https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employed full time: Median usual weekly real earnings: Wage and salary workers: 16 years and over (LES1252881600Q) from Q1 1979 to Q2 2025 about full-time, salaries, earnings, workers, 16 years +, wages, median, real, employment, and USA.
In 2023, just over 50 percent of Americans had an annual household income that was less than 75,000 U.S. dollars. The median household income was 80,610 U.S. dollars in 2023. Income and wealth in the United States After the economic recession in 2009, income inequality in the U.S. is more prominent across many metropolitan areas. The Northeast region is regarded as one of the wealthiest in the country. Maryland, New Jersey, and Massachusetts were among the states with the highest median household income in 2020. In terms of income by race and ethnicity, the average income of Asian households was 94,903 U.S. dollars in 2020, while the median income for Black households was around half of that figure. What is the U.S. poverty threshold? The U.S. Census Bureau annually updates its list of poverty levels. Preliminary estimates show that the average poverty threshold for a family of four people was 26,500 U.S. dollars in 2021, which is around 100 U.S. dollars less than the previous year. There were an estimated 37.9 million people in poverty across the United States in 2021, which was around 11.6 percent of the population. Approximately 19.5 percent of those in poverty were Black, while 8.2 percent were white.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Real Median Personal Income in the United States (MEPAINUSA672N) from 1974 to 2024 about personal income, personal, median, income, real, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wages in the United States increased 5.35 percent in July of 2025 over the same month in the previous year. This dataset provides the latest reported value for - United States Wages and Salaries Growth - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
In 2024, the average annual full-time earnings for the top ten percent of earners in the United Kingdom was 72,150 British pounds, compared with 22,763 for the bottom ten percent of earners. As of this year, the average annual earnings for all full-time employees was 37,430 pounds, up from 34,963 pounds in the previous year. Strong wage growth continues in 2025 As of February 2025, wages in the UK were growing by approximately 5.9 percent compared with the previous year, with this falling to 5.6 percent if bonus pay is included. When adjusted for inflation, regular pay without bonuses grew by 2.1 percent, with overall pay including bonus pay rising by 1.9 percent. While UK wages have now outpaced inflation for almost two years, there was a long period between 2021 and 2023 when high inflation in the UK was rising faster than wages, one of the leading reasons behind a severe cost of living crisis at the time. UK's gender pay gap falls in 2024 For several years, the difference between average hourly earnings for men and women has been falling, with the UK's gender pay gap dropping to 13.1 percent in 2024, down from 27.5 percent in 1997. When examined by specific industry sectors, however, the discrepancy between male and female earnings can be much starker. In the financial services sector, for example, the gender pay gap was almost 30 percent, with professional, scientific and technical professions also having a relatively high gender pay gap rate of 20 percent.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The European Union Statistics on Income and Living Conditions (EU-SILC) collects timely and comparable multidimensional microdata on income, poverty, social exclusion and living conditions.
The EU-SILC collection is a key instrument for providing information required by the European Semester ([1]) and the European Pillar of Social Rights, and the main source of data for microsimulation purposes and flash estimates of income distribution and poverty rates.
AROPE remains crucial to monitor European social policies, especially to monitor the EU 2030 target on poverty and social exclusion. For more information, please consult EU social indicators.
The EU-SILC instrument provides two types of data:
EU-SILC collects:
The variables collected are grouped by topic and detailed topic and transmitted to Eurostat in four main files (D-File, H-File, R-File and P-file).
The domain ‘Income and Living Conditions’ covers the following topics: persons at risk of poverty or social exclusion, income inequality, income distribution and monetary poverty, living conditions, material deprivation, and EU-SILC ad-hoc modules, which are structured into collections of indicators on specific topics.
In 2023, in addition to annual data, in EU-SILC were collected: the three yearly module on labour market and housing, the six yearly module on intergenerational transmission of advantages and disadvantages, housing difficulties, and the ad hoc subject on households energy efficiency.
Starting from 2021 onwards, the EU quality reports use the structure of the Single Integrated Metadata Structure (SIMS).
([1]) The European Semester is the European Union’s framework for the coordination and surveillance of economic and social policies.
https://brightdata.com/licensehttps://brightdata.com/license
Unlock valuable salary insights with our comprehensive Salary Dataset, designed for businesses, recruiters, and job seekers to analyze compensation trends, workforce planning, and market competitiveness.
Dataset Features
Job Listings & Salaries: Access structured salary data from top job platforms, including job titles, company names, locations, salary ranges, and compensation types. Employer & Industry Insights: Extract company-specific salary trends, industry benchmarks, and hiring patterns. Geographic Pay Disparities: Compare salaries across different regions, cities, and countries to identify location-based compensation trends. Job Market Trends: Monitor salary fluctuations, demand for specific roles, and hiring trends over time.
Customizable Subsets for Specific Needs Our Salary Dataset is fully customizable, allowing you to filter data based on job titles, industries, locations, experience levels, and salary ranges. Whether you need broad market insights or focused data for recruitment strategy, we tailor the dataset to your needs.
