_train, (0, 3, 1, 2))
x_val = np.transpose(x_val, (0, 3, 1, 2))
x_test = np.transpose(x_test, (0, 3, 1, 2))
The test datasets can be loaded in Python as:
with h5py.File(`
x_test = np.array( f["/x_test"], dtype=np.float32)
y_test = np.array( f["/y_test"], dtype=np.int32)
The test datasets can be loaded in Matlab as:
x_test = h5read(`
The images are stored as [num_samples, x_dim, y_dim, channels] in HDF5 files. The pixel intensity values are not normalised, and are in a [0, 255] range.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
WD50K dataset: An hyper-relational dataset derived from Wikidata statements.
The dataset is constructed by the following procedure based on the Wikidata RDF dump of August 2019:
The table below provides some basic statistics of our dataset and its three further variations:
Dataset | Statements | w/Quals (%) | Entities | Relations | E only in Quals | R only in Quals | Train | Valid | Test |
---|---|---|---|---|---|---|---|---|---|
WD50K | 236,507 | 32,167 (13.6%) | 47,156 | 532 | 5460 | 45 | 166,435 | 23,913 | 46,159 |
WD50K (33) | 102,107 | 31,866 (31.2%) | 38,124 | 475 | 6463 | 47 | 73,406 | 10,668 | 18,133 |
WD50K (66) | 49,167 | 31,696 (64.5%) | 27,347 | 494 | 7167 | 53 | 35,968 | 5,154 | 8,045 |
WD50K (100) | 31,314 | 31,314 (100%) | 18,792 | 279 | 7862 | 75 | 22,738 | 3,279 | 5,297 |
When using the dataset please cite:
@inproceedings{StarE, title={Message Passing for Hyper-Relational Knowledge Graphs}, author={Galkin, Mikhail and Trivedi, Priyansh and Maheshwari, Gaurav and Usbeck, Ricardo and Lehmann, Jens}, booktitle={EMNLP}, year={2020} }
For any further questions, please contact: mikhail.galkin@iais.fraunhofer.de
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionPharmacogenetics currently supports clinical decision-making on the basis of a limited number of variants in a few genes and may benefit paediatric prescribing where there is a need for more precise dosing. Integrating genomic information such as methylation into pharmacogenetic models holds the potential to improve their accuracy and consequently prescribing decisions. Cytochrome P450 2D6 (CYP2D6) is a highly polymorphic gene conventionally associated with the metabolism of commonly used drugs and endogenous substrates. We thus sought to predict epigenetic loci from single nucleotide polymorphisms (SNPs) related to CYP2D6 in children from the GUSTO cohort.MethodsBuffy coat DNA methylation was quantified using the Illumina Infinium Methylation EPIC beadchip. CpG sites associated with CYP2D6 were used as outcome variables in Linear Regression, Elastic Net and XGBoost models. We compared feature selection of SNPs from GWAS mQTLs, GTEx eQTLs and SNPs within 2 MB of the CYP2D6 gene and the impact of adding demographic data. The samples were split into training (75%) sets and test (25%) sets for validation. In Elastic Net model and XGBoost models, optimal hyperparameter search was done using 10-fold cross validation. Root Mean Square Error and R-squared values were obtained to investigate each models’ performance. When GWAS was performed to determine SNPs associated with CpG sites, a total of 15 SNPs were identified where several SNPs appeared to influence multiple CpG sites.ResultsOverall, Elastic Net models of genetic features appeared to perform marginally better than heritability estimates and substantially better than Linear Regression and XGBoost models. The addition of nongenetic features appeared to improve performance for some but not all feature sets and probes. The best feature set and Machine Learning (ML) approach differed substantially between CpG sites and a number of top variables were identified for each model.DiscussionThe development of SNP-based prediction models for CYP2D6 CpG methylation in Singaporean children of varying ethnicities in this study has clinical application. With further validation, they may add to the set of tools available to improve precision medicine and pharmacogenetics-based dosing.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context and Aim
Deep learning in Earth Observation requires large image archives with highly reliable labels for model training and testing. However, a preferable quality standard for forest applications in Europe has not yet been determined. The TreeSatAI consortium investigated numerous sources for annotated datasets as an alternative to manually labeled training datasets.
