16 datasets found
  1. H

    Current Population Survey (CPS)

    • dataverse.harvard.edu
    • search.dataone.org
    Updated May 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Damico (2013). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 30, 2013
    Dataset provided by
    Harvard Dataverse
    Authors
    Anthony Damico
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  2. Data from: Is Burglary a Crime of Violence? An Analysis of National Data...

    • icpsr.umich.edu
    • datasets.ai
    • +1more
    Updated Sep 22, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kopp, Phillip; Culp, Richard; McCoy, Candace (2016). Is Burglary a Crime of Violence? An Analysis of National Data 1998-2007 [United States] [Dataset]. http://doi.org/10.3886/ICPSR34971.v1
    Explore at:
    Dataset updated
    Sep 22, 2016
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Kopp, Phillip; Culp, Richard; McCoy, Candace
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/34971/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/34971/terms

    Time period covered
    1998 - 2007
    Area covered
    United States
    Description

    These data are part of NACJD's Fast Track Release and are distributed as they were received from the data depositor. The files have been zipped by NACJD for release, but not checked or processed except for the removal of direct identifiers. Users should refer to the accompanying readme file for a brief description of the files available with this collection and consult the investigator(s) if further information is needed. This study was a secondary analysis of data from the National Crime Victimization Survey (NCVS) and National Incidents Based Reporting System (NIBRS) for the period 1998-2007. The analysis calculates two separate measures of the incidents of violence that occurred during burglaries. The study addressed the following research questions: Is burglary a violent crime? Are different levels of violence associated with residential versus nonresidential burglaries? How frequently is a household member present during a residential burglary? How frequently does violence occur in the commission of a burglary? What forms does burglary-related violence take? Are there differences in rates of violence between attempted and completed burglaries? What constitutes the crime of burglary in current statutory law? How do the federal government and the various states define burglary (grades and elements)? Does statutory law comport with empirical observations of what the typical characteristics of acts of burglary are? The SPSS code distributed here alters an existing dataset drawn from pre-existing studies. In order to use this code users must first create the original data file drawn from National Crime Victimization Survey (NCVS) and National Incidents Based Reporting System (NIBRS) data from the period of 1998-2007. All data used for this study are publicly available through ICPSR. See the variable description section for a comprehensive list of, and direct links to, all datasets used to create this original dataset.

  3. World Hapiness Report Analysis (Py, SPSS, Tableau)

    • kaggle.com
    zip
    Updated May 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdullah Muhammad Al Kamal (2023). World Hapiness Report Analysis (Py, SPSS, Tableau) [Dataset]. https://www.kaggle.com/datasets/abdullahalkamal/world-hapiness-report-2015-2019
    Explore at:
    zip(34758 bytes)Available download formats
    Dataset updated
    May 3, 2023
    Authors
    Abdullah Muhammad Al Kamal
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Area covered
    World
    Description

    Context The World Happiness Report is a landmark survey of the state of global happiness. The first report was published in 2012, the second in 2013, the third in 2015, and the fourth in the 2016 Update. The World Happiness 2017, which ranks 155 countries by their happiness levels, was released at the United Nations at an event celebrating International Day of Happiness on March 20th. The report continues to gain global recognition as governments, organizations and civil society increasingly use happiness indicators to inform their policy-making decisions. Leading experts across fields – economics, psychology, survey analysis, national statistics, health, public policy and more – describe how measurements of well-being can be used effectively to assess the progress of nations. The reports review the state of happiness in the world today and show how the new science of happiness explains personal and national variations in happiness.

    Content The happiness scores and rankings use data from the Gallup World Poll. The scores are based on answers to the main life evaluation question asked in the poll. This question, known as the Cantril ladder, asks respondents to think of a ladder with the best possible life for them being a 10 and the worst possible life being a 0 and to rate their own current lives on that scale. The scores are from nationally representative samples for the years 2013-2016 and use the Gallup weights to make the estimates representative. The columns following the happiness score estimate the extent to which each of six factors – economic production, social support, life expectancy, freedom, absence of corruption, and generosity – contribute to making life evaluations higher in each country than they are in Dystopia, a hypothetical country that has values equal to the world’s lowest national averages for each of the six factors. They have no impact on the total score reported for each country, but they do explain why some countries rank higher than others.

    Indicators/Factors Explain: 1. Rank, is the country ranking 2. Score, is the happiness score of the country 3. GDP, is the gross domestic product of the country 4. Family, is the indicator that shows family support to each citizen in the country 5. Life Expectancy, shows the healthiness level of the country 6. Freedom, is an indicator that shows the citizen freedom to choose their life path, job or etc 7. Trust, shows the level of trust from the citizen in the government (influenced by the corruption level and performance of the government) 8. Generosity, an indicator that shows the generosity level of the citizen of the country

    Source: The World Happiness Report is a publication of the Sustainable Development Solutions Network, powered by the Gallup World Poll data.

  4. Z

    Data from: Do Agile Scaling Approaches Make A Difference? An Empirical...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Oct 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christiaan Verwijs; Daniel Russo (2023). Do Agile Scaling Approaches Make A Difference? An Empirical Comparison of Team Effectiveness Across Popular Scaling Approaches [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8396486
    Explore at:
    Dataset updated
    Oct 2, 2023
    Dataset provided by
    Aalborg University
    The Liberators
    Authors
    Christiaan Verwijs; Daniel Russo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This bundle contains supplementary materials for an upcoming academic publication Do Agile Scaling Approaches Make A Difference? An Empirical Comparison of Team Effectiveness Across Popular Scaling Approaches?, by Christiaan Verwijs and Daniel Russo. Included in the bundle are the dataset and SPSS syntaxes. This replication package is made available by C. Verwijs under a "Creative Commons Attribution Non-Commercial Share-Alike 4.0 International"-license (CC-BY-NC-SA 4.0).