Popular Use Cases
Workforce Planning & Talent Acquisition: Optimize hiring strategies by analyzing salary benchmarks and compensation trends. Market Research & Competitive Intelligence: Compare salaries across industries and competitors to stay ahead in talent acquisition. Career Decision-Making: Help job seekers evaluate salary expectations and identify high-paying opportunities. AI & Predictive Analytics: Use structured salary data to train AI models for job market forecasting and compensation analysis. Geographic Expansion & Business Strategy: Assess salary variations across regions to plan business expansions and remote workforce strategies.
Whether you're optimizing recruitment, analyzing salary trends, or making data-driven career decisions, our Salary Dataset provides the structured data you need. Get started today and customize your dataset to fit your business objectives.
This statistic shows the median household income in the United States from 1990 to 2023 in 2023 U.S. dollars. The median household income was 80,610 U.S. dollars in 2023, an increase from the previous year. Household incomeThe median household income depicts the income of households, including the income of the householder and all other individuals aged 15 years or over living in the household. Income includes wages and salaries, unemployment insurance, disability payments, child support payments received, regular rental receipts, as well as any personal business, investment, or other kinds of income received routinely. The median household income in the United States varies from state to state. In 2020, the median household income was 86,725 U.S. dollars in Massachusetts, while the median household income in Mississippi was approximately 44,966 U.S. dollars at that time. Household income is also used to determine the poverty line in the United States. In 2021, about 11.6 percent of the U.S. population was living in poverty. The child poverty rate, which represents people under the age of 18 living in poverty, has been growing steadily over the first decade since the turn of the century, from 16.2 percent of the children living below the poverty line in year 2000 to 22 percent in 2010. In 2021, it had lowered to 15.3 percent. The state with the widest gap between the rich and the poor was New York, with a Gini coefficient score of 0.51 in 2019. The Gini coefficient is calculated by looking at average income rates. A score of zero would reflect perfect income equality and a score of one indicates a society where one person would have all the money and all other people have nothing.
The table only covers individuals who have some liability to Income Tax. The percentile points have been independently calculated on total income before tax and total income after tax.
These statistics are classified as accredited official statistics.
You can find more information about these statistics and collated tables for the latest and previous tax years on the Statistics about personal incomes page.
Supporting documentation on the methodology used to produce these statistics is available in the release for each tax year.
Note: comparisons over time may be affected by changes in methodology. Notably, there was a revision to the grossing factors in the 2018 to 2019 publication, which is discussed in the commentary and supporting documentation for that tax year. Further details, including a summary of significant methodological changes over time, data suitability and coverage, are included in the Background Quality Report.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about Indonesia Monthly Earnings
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The European Union Statistics on Income and Living Conditions (EU-SILC) collects timely and comparable multidimensional microdata on income, poverty, social exclusion and living conditions.
The EU-SILC collection is a key instrument for providing information required by the European Semester ([1]) and the European Pillar of Social Rights, and the main source of data for microsimulation purposes and flash estimates of income distribution and poverty rates.
AROPE remains crucial to monitor European social policies, especially to monitor the EU 2030 target on poverty and social exclusion. For more information, please consult EU social indicators.
The EU-SILC instrument provides two types of data:
EU-SILC collects:
The variables collected are grouped by topic and detailed topic and transmitted to Eurostat in four main files (D-File, H-File, R-File and P-file).
The domain ‘Income and Living Conditions’ covers the following topics: persons at risk of poverty or social exclusion, income inequality, income distribution and monetary poverty, living conditions, material deprivation, and EU-SILC ad-hoc modules, which are structured into collections of indicators on specific topics.
In 2023, in addition to annual data, in EU-SILC were collected: the three yearly module on labour market and housing, the six yearly module on intergenerational transmission of advantages and disadvantages, housing difficulties, and the ad hoc subject on households energy efficiency.
Starting from 2021 onwards, the EU quality reports use the structure of the Single Integrated Metadata Structure (SIMS).
([1]) The European Semester is the European Union’s framework for the coordination and surveillance of economic and social policies.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Hourly Earnings of Production and Nonsupervisory Employees, Total Private (AHETPI) from Jan 1964 to Aug 2025 about nonsupervisory, headline figure, average, hours, earnings, establishment survey, wages, production, private, employment, and USA.
About 50.4 percent of the household income of private households in the U.S. were earned by the highest quintile in 2023, which are the upper 20 percent of the workers. In contrast to that, in the same year, only 3.5 percent of the household income was earned by the lowest quintile. This relation between the quintiles is indicative of the level of income inequality in the United States. Income inequalityIncome inequality is a big topic for public discussion in the United States. About 65 percent of U.S. Americans think that the gap between the rich and the poor has gotten larger in the past ten years. This impression is backed up by U.S. census data showing that the Gini-coefficient for income distribution in the United States has been increasing constantly over the past decades for individuals and households. The Gini coefficient for individual earnings of full-time, year round workers has increased between 1990 and 2020 from 0.36 to 0.42, for example. This indicates an increase in concentration of income. In general, the Gini coefficient is calculated by looking at average income rates. A score of zero would reflect perfect income equality and a score of one indicates a society where one person would have all the money and all other people have nothing. Income distribution is also affected by region. The state of New York had the widest gap between rich and poor people in the United States, with a Gini coefficient of 0.51, as of 2019. In global comparison, South Africa led the ranking of the 20 countries with the biggest inequality in income distribution in 2018. South Africa had a score of 63 points, based on the Gini coefficient. On the other hand, the Gini coefficient stood at 16.6 in Azerbaijan, indicating that income is widely spread among the population and not concentrated on a few rich individuals or families. Slovenia led the ranking of the 20 countries with the greatest income distribution equality in 2018.