We found the federal forest inventory of Lower Saxony, Germany represents an unseen treasure of annotated samples for training data generation. The respective 20-cm Color-infrared (CIR) imagery, which is used for forestry management through visual interpretation, constitutes an excellent baseline for deep learning tasks such as image segmentation and classification.
Description
The data archive is highly suitable for benchmarking as it represents the real-world data situation of many German forest management services. One the one hand, it has a high number of samples which are supported by the high-resolution aerial imagery. On the other hand, this data archive presents challenges, including class label imbalances between the different forest stand types.
The TreeSatAI Benchmark Archive contains:
50,381 image triplets (aerial, Sentinel-1, Sentinel-2)
synchronized time steps and locations
all original spectral bands/polarizations from the sensors
20 species classes (single labels)
12 age classes (single labels)
15 genus classes (multi labels)
60 m and 200 m patches
fixed split for train (90%) and test (10%) data
additional single labels such as English species name, genus, forest stand type, foliage type, land cover
The geoTIFF and GeoJSON files are readable in any GIS software, such as QGIS. For further information, we refer to the PDF document in the archive and publications in the reference section.
Version history
v1.0.0 - First release
Citation
Ahlswede et al. (in prep.)
GitHub
Full code examples and pre-trained models from the dataset article (Ahlswede et al. 2022) using the TreeSatAI Benchmark Archive are published on the GitHub repositories of the Remote Sensing Image Analysis (RSiM) Group (https://git.tu-berlin.de/rsim/treesat_benchmark). Code examples for the sampling strategy can be made available by Christian Schulz via email request.
Folder structure
We refer to the proposed folder structure in the PDF file.
Folder “aerial” contains the aerial imagery patches derived from summertime orthophotos of the years 2011 to 2020. Patches are available in 60 x 60 m (304 x 304 pixels). Band order is near-infrared, red, green, and blue. Spatial resolution is 20 cm.
Folder “s1” contains the Sentinel-1 imagery patches derived from summertime mosaics of the years 2015 to 2020. Patches are available in 60 x 60 m (6 x 6 pixels) and 200 x 200 m (20 x 20 pixels). Band order is VV, VH, and VV/VH ratio. Spatial resolution is 10 m.
Folder “s2” contains the Sentinel-2 imagery patches derived from summertime mosaics of the years 2015 to 2020. Patches are available in 60 x 60 m (6 x 6 pixels) and 200 x 200 m (20 x 20 pixels). Band order is B02, B03, B04, B08, B05, B06, B07, B8A, B11, B12, B01, and B09. Spatial resolution is 10 m.
The folder “labels” contains a JSON string which was used for multi-labeling of the training patches. Code example of an image sample with respective proportions of 94% for Abies and 6% for Larix is: "Abies_alba_3_834_WEFL_NLF.tif": [["Abies", 0.93771], ["Larix", 0.06229]]
The two files “test_filesnames.lst” and “train_filenames.lst” define the filenames used for train (90%) and test (10%) split. We refer to this fixed split for better reproducibility and comparability.
The folder “geojson” contains geoJSON files with all the samples chosen for the derivation of training patch generation (point, 60 m bounding box, 200 m bounding box).
CAUTION: As we could not upload the aerial patches as a single zip file on Zenodo, you need to download the 20 single species files (aerial_60m_…zip) separately. Then, unzip them into a folder named “aerial” with a subfolder named “60m”. This structure is recommended for better reproducibility and comparability to the experimental results of Ahlswede et al. (2022),
Join the archive
Model training, benchmarking, algorithm development… many applications are possible! Feel free to add samples from other regions in Europe or even worldwide. Additional remote sensing data from Lidar, UAVs or aerial imagery from different time steps are very welcome. This helps the research community in development of better deep learning and machine learning models for forest applications. You might have questions or want to share code/results/publications using that archive? Feel free to contact the authors.