    About the dataset

    The dataset (SPSS) contains anonymized response data from 15,078 team members aggregated into 4,013 Agile teams that participated from scrumteamsurvey.org. Stakeholder evaluations of 1,841 stakeholders were also collected for 529 of those teams. Data was gathered between September 2021, and September 2023. We cleaned the individual response data from careless responses and removed all data that could potentially identify teams, individuals, or their parent organizations. Because we wanted to analyze our measures at the team level, we calculated a team-level mean for each item in the survey. Such aggregation is only justified when at least 10% of the variance exists at the team level (Hair, 2019), which was the case (ICC = 35-50%). No data was missing at the team level.

    Question labels and option labels are provided separately in Questions.csv. To conform to the privacy statement of scrumteamsurvey.org, the bundle does not include response data from before the team-level aggregation.

    About the SPSS syntaxes

    The bundle includes the syntaxes we used to prepare the dataset from the raw import, as well as the syntax we used to generate descriptives. This is mostly there for other researchers to verify our procedure.

  5. d

    General Household Survey: Time Series Dataset, 1972-2004

    • datamed.org
    Updated Feb 28, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). General Household Survey: Time Series Dataset, 1972-2004 [Dataset]. https://datamed.org/display-item.php?repository=0012&idName=ID&id=56d4b817e4b0e644d312f657
    Explore at:
    Dataset updated
    Feb 28, 2012
    Description

    The General Household Survey (GHS) is a continuous national survey of people living in private households conducted on an annual basis, by the Social Survey Division of the Office for National Statistics (ONS). The main aim of the survey is to collect data on a range of core topics, covering household, family and individual information. This information is used by government departments and other organisations for planning, policy and monitoring purposes, and to present a picture of house holds, family and people in Great Britain. From 2008, the General Household Survey became a module of the Integrated Household Survey (IHS). In recognition, the survey was renamed the General Lifestyle Survey (GLF/GLS). The GHS started in 1971 and has been carried out continuously since then, except for breaks in 1997-1998 when the survey was reviewed, and 1999-2000 when the survey was redeveloped. Following the 1997 review, the survey was relaunched from April 2000 with a different design. The relevant development work and the changes made are fully described in the Living in Britain report for the 2000-2001 survey. Following its review, the GHS was changed to comprise two elements: the continuous survey and extra modules, or 'trailers'. The continuous survey remained unchanged from 2000 to 2004, apart from essential adjustments to take account of, for example, changes in benefits and pensions. The GHS retained its modular structure and this allowed a number of different trailers to be included for each of those years, to a plan agreed by sponsoring government departments. Further changes to the GHS methodology from 2005: From April 1994 to 2005, the GHS was conducted on a financial year basis, with fieldwork spread evenly from April of one year to March the following year. However, in 2005 the survey period reverted to a calendar year and the whole of the annual sample was surveyed in the nine months from April to December 2005. Future surveys will run from January to December each year, hence the title date change to single year from 2005 onwards. Since the 2005 GHS (held under SN 5640) does not cover the January-March quarter, this affects annual estimates for topics which are subject to seasonal variation. To rectify this, where the questions were the same in 2005 as in 2004-2005, the final quarter of the latter survey was added (weighted in the correct proportion) to the nine months of the 2005 survey. Furthermore, in 2005, the European Union (EU) made a legal obligation (EU-SILC) for member states to collect additional statistics on income and living conditions. In addition to this the EU-SILC data cover poverty and social exclusion. These statistics are used to help plan and monitor European social policy by comparing poverty indicators and changes over time across the EU. The EU-SILC requirement has been integrated into the GHS, leading to large-scale changes in the 2005 survey questionnaire. The trailers on 'Views of your Local Area' and 'Dental Health' have been removed. Other changes have been made to many of the standard questionnaire sections, details of which may be found in the GHS 2005 documentation. Further changes to the GLF/GHS methodology from 2008 As noted above, the General Household Survey (GHS) was renamed the General Lifestyle Survey (GLF/GLS) in 2008. The sample design of the GLF/GLS is the same as the GHS before, and the questionnaire remains largely the same. The main change is that the GLF now includes the IHS core questions, which are common to all of the separate modules that together comprise the IHS. Some of these core questions are simpl y questions that were previously asked in the same or a similar format on all of the IHS component surveys (including the GLF/GLS). The core questions cover employment, smoking prevalence, general health, ethnicity, citizenship and national identity. These questions are asked by proxy if an interview is not possible with the selected respondent (that is a member of the household can answer on behalf of other respondents in the household). This is a departure from the GHS which did not ask smoking prevalence and general health questions by proxy, whereas the GLF/GLS does from 2008. For details on other changes to the GLF/GLS questionnaire, please see the GLF/GLS 2008: Special Licence Access documentation held with SN 6414. Currently, the UK Data Archive holds only the SL (and not the EUL) version of the GLF/GLS for 2008. Changes to the drinking section There have been a number of revisions to the methodology that is used to produce the alcohol consumption estimates. In 2006, the average number of units assigned to the different drink types and the assumption around the average size of a wine glass was updated, resulting in significantly increased consumption estimates. In addition to the revised method, a new question about wine glass size was included in the survey in 2008. Respondents were asked whether they have consumed small (125 ml), standard (175 ml) or large (250 ml) glasses of wine. The data from this question are used when calculating the number of units of alcohol consumed by the respondent. It is assumed that a small glass contains 1.5 units, a standard glass contains 2 units and a large glass contains 3 units. (In 2006 and 2007 it was assumed that all respondents drank from a standard 175 ml glass containing 2 units.) The datasets contain the original set of variables based on the original methodology, as well as those based on the revised and (for 2008 onwards) updated methodologies. Further details on these changes are provided in the Guidelines documents held in SN 5804 - GHS 2006; and SN 6414 - GLF/GLS 2008: Special Licence Access. Special Licence GHS/GLF/GLS Special Licence (SL) versions of the GHS/GLF/GLS are available from 1998-1999 onwards. The SL versions include all variables held in the standard 'End User Licence' (EUL) version, plus extra variables covering cigarette codes and descriptions, and some birthdate information for respondents and household members. Prospective SL users will need to complete an extra application form and demonstrate to the data owners exactly why they need access to t he extra variables, in order to get permission to use the SL version. Therefore, most users should order the EUL version of the data. In order to help users choose the correct dataset, 'Special Licence Access' has been added to the dataset titles for the SL versions of the data. A list of all GHS/GLF/GLS studies available from the UK Data Archive may be found on the GHS/GLF/GLS major studies web page. See below for details of SL datasets for the corresponding GHS/GLF/GLS year (1998-1999 onwards only). UK Data Archive data holdings and formats The UK Data Archive GHS/GLF/GLS holdings begin with the 1971 study for EUL data, and from 1998-1999 for SL versions (see above). Users should note that data for the 1971 study are currently only available as ASCII files without accompanying SPSS set-up files. SPSS files for the 1972 study were created by John Simister, and redeposited at the Archive in 2000. Currently, the UK Data Archive holds only the SL versions of the GHS/GLF/GLS for 2007 and 2008. Reformatted Data 1973 to 1982 - Surrey SPSS Files SPSS files have been created by the University of Surrey for all study years from 1973 to 1982 inclusive. These early files were restructured and the case changed from the household to the individual with all of the household information duplicated for each individual. The Surrey SPSS files contain all the original variabl es as well as some extra derived variables (a few variables were omitted from the data files for 1973-76). In 1973 only, the section on leisure was not included in the Surrey SPSS files. This has subsequently been made available, however, and is now held in a separate study, General Household Survey, 1973: Leisure Questions (held under SN 3982). Records for the original GHS 1973-1982 ASCII files have been removed from the UK Data Archive catalogue, but the data are still preserved and available upon request. Users should note that GHS/GLF/GLS data are also available in formats other than SPSS.