These tables only cover individuals with some liability to tax.
These statistics are classified as accredited official statistics.
You can find more information about these statistics and collated tables for the latest and previous tax years on the Statistics about personal incomes page.
Supporting documentation on the methodology used to produce these statistics is available in the release for each tax year.
Note: comparisons over time may be affected by changes in methodology. Notably, there was a revision to the grossing factors in the 2018 to 2019 publication, which is discussed in the commentary and supporting documentation for that tax year. Further details, including a summary of significant methodological changes over time, data suitability and coverage, are included in the Background Quality Report.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about China Monthly Earnings
At present nearly half of the world’s population is under some form of government restriction to curb the spread of COVID-19, an extremely contagious disease. In Bangladesh, in the wake of five deaths and 48 infections from COVID-19, between March 24 and May 30, 2020 the government imposed a nationwide lockdown. While this lockdown restricted the spread of COVID-19, in the absence of effective support, it can generate severe food and nutrition insecurity for daily wage-based workers. Of the 61 million employed labor force in Bangladesh, nearly 35% of them are paid on a daily basis. This study examines the food security and welfare impacts of the COVID-19 induced lockdown on daily wage workers both in the farm and nonfarm sectors in Bangladesh. Using information from more than 50,000 respondents complied from 2016-17 Household Income and Expenditure Survey (HIES) in Bangladesh, this study estimates daily wage rates as Bangladesh Taka (BDT) 272.2 in the farm sector and BDT 361.5 in the nonfarm sector. Using the estimated daily wages earnings, this study estimates that a one-day complete lockdown generates a US$64.2 million equivalent economic loss only considering the wage loss of the daily wage workers. After estimating the daily per capita food expenditure separately for farm and nonfarm households, this study estimates a minimum compensation package for the daily wage-based farm and nonfarm households around US $ 1 per day per household to ensure minimum food security for the daily wage-based worker households.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China Average Wage: Private Enterprise: Information Transmission, Software and Information Technology Service data was reported at 129,215.000 RMB in 2023. This records an increase from the previous number of 123,894.000 RMB for 2022. China Average Wage: Private Enterprise: Information Transmission, Software and Information Technology Service data is updated yearly, averaging 60,648.500 RMB from Dec 2008 (Median) to 2023, with 16 observations. The data reached an all-time high of 129,215.000 RMB in 2023 and a record low of 26,345.000 RMB in 2008. China Average Wage: Private Enterprise: Information Transmission, Software and Information Technology Service data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Labour Market – Table CN.GC: Average Wage: by Industry: Urban Private Enterprise.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Allison Transmission reported $195M in Net Income for its fiscal quarter ending in June of 2025. Data for Allison Transmission | ALSN - Net Income including historical, tables and charts were last updated by Trading Economics this last September in 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China Average Wage: Urban Non-private: On Duty: Information Transmission, Software and Information Technology Service data was reported at 235,303.000 RMB in 2023. This records an increase from the previous number of 223,928.000 RMB for 2022. China Average Wage: Urban Non-private: On Duty: Information Transmission, Software and Information Technology Service data is updated yearly, averaging 91,404.000 RMB from Dec 2003 (Median) to 2023, with 21 observations. The data reached an all-time high of 235,303.000 RMB in 2023 and a record low of 32,244.000 RMB in 2003. China Average Wage: Urban Non-private: On Duty: Information Transmission, Software and Information Technology Service data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Labour Market – Table CN.GC: Average Wage: On Duty.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China Total Wage: Urban Non-private: Information Transmission, Software and Information Technology Service data was reported at 1,241.761 RMB bn in 2023. This records an increase from the previous number of 1,176.946 RMB bn for 2022. China Total Wage: Urban Non-private: Information Transmission, Software and Information Technology Service data is updated yearly, averaging 295.772 RMB bn from Dec 2003 (Median) to 2023, with 21 observations. The data reached an all-time high of 1,241.761 RMB bn in 2023 and a record low of 35.597 RMB bn in 2003. China Total Wage: Urban Non-private: Information Transmission, Software and Information Technology Service data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Labour Market – Table CN.GC: Earning of Employee: by Industry.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employed full time: Median usual weekly real earnings: Wage and salary workers: 16 years and over (LES1252881600Q) from Q1 1979 to Q2 2025 about full-time, salaries, earnings, workers, 16 years +, wages, median, real, employment, and USA.