Project description
This work was part of the project TreeSatAI (Artificial Intelligence with Satellite data and Multi-Source Geodata for Monitoring of Trees at Infrastructures, Nature Conservation Sites and Forests). Its overall aim is the development of AI methods for the monitoring of forests and woody features on a local, regional and global scale. Based on freely available geodata from different sources (e.g., remote sensing, administration maps, and social media), prototypes will be developed for the deep learning-based extraction and classification of tree- and tree stand features. These prototypes deal with real cases from the monitoring of managed forests, nature conservation and infrastructures. The development of the resulting services by three enterprises (liveEO, Vision Impulse and LUP Potsdam) will be supported by three research institutes (German Research Center for Artificial Intelligence, TU Remote Sensing Image Analysis Group, TUB Geoinformation in Environmental Planning Lab).
Publications
Ahlswede et al. (2022, in prep.): TreeSatAI Dataset Publication
Ahlswede S., Nimisha, T.M., and Demir, B. (2022, in revision): Embedded Self-Enhancement Maps for Weakly Supervised Tree Species Mapping in Remote Sensing Images. IEEE Trans Geosci Remote Sens
Schulz et al. (2022, in prep.): Phenoprofiling
Conference contributions
S. Ahlswede, N. T. Madam, C. Schulz, B. Kleinschmit and B. Demіr, "Weakly Supervised Semantic Segmentation of Remote Sensing Images for Tree Species Classification Based on Explanation Methods", IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022.
C. Schulz, M. Förster, S. Vulova, T. Gränzig and B. Kleinschmit, “Exploring the temporal fingerprints of mid-European forest types from Sentinel-1 RVI and Sentinel-2 NDVI time series”, IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022.
C. Schulz, M. Förster, S. Vulova and B. Kleinschmit, “The temporal fingerprints of common European forest types from SAR and optical remote sensing data”, AGU Fall Meeting, New Orleans, USA, 2021.
B. Kleinschmit, M. Förster, C. Schulz, F. Arias, B. Demir, S. Ahlswede, A. K. Aksoy, T. Ha Minh, J. Hees, C. Gava, P. Helber, B. Bischke, P. Habelitz, A. Frick, R. Klinke, S. Gey, D. Seidel, S. Przywarra, R. Zondag and B. Odermatt, “Artificial Intelligence with Satellite data and Multi-Source Geodata for Monitoring of Trees and Forests”, Living Planet Symposium, Bonn, Germany, 2022.
C. Schulz, M. Förster, S. Vulova, T. Gränzig and B. Kleinschmit, (2022, submitted): “Exploring the temporal fingerprints of sixteen mid-European forest types from Sentinel-1 and Sentinel-2 time series”, ForestSAT, Berlin, Germany, 2022.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description:
Downsized (256x256) camera trap images used for the analyses in "Can CNN-based species classification generalise across variation in habitat within a camera trap survey?", and the dataset composition for each analysis. Note that images tagged as 'human' have been removed from this dataset. Full-size images for the BorneoCam dataset will be made available at LILA.science. The full SAFE camera trap dataset metadata is available at DOI: 10.5281/zenodo.6627707.
Project: This dataset was collected as part of the following SAFE research project: Machine learning and image recognition to monitor spatio-temporal changes in the behaviour and dynamics of species interactions
Funding: These data were collected as part of research funded by:
This dataset is released under the CC-BY 4.0 licence, requiring that you cite the dataset in any outputs, but has the additional condition that you acknowledge the contribution of these funders in any outputs.
XML metadata: GEMINI compliant metadata for this dataset is available here
Files: This dataset consists of 3 files: CT_image_data_info2.xlsx, DN_256x256_image_files.zip, DN_generalisability_code.zip
CT_image_data_info2.xlsx
This file contains dataset metadata and 1 data tables:
Dataset Images (described in worksheet Dataset_images)
Description: This worksheet details the composition of each dataset used in the analyses
Number of fields: 69
Number of data rows: 270287
Fields: