100+ datasets found
  1. Data from: PISA Data Analysis Manual: SPSS, Second Edition

    • catalog.data.gov
    Updated Mar 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of State (2021). PISA Data Analysis Manual: SPSS, Second Edition [Dataset]. https://catalog.data.gov/dataset/pisa-data-analysis-manual-spss-second-edition
    Explore at:
    Dataset updated
    Mar 30, 2021
    Dataset provided by
    United States Department of Statehttp://state.gov/
    Description

    The OECD Programme for International Student Assessment (PISA) surveys collected data on students’ performances in reading, mathematics and science, as well as contextual information on students’ background, home characteristics and school factors which could influence performance. This publication includes detailed information on how to analyse the PISA data, enabling researchers to both reproduce the initial results and to undertake further analyses. In addition to the inclusion of the necessary techniques, the manual also includes a detailed account of the PISA 2006 database and worked examples providing full syntax in SPSS.

  2. f

    Table_1_Raw Data Visualization for Common Factorial Designs Using SPSS: A...

    • frontiersin.figshare.com
    • figshare.com
    xlsx
    Updated Jun 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florian Loffing (2023). Table_1_Raw Data Visualization for Common Factorial Designs Using SPSS: A Syntax Collection and Tutorial.XLSX [Dataset]. http://doi.org/10.3389/fpsyg.2022.808469.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 15, 2023
    Dataset provided by
    Frontiers
    Authors
    Florian Loffing
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Transparency in data visualization is an essential ingredient for scientific communication. The traditional approach of visualizing continuous quantitative data solely in the form of summary statistics (i.e., measures of central tendency and dispersion) has repeatedly been criticized for not revealing the underlying raw data distribution. Remarkably, however, systematic and easy-to-use solutions for raw data visualization using the most commonly reported statistical software package for data analysis, IBM SPSS Statistics, are missing. Here, a comprehensive collection of more than 100 SPSS syntax files and an SPSS dataset template is presented and made freely available that allow the creation of transparent graphs for one-sample designs, for one- and two-factorial between-subject designs, for selected one- and two-factorial within-subject designs as well as for selected two-factorial mixed designs and, with some creativity, even beyond (e.g., three-factorial mixed-designs). Depending on graph type (e.g., pure dot plot, box plot, and line plot), raw data can be displayed along with standard measures of central tendency (arithmetic mean and median) and dispersion (95% CI and SD). The free-to-use syntax can also be modified to match with individual needs. A variety of example applications of syntax are illustrated in a tutorial-like fashion along with fictitious datasets accompanying this contribution. The syntax collection is hoped to provide researchers, students, teachers, and others working with SPSS a valuable tool to move towards more transparency in data visualization.

  3. PISA 2003 Data Analysis Manual SPSS

    • catalog.data.gov
    • gimi9.com
    Updated Mar 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of State (2021). PISA 2003 Data Analysis Manual SPSS [Dataset]. https://catalog.data.gov/dataset/pisa-2003-data-analysis-manual-spss
    Explore at:
    Dataset updated
    Mar 30, 2021
    Dataset provided by
    United States Department of Statehttp://state.gov/
    Description

    This publication provides all the information required to understand the PISA 2003 educational performance database and perform analyses in accordance with the complex methodologies used to collect and process the data. It enables researchers to both reproduce the initial results and to undertake further analyses. The publication includes introductory chapters explaining the statistical theories and concepts required to analyse the PISA data, including full chapters on how to apply replicate weights and undertake analyses using plausible values; worked examples providing full syntax in SPSS®; and a comprehensive description of the OECD PISA 2003 international database. The PISA 2003 database includes micro-level data on student educational performance for 41 countries collected in 2003, together with students’ responses to the PISA 2003 questionnaires and the test questions. A similar manual is available for SAS users.

  4. l

    People in pain make poorer decisions: tasks, data files and SPSS analysis...