  6. Trends in Substance Abuse and Treatment Needs Among Inmates in the United...

    • icpsr.umich.edu
    • s.cnmilf.com
    • +1more
    ascii
    Updated Jan 18, 2006
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Belenko, Steven (2006). Trends in Substance Abuse and Treatment Needs Among Inmates in the United States, 1996-1997 [Dataset]. http://doi.org/10.3886/ICPSR03714.v1
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Jan 18, 2006
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Belenko, Steven
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/3714/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/3714/terms

    Time period covered
    1996 - 1997
    Area covered
    United States
    Description

    This data collection consists of the SPSS syntax used to recode existing variables and create new variables from the SURVEY OF INMATES OF LOCAL JAILS, 1996 [ICPSR 6858] and the SURVEY OF INMATES IN STATE AND FEDERAL CORRECTIONAL FACILITIES, 1997 [ICPSR 2598]. Using the data from these two national surveys on jail and prison inmates, this study sought to expand the analyses of these data in order to fully explore the relationship between type and intensity of substance abuse and other health and social problems, analyze access to treatment and services, and make estimates of the need for different types of treatment services in correctional systems.

  7. d

    Understanding Society through Secondary Data Analysis: Wave One to Three...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    McKay, Steve; Adkins, Michael; Williams, Helen (2023). Understanding Society through Secondary Data Analysis: Wave One to Three Teaching Datasets [Dataset]. http://doi.org/10.7910/DVN/26177
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    McKay, Steve; Adkins, Michael; Williams, Helen
    Description

    This study contains script files to create teaching versions of Understanding Society: Waves 1-3, the new UK household panel survey. Specifically, the user can focus on individual waves, or can create a panel survey dataset for use in teaching undergraduates and postgraduates. Core areas of focus are attitudes to voting and political parties, to the environment, and to ethnicity and migration. Script files are available for SPSS, STATA and R. Individuals wishing to make use of this resource will need to apply separately to the UK data archive for access to the original datasets: http://discover.ukdataservice.ac.uk/catalogue/?sn=6614 &type=Data%20catalogue

  8. Z

    Data from: A New Bayesian Approach to Increase Measurement Accuracy Using a...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Feb 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Domjan, Peter; Angyal, Viola; Bertalan, Adam; Vingender, Istvan; Dinya, Elek (2025). A New Bayesian Approach to Increase Measurement Accuracy Using a Precision Entropy Indicator [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_14417120
    Explore at:
    Dataset updated
    Feb 25, 2025
    Dataset provided by
    Semmelweis University
    Authors
    Domjan, Peter; Angyal, Viola; Bertalan, Adam; Vingender, Istvan; Dinya, Elek
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    "We believe that by accounting for the inherent uncertainty in the system during each measurement, the relationship between cause and effect can be assessed more accurately, potentially reducing the duration of research."

    Short description

    This dataset was created as part of a research project investigating the efficiency and learning mechanisms of a Bayesian adaptive search algorithm supported by the Imprecision Entropy Indicator (IEI) as a novel method. It includes detailed statistical results, posterior probability values, and the weighted averages of IEI across multiple simulations aimed at target localization within a defined spatial environment. Control experiments, including random search, random walk, and genetic algorithm-based approaches, were also performed to benchmark the system's performance and validate its reliability.

    The task involved locating a target area centered at (100; 100) within a radius of 10 units (Research_area.png), inside a circular search space with a radius of 100 units. The search process continued until 1,000 successful target hits were achieved.

    To benchmark the algorithm's performance and validate its reliability, control experiments were conducted using alternative search strategies, including random search, random walk, and genetic algorithm-based approaches. These control datasets serve as baselines, enabling comprehensive comparisons of efficiency, randomness, and convergence behavior across search methods, thereby demonstrating the effectiveness of our novel approach.

    Uploaded files

    The first dataset contains the average IEI values, generated by randomly simulating 300 x 1 hits for 10 bins per quadrant (4 quadrants in total) using the Python programming language, and calculating the corresponding IEI values. This resulted in a total of 4 x 10 x 300 x 1 = 12,000 data points. The summary of the IEI values by quadrant and bin is provided in the file results_1_300.csv. The calculation of IEI values for averages is based on likelihood, using an absolute difference-based approach for the likelihood probability computation. IEI_Likelihood_Based_Data.zip

    The weighted IEI average values for likelihood calculation (Bayes formula) are provided in the file Weighted_IEI_Average_08_01_2025.xlsx

    This dataset contains the results of a simulated target search experiment using Bayesian posterior updates and Imprecision Entropy Indicators (IEI). Each row represents a hit during the search process, including metrics such as Shannon entropy (H), Gini index (G), average distance, angular deviation, and calculated IEI values. The dataset also includes bin-specific posterior probability updates and likelihood calculations for each iteration. The simulation explores adaptive learning and posterior penalization strategies to optimize the search efficiency. Our Bayesian adaptive searching system source code (search algorithm, 1000 target searches): IEI_Self_Learning_08_01_2025.pyThis dataset contains the results of 1,000 iterations of a successful target search simulation. The simulation runs until the target is successfully located for each iteration. The dataset includes further three main outputs: a) Results files (results{iteration_number}.csv): Details of each hit during the search process, including entropy measures, Gini index, average distance and angle, Imprecision Entropy Indicators (IEI), coordinates, and the bin number of the hit. b) Posterior updates (Pbin_all_steps_{iter_number}.csv): Tracks the posterior probability updates for all bins during the search process acrosations multiple steps. c) Likelihoodanalysis(likelihood_analysis_{iteration_number}.csv): Contains the calculated likelihood values for each bin at every step, based on the difference between the measured IEI and pre-defined IE bin averages. IEI_Self_Learning_08_01_2025.py

    Based on the mentioned Python source code (see point 3, Bayesian adaptive searching method with IEI values), we performed 1,000 successful target searches, and the outputs were saved in the:Self_learning_model_test_output.zip file.

    Bayesian Search (IEI) from different quadrant. This dataset contains the results of Bayesian adaptive target search simulations, including various outputs that represent the performance and analysis of the search algorithm. The dataset includes: a) Heatmaps (Heatmap_I_Quadrant, Heatmap_II_Quadrant, Heatmap_III_Quadrant, Heatmap_IV_Quadrant): These heatmaps represent the search results and the paths taken from each quadrant during the simulations. They indicate how frequently the system selected each bin during the search process. b) Posterior Distributions (All_posteriors, Probability_distribution_posteriors_values, CDF_posteriors_values): Generated based on posterior values, these files track the posterior probability updates, including cumulative distribution functions (CDF) and probability distributions. c) Macro Summary (summary_csv_macro): This file aggregates metrics and key statistics from the simulation. It summarizes the results from the individual results.csv files. d) Heatmap Searching Method Documentation (Bayesian_Heatmap_Searching_Method_05_12_2024): This document visualizes the search algorithm's path, showing how frequently each bin was selected during the 1,000 successful target searches. e) One-Way ANOVA Analysis (Anova_analyze_dataset, One_way_Anova_analysis_results): This includes the database and SPSS calculations used to examine whether the starting quadrant influences the number of search steps required. The analysis was conducted at a 5% significance level, followed by a Games-Howell post hoc test [43] to identify which target-surrounding quadrants differed significantly in terms of the number of search steps. Results were saved in the Self_learning_model_test_results.zip

    This dataset contains randomly generated sequences of bin selections (1-40) from a control search algorithm (random search) used to benchmark the performance of Bayesian-based methods. The process iteratively generates random numbers until a stopping condition is met (reaching target bins 1, 11, 21, or 31). This dataset serves as a baseline for analyzing the efficiency, randomness, and convergence of non-adaptive search strategies. The dataset includes the following: a) The Python source code of the random search algorithm. b) A file (summary_random_search.csv) containing the results of 1000 successful target hits. c) A heatmap visualizing the frequency of search steps for each bin, providing insight into the distribution of steps across the bins. Random_search.zip

    This dataset contains the results of a random walk search algorithm, designed as a control mechanism to benchmark adaptive search strategies (Bayesian-based methods). The random walk operates within a defined space of 40 bins, where each bin has a set of neighboring bins. The search begins from a randomly chosen starting bin and proceeds iteratively, moving to a randomly selected neighboring bin, until one of the stopping conditions is met (bins 1, 11, 21, or 31). The dataset provides detailed records of 1,000 random walk iterations, with the following key components: a) Individual Iteration Results: Each iteration's search path is saved in a separate CSV file (random_walk_results_.csv), listing the sequence of steps taken and the corresponding bin at each step. b) Summary File: A combined summary of all iterations is available in random_walk_results_summary.csv, which aggregates the step-by-step data for all 1,000 random walks. c) Heatmap Visualization: A heatmap file is included to illustrate the frequency distribution of steps across bins, highlighting the relative visit frequencies of each bin during the random walks. d) Python Source Code: The Python script used to generate the random walk dataset is provided, allowing reproducibility and customization for further experiments. Random_walk.zip

    This dataset contains the results of a genetic search algorithm implemented as a control method to benchmark adaptive Bayesian-based search strategies. The algorithm operates in a 40-bin search space with predefined target bins (1, 11, 21, 31) and evolves solutions through random initialization, selection, crossover, and mutation over 1000 successful runs. Dataset Components: a) Run Results: Individual run data is stored in separate files (genetic_algorithm_run_.csv), detailing: Generation: The generation number. Fitness: The fitness score of the solution. Steps: The path length in bins. Solution: The sequence of bins visited. b) Summary File: summary.csv consolidates the best solutions from all runs, including their fitness scores, path lengths, and sequences. c) All Steps File: summary_all_steps.csv records all bins visited during the runs for distribution analysis. d) A heatmap was also generated for the genetic search algorithm, illustrating the frequency of bins chosen during the search process as a representation of the search pathways.Genetic_search_algorithm.zip

    Technical Information

    The dataset files have been compressed into a standard ZIP archive using Total Commander (version 9.50). The ZIP format ensures compatibility across various operating systems and tools.

    The XLSX files were created using Microsoft Excel Standard 2019 (Version 1808, Build 10416.20027)

    The Python program was developed using Visual Studio Code (Version 1.96.2, user setup), with the following environment details: Commit fabd6a6b30b49f79a7aba0f2ad9df9b399473380f, built on 2024-12-19. The Electron version is 32.6, and the runtime environment includes Chromium 128.0.6263.186, Node.js 20.18.1, and V8 12.8.374.38-electron.0. The operating system is Windows NT x64 10.0.19045.

    The statistical analysis included in this dataset was partially conducted using IBM SPSS Statistics, Version 29.0.1.0

    The CSV files in this dataset were created following European standards, using a semicolon (;) as the delimiter instead of a comma, encoded in UTF-8 to ensure compatibility with a wide

  9. d

    COVID Impact Survey - Public Data

    • data.world
    csv, zip
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2024). COVID Impact Survey - Public Data [Dataset]. https://data.world/associatedpress/covid-impact-survey-public-data
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Oct 16, 2024
    Authors
    The Associated Press
    Description

    Overview

    The Associated Press is sharing data from the COVID Impact Survey, which provides statistics about physical health, mental health, economic security and social dynamics related to the coronavirus pandemic in the United States.

    Conducted by NORC at the University of Chicago for the Data Foundation, the probability-based survey provides estimates for the United States as a whole, as well as in 10 states (California, Colorado, Florida, Louisiana, Minnesota, Missouri, Montana, New York, Oregon and Texas) and eight metropolitan areas (Atlanta, Baltimore, Birmingham, Chicago, Cleveland, Columbus, Phoenix and Pittsburgh).

    The survey is designed to allow for an ongoing gauge of public perception, health and economic status to see what is shifting during the pandemic. When multiple sets of data are available, it will allow for the tracking of how issues ranging from COVID-19 symptoms to economic status change over time.

    The survey is focused on three core areas of research:

    • Physical Health: Symptoms related to COVID-19, relevant existing conditions and health insurance coverage.
    • Economic and Financial Health: Employment, food security, and government cash assistance.
    • Social and Mental Health: Communication with friends and family, anxiety and volunteerism. (Questions based on those used on the U.S. Census Bureau’s Current Population Survey.) ## Using this Data - IMPORTANT This is survey data and must be properly weighted during analysis: DO NOT REPORT THIS DATA AS RAW OR AGGREGATE NUMBERS!!

    Instead, use our queries linked below or statistical software such as R or SPSS to weight the data.

    Queries

    If you'd like to create a table to see how people nationally or in your state or city feel about a topic in the survey, use the survey questionnaire and codebook to match a question (the variable label) to a variable name. For instance, "How often have you felt lonely in the past 7 days?" is variable "soc5c".

    Nationally: Go to this query and enter soc5c as the variable. Hit the blue Run Query button in the upper right hand corner.

    Local or State: To find figures for that response in a specific state, go to this query and type in a state name and soc5c as the variable, and then hit the blue Run Query button in the upper right hand corner.

    The resulting sentence you could write out of these queries is: "People in some states are less likely to report loneliness than others. For example, 66% of Louisianans report feeling lonely on none of the last seven days, compared with 52% of Californians. Nationally, 60% of people said they hadn't felt lonely."

    Margin of Error

    The margin of error for the national and regional surveys is found in the attached methods statement. You will need the margin of error to determine if the comparisons are statistically significant. If the difference is:

    • At least twice the margin of error, you can report there is a clear difference.
    • At least as large as the margin of error, you can report there is a slight or apparent difference.
    • Less than or equal to the margin of error, you can report that the respondents are divided or there is no difference. ## A Note on Timing Survey results will generally be posted under embargo on Tuesday evenings. The data is available for release at 1 p.m. ET Thursdays.

    About the Data

    The survey data will be provided under embargo in both comma-delimited and statistical formats.

    Each set of survey data will be numbered and have the date the embargo lifts in front of it in the format of: 01_April_30_covid_impact_survey. The survey has been organized by the Data Foundation, a non-profit non-partisan think tank, and is sponsored by the Federal Reserve Bank of Minneapolis and the Packard Foundation. It is conducted by NORC at the University of Chicago, a non-partisan research organization. (NORC is not an abbreviation, it part of the organization's formal name.)

    Data for the national estimates are collected using the AmeriSpeak Panel, NORC’s probability-based panel designed to be representative of the U.S. household population. Interviews are conducted with adults age 18 and over representing the 50 states and the District of Columbia. Panel members are randomly drawn from AmeriSpeak with a target of achieving 2,000 interviews in each survey. Invited panel members may complete the survey online or by telephone with an NORC telephone interviewer.

    Once all the study data have been made final, an iterative raking process is used to adjust for any survey nonresponse as well as any noncoverage or under and oversampling resulting from the study specific sample design. Raking variables include age, gender, census division, race/ethnicity, education, and county groupings based on county level counts of the number of COVID-19 deaths. Demographic weighting variables were obtained from the 2020 Current Population Survey. The count of COVID-19 deaths by county was obtained from USA Facts. The weighted data reflect the U.S. population of adults age 18 and over.

    Data for the regional estimates are collected using a multi-mode address-based (ABS) approach that allows residents of each area to complete the interview via web or with an NORC telephone interviewer. All sampled households are mailed a postcard inviting them to complete the survey either online using a unique PIN or via telephone by calling a toll-free number. Interviews are conducted with adults age 18 and over with a target of achieving 400 interviews in each region in each survey.Additional details on the survey methodology and the survey questionnaire are attached below or can be found at https://www.covid-impact.org.

    Attribution

    Results should be credited to the COVID Impact Survey, conducted by NORC at the University of Chicago for the Data Foundation.

    AP Data Distributions

    ​To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

  10. Data from: Impact of Violent Victimization on Physical and Mental Health...

    • catalog.data.gov
    • icpsr.umich.edu
    Updated Nov 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Impact of Violent Victimization on Physical and Mental Health Among Women in the United States, 1994-1996 [Dataset]. https://catalog.data.gov/dataset/impact-of-violent-victimization-on-physical-and-mental-health-among-women-in-the-unit-1994-18bbd
    Explore at:
    Dataset updated
    Nov 14, 2025
    Dataset provided by
    National Institute of Justicehttp://nij.ojp.gov/
    Area covered
    United States
    Description

    The major goals of the project were to use survey data about victimization experiences among American women to examine: (a) the consequences of victimization for women's physical and mental health, (b) how the impact of victimization on women's health sequelae is conditioned by the victim's invoking of family and community support, and (c) how among victims of intimate partner violence, such factors as the relationship between the victim and offender, the offender's characteristics, and police involvement condition the impact of victimization on the victim's subsequent physical and mental health. This data collection consists of the SPSS syntax used to recode existing variables and create new variables from the study, VIOLENCE AND THREATS OF VIOLENCE AGAINST WOMEN AND MEN IN THE UNITED STATES, 1994-1996 (ICPSR 2566). The study, also known as the National Violence against Women Survey (NVAWS), surveyed 8,000 women 18 years of age or older residing in households throughout the United States in 1995 and 1996. The data for the NVAWS were gathered via a national, random-digit dialing sample of telephone households in the United States, stratified by United States Census region. The NVAWS respondents were asked about their lifetime experiences with four different kinds of violent victimization: sexual abuse, physical abuse, stalking, and intimidation. Using the data from the NVAWS, the researchers in this study performed three separate analyses. The study included outcome variables, focal variables, moderator variables, and control variables.

  11. m

    Data for: Can government transfers make energy subsidy reform socially...

    • data.mendeley.com
    Updated Mar 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Filip Schaffitzel (2020). Data for: Can government transfers make energy subsidy reform socially acceptable? A case study on Ecuador [Dataset]. http://doi.org/10.17632/z35m76mf9g.1
    Explore at:
    Dataset updated
    Mar 31, 2020
    Authors
    Filip Schaffitzel
    License

    Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
    License information was derived automatically

    Area covered
    Ecuador
    Description

    Estimating the distributional impacts of energy subsidy removal and compensation schemes in Ecuador based on input-output and household data.

    Import files: Dictionary Categories.csv, Dictionary ENI-IOT.csv, and Dictionary Subcategories.csv based on [1] Dictionary IOT.csv and IOT_2012.csv (cannot be redistruted) based on [2] Dictionary Taxes.csv and Dictionary Transfers.csv based on [3] ENIGHUR11_GASTOS_V.csv, ENIGHUR11_HOGARES_AGREGADOS.csv, and ENIGHUR11_PERSONAS_INGRESOS.csv based on [4] Price increase scenarios.csv based on [5]

    Further basic files and documents: [1] 4_M&D_Mapping ENIGHUR expenditures to IOT_180605.xlsm [2] Input-output table 2012 (https://contenido.bce.fin.ec/documentos/PublicacionesNotas/Catalogo/CuentasNacionales/Anuales/Dolares/MIP2012Ampliada.xls). Save the sheet with the IOT 2012 (Matriz simétrica) as IOT_2012.csv and edit the format: first column and row: IOT labels [3] 4_M&D_ENIGHUR income_180606.xlsx [4] ENIGHUR data can be retrieved from http://www.ecuadorencifras.gob.ec/encuesta-nacional-de-ingresos-y-gastos-de-los-hogares-urbanos-y-rurales/ Household datasets are only available in SPSS file format and the free software PSPP is used to convert .sav- to .csv-files, as this format can be read directly and efficiently into a Python Pandas DataFrame. See PSPP syntax below: save translate /outfile = filename /type = CSV /textoptions decimal = DOT /textoptions delimiter = ';' /fieldnames /cells=values /replace. [5] 3_Ecuador_Energy subsidies and 4_M&D_Price scenarios_180610.xlsx

  12. Data from: An Examination of Child Support, Debt and Prisoner Reentry Using...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Nov 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). An Examination of Child Support, Debt and Prisoner Reentry Using the SVORI Adult Male Dataset, 2004-2007 (United States) [Dataset]. https://catalog.data.gov/dataset/an-examination-of-child-support-debt-and-prisoner-reentry-using-the-svori-adult-male-datas-705d2
    Explore at:
    Dataset updated
    Nov 14, 2025
    Dataset provided by
    National Institute of Justicehttp://nij.ojp.gov/
    Area covered
    United States
    Description

    These data are part of NACJD's Fast Track Release and are distributed as they were received from the data depositor. The files have been zipped by NACJD for release, but not checked or processed except for the removal of direct identifiers. Users should refer to the accompanying readme file for a brief description of the files available with this collection and consult the investigator(s) if further information is needed. This study is a secondary analysis of data from ICPSR Study Number 27101, Serious and Violent Offender Reentry Initiative (SVORI) Multi-site Impact Evaluation, 2004-2011 [United States]- specifically the adult male dataset -to examine the associations among child support obligations, employment and reentry outcomes. The study addressed the following research questions: Are the demographic, criminal justice and employment-related characteristics of incarcerated men with child support orders significantly different in any important way from incarcerated males without child support orders? Did SVORI clients receive more support and services related to child support orders and modification of debt after release from prison compared to non-SVORI participants? Does having legal child support obligations decrease the likelihood of employment in later waves, net of key demographic and criminal justice history factors? How does employment influence the relationship between child support debt and recidivism? and Is family instrumental support a significant predictor of reduced recidivism or increased employment in models assessing the relationship between child support obligations, employment and recidivism? The study includes one document (Syntax_ChildSupport_Reentry_forICPSR_2012-IJ-CX-0012.docx) which contains SPSS and Stata syntax used to create research variables.

  13. Federal Court Cases: Integrated Data Base, 1970-2000 - Version 6

    • search.gesis.org
    Updated May 22, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Judicial Center (2012). Federal Court Cases: Integrated Data Base, 1970-2000 - Version 6 [Dataset]. http://doi.org/10.3886/ICPSR08429.v6
    Explore at:
    Dataset updated
    May 22, 2012
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    GESIS search
    Authors
    Federal Judicial Center
    License

    https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de456864https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de456864

    Description

    Abstract (en): The purpose of this data collection is to provide an official public record of the business of the federal courts. The data originate from 94 district and 12 appellate court offices throughout the United States. Information was obtained at two points in the life of a case: filing and termination. The termination data contain information on both filing and terminations, while the pending data contain only filing information. For the appellate and civil data, the unit of analysis is a single case. The unit of analysis for the criminal data is a single defendant. ICPSR data undergo a confidentiality review and are altered when necessary to limit the risk of disclosure. ICPSR also routinely creates ready-to-go data files along with setups in the major statistical software formats as well as standard codebooks to accompany the data. In addition to these procedures, ICPSR performed the following processing steps for this data collection: Performed consistency checks.; Standardized missing values.; Checked for undocumented or out-of-range codes.. All federal court cases, 1970-2000. 2012-05-22 All parts are being moved to restricted access and will be available only using the restricted access procedures.2005-04-29 The codebook files in Parts 57, 94, and 95 have undergone minor edits and been incorporated with their respective datasets. The SAS files in Parts 90, 91, 227, and 229-231 have undergone minor edits and been incorporated with their respective datasets. The SPSS files in Parts 92, 93, 226, and 228 have undergone minor edits and been incorporated with their respective datasets. Parts 15-28, 34-56, 61-66, 70-75, 82-89, 96-105, 107, 108, and 115-121 have had identifying information removed from the public use file and restricted data files that still include that information have been created. These parts have had their SPSS, SAS, and PDF codebook files updated to reflect the change. The data, SPSS, and SAS files for Parts 34-37 have been updated from OSIRIS to LRECL format. The codebook files for Parts 109-113 have been updated. The case counts for Parts 61-66 and 71-75 have been corrected in the study description. The LRECL for Parts 82, 100-102, and 105 have been corrected in the study description.2003-04-03 A codebook was created for Part 105, Civil Pending, 1997. Parts 232-233, SAS and SPSS setup files for Civil Data, 1996-1997, were removed from the collection since the civil data files for those years have corresponding SAS and SPSS setup files.2002-04-25 Criminal data files for Parts 109-113 have all been replaced with updated files. The updated files contain Criminal Terminations and Criminal Pending data in one file for the years 1996-2000. Part 114, originally Criminal Pending 2000, has been removed from the study and the 2000 pending data are now included in Part 113.2001-08-13 The following data files were revised to include plaintiff and defendant information: Appellate Terminations, 2000 (Part 107), Appellate Pending, 2000 (Part 108), Civil Terminations, 1996-2000 (Parts 103, 104, 115-117), and Civil Pending, 2000 (Part 118). The corresponding SAS and SPSS setup files and PDF codebooks have also been edited.2001-04-12 Criminal Terminations (Parts 109-113) data for 1996-2000 and Criminal Pending (Part 114) data for 2000 have been added to the data collection, along with corresponding SAS and SPSS setup files and PDF codebooks.2001-03-26 Appellate Terminations (Part 107) and Appellate Pending (Part 108) data for 2000 have been added to the data collection, along with corresponding SAS and SPSS setup files and PDF codebooks.1997-07-16 The data for 18 of the Criminal Data files were matched to the wrong part numbers and names, and now have been corrected. Funding insitution(s): United States Department of Justice. Office of Justice Programs. Bureau of Justice Statistics. (1) Several, but not all, of these record counts include a final blank record. Researchers may want to detect this occurrence and eliminate this record before analysis. (2) In July 1984, a major change in the recording and disposition of an appeal occurred, and several data fields dealing with disposition were restructured or replaced. The new structure more clearly delineates mutually exclusive dispositions. Researchers must exercise care in using these fields for comparisons. (3) In 1992, the Administrative Office of the United States Courts changed the reporting period for statistical data. Up to 1992, the reporting period...

  14. g

    Data from: Examining the Structure, Organization, and Processes of the...

    • gimi9.com
    • datasets.ai
    • +2more
    Updated Dec 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Examining the Structure, Organization, and Processes of the International Market for Stolen Data, 2007-2012 [Dataset]. https://gimi9.com/dataset/data-gov_16ed1ac80623a66e61753d4e5ca9f7939c3104a4/
    Explore at:
    Dataset updated
    Dec 9, 2024
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    These data are part of NACJD's Fast Track Release and are distributed as they were received from the data depositor. The files have been zipped by NACJD for release, but not checked or processed except for the removal of direct identifiers. Users should refer to the accompanying readme file for a brief description of the files available with this collection and consult the investigator(s) if further information is needed. This study was designed to understand the economic and social structure of the market for stolen data on-line. This data provides information on the costs of various forms of personal information and cybercrime services, the payment systems used, social organization and structure of the market, and interactions between buyers, sellers, and forum operators. The PIs used this data to assess the economy of stolen data markets, the social organization of participants, and the payment methods and services used. The study utilized a sample of approximately 1,900 threads generated from 13 web forums, 10 of which used Russian as their primary language and three which used English. These forums were hosted around the world, and acted as online advertising spaces for individuals to sell and buy a range of products. The content of these forums were downloaded and translated from Russian to English to create a purposive, yet convenient sample of threads from each forum. The collection contains 1 SPSS data file (ICPSR Submission Economic File SPSS.sav) with 39 variables and 13,735 cases and 1 Access data file (Social Network Analysis File Revised 04-11-14.mdb) with a total of 16 data tables and 199 variables. Qualitative data used to examine the associations and working relationships present between participants at the micro and macro-level are not available at this time.

  15. u

    NRM

    • datacatalogue.ukdataservice.ac.uk
    Updated Nov 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Home Office, Modern Slavery Research & Analysis (2025). NRM [Dataset]. http://doi.org/10.5255/UKDA-SN-8910-18
    Explore at:
    Dataset updated
    Nov 10, 2025
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    Authors
    Home Office, Modern Slavery Research & Analysis
    Time period covered
    Jan 1, 2014 - Sep 29, 2025
    Area covered
    United Kingdom
    Description

    Modern slavery is a term that includes any form of human trafficking, slavery, servitude or forced labour, as set out in the Modern Slavery Act 2015. Potential victims of modern slavery in the UK that come to the attention of authorised ‘First Responder’ organisations are referred to the National Referral Mechanism (NRM).

    Adults (aged 18 or above) must consent to being referred to the NRM, whilst children under the age of 18 need not consent to being referred. As specified in section 52 of the Modern Slavery Act 2015, public authorities in England and Wales have a statutory duty to notify the Home Office when they come across potential victims of modern slavery ('Duty to Notify' (DtN)). This duty is discharged by either referring a child or consenting adult potential victim into the NRM, or by notifying the Home Office via the DtN process if an adult victim does not consent to enter the NRM.

    The Home Office publishes quarterly statistical bulletins and aggregated data breakdowns on the "https://www.gov.uk/government/collections/national-referral-mechanism-statistics" target="_blank"> National Referral Mechanism webpage on the GOV.UK website regarding the number of potential victims referred each quarter. To allow stakeholders and first responders more flexibility in analysing this data for their own strategic and operational planning, the disaggregated, pseudonymised dataset used to create the aggregated published data is also available from the UK Data Service as 'safeguarded' data. (The UKDS data are available in SPSS, Stata, tab-delimited text and CSV formats.)

    Latest edition information

    For the 18th edition (November 2025), the data file was amended to include Quarter 3 2025 cases, and the Data Notes documentation file was also updated.

  16. National Survey on Population and Employment, ENPE 2013 - Tunisia

    • erfdataportal.com
    • mail.erfdataportal.com
    Updated Jul 12, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Statistics - Tunisia (2016). National Survey on Population and Employment, ENPE 2013 - Tunisia [Dataset]. http://www.erfdataportal.com/index.php/catalog/100
    Explore at:
    Dataset updated
    Jul 12, 2016
    Dataset provided by
    National institute of statisticshttp://www.ins.tn/en/
    Economic Research Forum
    Time period covered
    2013
    Area covered
    Tunisia
    Description

    Abstract

    THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 100% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE NATIONAL INSTITUTE OF STATISTICS (INS) - TUNISIA

    The survey aims at estimating the demographic and educational characteristics of the population. It also calculates the economic indicators of the population such as the number of active individuals, the additional demand for jobs, the number of employed and their characteristics, the number of jobs created, the characteristics of the unemployed and the unemployment rate. Furthermore, this survey estimates these indicators on the household level and their living conditions.

    The results of this survey were compared with the results of the second quarter of the national survey on population and employment 2011. It should also be noted that the National Institute of Statistics -Tunisia uses the unemployment definition and concepts adopted by the International Labour Organization. This definition implies that, the individual did not work during the week preceding the day of the interview, was looking for a job in the month preceding the date of the interview, is available to work within two weeks after the day of the interview.

    In 2010, the National Institute of Statistics has adopted a strict ILO definition for unemployment, by conditioning that the person must perform effective approaches to search for a job in the month preceding the day of the interview.

    Geographic coverage

    Covering a representative sample at the national and regional level (governorates).

    Analysis unit

    1- Household/family. 2- Individual/person.

    Universe

    The survey covered a national sample of households and all individuals permanently residing in surveyed households.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 100% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE NATIONAL INSTITUTE OF STATISTICS - TUNISIA (INS)

    The sample is drawn from the frame of the 2004 General Census of Population and Housing.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Three modules were designed for data collection:

    • Household Questionnaire (Module 1): Includes questions regarding household characteristics, living conditions, individuals and their demographic, educational and economic characteristics. This module also provides information on internal and external migration.

    • Active Employed Questionnaire (Module 2): Includes questions regarding the characteristics of the employed individuals as occupation, industry and wages for employees.

    • Active Unemployed Questionnaire (Module 3): Includes questions regarding the characteristics of the unemployed as unemployment duration, the last occupation, activity, and the number of days worked during the last year...etc.

    Cleaning operations

    Harmonized Data

    • SPSS software is used to clean and harmonize the datasets.
    • The harmonization process starts with cleaning all raw data files received from the Statistical Agency.
    • Cleaned data files are then all merged to produce one data file on the individual level containing all variables subject to harmonization.
    • A country-specific program is generated for each dataset to generate/ compute/ recode/ rename/ format/ label harmonized variables.
    • A post-harmonization cleaning process is then conducted on the data.
    • Harmonized data is saved on the household as well as the individual level, in SPSS and converted to STATA format.
  17. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Anthony Damico (2013). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD

Current Population Survey (CPS)

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
May 30, 2013
Dataset provided by
Harvard Dataverse
Authors
Anthony Damico
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

Search
Clear search
Close search
Google apps
Main menu