    • repository.lboro.ac.uk
    xlsx
    Updated Aug 21, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nina Attridge; Jayne Pickering; Matthew Inglis; Edmund Keogh; Christopher Eccleston (2019). People in pain make poorer decisions: tasks, data files and SPSS analysis syntax [Dataset]. http://doi.org/10.17028/rd.lboro.7068413.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 21, 2019
    Dataset provided by
    Loughborough University
    Authors
    Nina Attridge; Jayne Pickering; Matthew Inglis; Edmund Keogh; Christopher Eccleston
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Tasks, data files, and SPSS analysis scripts for the paper "People in pain make poorer decisions".

  5. A dataset from a survey investigating disciplinary differences in data...

    • zenodo.org
    • data.niaid.nih.gov
    bin, csv, pdf, txt
    Updated Jul 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anton Boudreau Ninkov; Anton Boudreau Ninkov; Chantal Ripp; Chantal Ripp; Kathleen Gregory; Kathleen Gregory; Isabella Peters; Isabella Peters; Stefanie Haustein; Stefanie Haustein (2024). A dataset from a survey investigating disciplinary differences in data citation [Dataset]. http://doi.org/10.5281/zenodo.7853477
    Explore at:
    txt, pdf, bin, csvAvailable download formats
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Anton Boudreau Ninkov; Anton Boudreau Ninkov; Chantal Ripp; Chantal Ripp; Kathleen Gregory; Kathleen Gregory; Isabella Peters; Isabella Peters; Stefanie Haustein; Stefanie Haustein
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    GENERAL INFORMATION

    Title of Dataset: A dataset from a survey investigating disciplinary differences in data citation

    Date of data collection: January to March 2022

    Collection instrument: SurveyMonkey

    Funding: Alfred P. Sloan Foundation


    SHARING/ACCESS INFORMATION

    Licenses/restrictions placed on the data: These data are available under a CC BY 4.0 license

    Links to publications that cite or use the data:

    Gregory, K., Ninkov, A., Ripp, C., Peters, I., & Haustein, S. (2022). Surveying practices of data citation and reuse across disciplines. Proceedings of the 26th International Conference on Science and Technology Indicators. International Conference on Science and Technology Indicators, Granada, Spain. https://doi.org/10.5281/ZENODO.6951437

    Gregory, K., Ninkov, A., Ripp, C., Roblin, E., Peters, I., & Haustein, S. (2023). Tracing data:
    A survey investigating disciplinary differences in data citation.
    Zenodo. https://doi.org/10.5281/zenodo.7555266


    DATA & FILE OVERVIEW

    File List

    • Filename: MDCDatacitationReuse2021Codebookv2.pdf
      Codebook
    • Filename: MDCDataCitationReuse2021surveydatav2.csv
      Dataset format in csv
    • Filename: MDCDataCitationReuse2021surveydatav2.sav
      Dataset format in SPSS
    • Filename: MDCDataCitationReuseSurvey2021QNR.pdf
      Questionnaire

    Additional related data collected that was not included in the current data package: Open ended questions asked to respondents


    METHODOLOGICAL INFORMATION

    Description of methods used for collection/generation of data:

    The development of the questionnaire (Gregory et al., 2022) was centered around the creation of two main branches of questions for the primary groups of interest in our study: researchers that reuse data (33 questions in total) and researchers that do not reuse data (16 questions in total). The population of interest for this survey consists of researchers from all disciplines and countries, sampled from the corresponding authors of papers indexed in the Web of Science (WoS) between 2016 and 2020.

    Received 3,632 responses, 2,509 of which were completed, representing a completion rate of 68.6%. Incomplete responses were excluded from the dataset. The final total contains 2,492 complete responses and an uncorrected response rate of 1.57%. Controlling for invalid emails, bounced emails and opt-outs (n=5,201) produced a response rate of 1.62%, similar to surveys using comparable recruitment methods (Gregory et al., 2020).

    Methods for processing the data:

    Results were downloaded from SurveyMonkey in CSV format and were prepared for analysis using Excel and SPSS by recoding ordinal and multiple choice questions and by removing missing values.

    Instrument- or software-specific information needed to interpret the data:

    The dataset is provided in SPSS format, which requires IBM SPSS Statistics. The dataset is also available in a coded format in CSV. The Codebook is required to interpret to values.


    DATA-SPECIFIC INFORMATION FOR: MDCDataCitationReuse2021surveydata

    Number of variables: 95

    Number of cases/rows: 2,492

    Missing data codes: 999 Not asked

    Refer to MDCDatacitationReuse2021Codebook.pdf for detailed variable information.

  6. m

    SPSS FILE

    • data.mendeley.com
    Updated Apr 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr Khaula Noreen (2024). SPSS FILE [Dataset]. http://doi.org/10.17632/7jhrkt7ryk.1
    Explore at:
    Dataset updated
    Apr 9, 2024
    Authors
    Dr Khaula Noreen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data is based on factor analysis of newly developed tool for professionalism assessment

  7. o

    Raw data and SPSS analysis for the article Bacterial and fungal...

    • explore.openaire.eu
    • datadryad.org
    Updated Dec 10, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hani Naseef (2021). Raw data and SPSS analysis for the article Bacterial and fungal co-infections among ICU COVID-19 hospitalized patients in a Palestinian hospital: Incidence and antimicrobial stewardship [Dataset]. http://doi.org/10.5061/dryad.08kprr53r
    Explore at:
    Dataset updated
    Dec 10, 2021
    Authors
    Hani Naseef
    Description

    The attached data is related to a study with proposes to investigate the burden of bacterial and fungal co-infections outcomes on COVID-19 patients. It is a single-center cross-sectional study of hospitalized COVID-19 patients at Beit-Jala hospital in Palestine. The study included 321 hospitalized patients admitted to the ICU between June 2020 and March 2021 aged ≥20 years, Background: Diagnosis of co-infections with multiple pathogens among hospitalized COVID-19 patients can be jointly challenging and very essential for appropriate treatment, shortening hospital stay and preventing antimicrobial resistance. This study proposes to investigate the burden of bacterial and fungal co-infections outcomes on COVID-19 patients. It is a single center cross-sectional study of hospitalized COVID-19 patients at Beit-Jala hospital in Palestine. Methods: The study included 321 hospitalized patients admitted to the ICU between June 2020 and March 2021 aged ≥20 years, with a confirmed diagnosis of COVID-19 via RT-PCR conducted on a nasopharyngeal swab. The patient's information was gathered using graded data forms from electronic medical reports. Results: The diagnosis of bacterial and fungal infection was proved through the patients clinical presentation and positive blood or sputum culture results. All cases had received empirical antimicrobial therapy before the ICU admission, and different regimens during the ICU stay. The rate of bacterial co-infection was 51.1%, mainly from gram-negative isolates (Enterobacter species and K.pneumoniae). The rate of fungal co-infection caused by A.fumigatus was 48.9%, and the mortality rate was 8.1%. However, it is unclear if it had been attributed to SARS-CoV-2 or coincidental. Data extraction was done manually and verified by a second researcher, using graded data forms from electronic medical reports. The obtained data were socio-demographics, chronic comorbidities, laboratory findings (CRP, Leukocytes, blood Oxygen saturation), duration of ICU stay and other factors. The bacterial or fungal co-infection was proved through clinical presentation and positive blood or sputum testing via Laboratory Information System. Before and during the ICU admission, antimicrobial utilization was recorded, and the reports were double-checked for accuracy and completeness The analysis was performed on these data and summarized socio-demographic and clinical characteristics using relevant descriptive statistics; categorical variables as percentages and frequencies. Then Pearsons Chi-square test was performed to determine the association between the main parameters, which were the ICU residency duration and the other factors such as; demographics, Iron supplements, antibiotics administration before and during the ICU admission and smoking habits, etc. Data was applied and presented upon the IBM Statistical Package for the Social Sciences version 22.0. (SPSS). README file.xlsx contains metadata concerning the abbreviation and the entries in the SPSS Raw data xlsx: file contains all the collected data. PDF File named variables and Output final: contains data view and variables view, all the analysis of the study from Social Sciences version

  8. SPSS spreadsheet data

    • zenodo.org
    Updated Oct 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HAMZA EL GHAZALI; HAMZA EL GHAZALI (2024). SPSS spreadsheet data [Dataset]. http://doi.org/10.5281/zenodo.13902598
    Explore at:
    Dataset updated
    Oct 8, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    HAMZA EL GHAZALI; HAMZA EL GHAZALI
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a dataset analysis regarding our previous research and the current research. it is the result of our observations over 3 years of monitoring and is provided briefly within our 1st publication: https://doi.org/10.5281/zenodo.10407923.

  9. p

    2. analysis script all field studies SPSS.sps

    • psycharchives.org
    Updated Aug 5, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). 2. analysis script all field studies SPSS.sps [Dataset]. https://psycharchives.org/en/item/5bb80531-2812-4a0a-9b75-b396c8543d34
    Explore at:
    Dataset updated
    Aug 5, 2022
    License

    https://doi.org/10.23668/psycharchives.4988https://doi.org/10.23668/psycharchives.4988

    Description

    Citizen Science (CS) projects play a crucial role in engaging citizens in conservation efforts. While implicitly mostly considered as an outcome of CS participation, citizens may also have a certain attitude toward engagement in CS when starting to participate in a CS project. Moreover, there is a lack of CS studies that consider changes over longer periods of time. Therefore, this research presents two-wave data from four field studies of a CS project about urban wildlife ecology using cross-lagged panel analyses. We investigated the influence of attitudes toward engagement in CS on self-related, ecology-related, and motivation-related outcomes. We found that positive attitudes toward engagement in CS at the beginning of the CS project had positive influences on participants’ psychological ownership and pride in their participation, their attitudes toward and enthusiasm about wildlife, and their internal and external motivation two months later. We discuss the implications for CS research and practice. Dataset for: Greving, H., Bruckermann, T., Schumann, A., Stillfried, M., Börner, K., Hagen, R., Kimmig, S. E., Brandt, M., & Kimmerle, J. (2023). Attitudes Toward Engagement in Citizen Science Increase Self-Related, Ecology-Related, and Motivation-Related Outcomes in an Urban Wildlife Project. BioScience, 73(3), 206–219. https://doi.org/10.1093/biosci/biad003: Analysis script (SPSS format) used on the data of all field studies

  10. i

    Household Health Survey 2012-2013, Economic Research Forum (ERF)...

    • catalog.ihsn.org
    Updated Jun 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kurdistan Regional Statistics Office (KRSO) (2017). Household Health Survey 2012-2013, Economic Research Forum (ERF) Harmonization Data - Iraq [Dataset]. https://catalog.ihsn.org/catalog/6937
    Explore at:
    Dataset updated
    Jun 26, 2017
    Dataset provided by
    Economic Research Forum
    Kurdistan Regional Statistics Office (KRSO)
    Central Statistical Organization (CSO)
    Time period covered
    2012 - 2013
    Area covered
    Iraq
    Description

    Abstract

    The harmonized data set on health, created and published by the ERF, is a subset of Iraq Household Socio Economic Survey (IHSES) 2012. It was derived from the household, individual and health modules, collected in the context of the above mentioned survey. The sample was then used to create a harmonized health survey, comparable with the Iraq Household Socio Economic Survey (IHSES) 2007 micro data set.

    ----> Overview of the Iraq Household Socio Economic Survey (IHSES) 2012:

    Iraq is considered a leader in household expenditure and income surveys where the first was conducted in 1946 followed by surveys in 1954 and 1961. After the establishment of Central Statistical Organization, household expenditure and income surveys were carried out every 3-5 years in (1971/ 1972, 1976, 1979, 1984/ 1985, 1988, 1993, 2002 / 2007). Implementing the cooperation between CSO and WB, Central Statistical Organization (CSO) and Kurdistan Region Statistics Office (KRSO) launched fieldwork on IHSES on 1/1/2012. The survey was carried out over a full year covering all governorates including those in Kurdistan Region.

    The survey has six main objectives. These objectives are:

    1. Provide data for poverty analysis and measurement and monitor, evaluate and update the implementation Poverty Reduction National Strategy issued in 2009.
    2. Provide comprehensive data system to assess household social and economic conditions and prepare the indicators related to the human development.
    3. Provide data that meet the needs and requirements of national accounts.
    4. Provide detailed indicators on consumption expenditure that serve making decision related to production, consumption, export and import.
    5. Provide detailed indicators on the sources of households and individuals income.
    6. Provide data necessary for formulation of a new consumer price index number.

    The raw survey data provided by the Statistical Office were then harmonized by the Economic Research Forum, to create a comparable version with the 2006/2007 Household Socio Economic Survey in Iraq. Harmonization at this stage only included unifying variables' names, labels and some definitions. See: Iraq 2007 & 2012- Variables Mapping & Availability Matrix.pdf provided in the external resources for further information on the mapping of the original variables on the harmonized ones, in addition to more indications on the variables' availability in both survey years and relevant comments.

    Geographic coverage

    National coverage: Covering a sample of urban, rural and metropolitan areas in all the governorates including those in Kurdistan Region.

    Analysis unit

    1- Household/family. 2- Individual/person.

    Universe

    The survey was carried out over a full year covering all governorates including those in Kurdistan Region.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    ----> Design:

    Sample size was (25488) household for the whole Iraq, 216 households for each district of 118 districts, 2832 clusters each of which includes 9 households distributed on districts and governorates for rural and urban.

    ----> Sample frame:

    Listing and numbering results of 2009-2010 Population and Housing Survey were adopted in all the governorates including Kurdistan Region as a frame to select households, the sample was selected in two stages: Stage 1: Primary sampling unit (blocks) within each stratum (district) for urban and rural were systematically selected with probability proportional to size to reach 2832 units (cluster). Stage two: 9 households from each primary sampling unit were selected to create a cluster, thus the sample size of total survey clusters was 25488 households distributed on the governorates, 216 households in each district.

    ----> Sampling Stages:

    In each district, the sample was selected in two stages: Stage 1: based on 2010 listing and numbering frame 24 sample points were selected within each stratum through systematic sampling with probability proportional to size, in addition to the implicit breakdown urban and rural and geographic breakdown (sub-district, quarter, street, county, village and block). Stage 2: Using households as secondary sampling units, 9 households were selected from each sample point using systematic equal probability sampling. Sampling frames of each stages can be developed based on 2010 building listing and numbering without updating household lists. In some small districts, random selection processes of primary sampling may lead to select less than 24 units therefore a sampling unit is selected more than once , the selection may reach two cluster or more from the same enumeration unit when it is necessary.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    ----> Preparation:

    The questionnaire of 2006 survey was adopted in designing the questionnaire of 2012 survey on which many revisions were made. Two rounds of pre-test were carried out. Revision were made based on the feedback of field work team, World Bank consultants and others, other revisions were made before final version was implemented in a pilot survey in September 2011. After the pilot survey implemented, other revisions were made in based on the challenges and feedbacks emerged during the implementation to implement the final version in the actual survey.

    ----> Questionnaire Parts:

    The questionnaire consists of four parts each with several sections: Part 1: Socio – Economic Data: - Section 1: Household Roster - Section 2: Emigration - Section 3: Food Rations - Section 4: housing - Section 5: education - Section 6: health - Section 7: Physical measurements - Section 8: job seeking and previous job

    Part 2: Monthly, Quarterly and Annual Expenditures: - Section 9: Expenditures on Non – Food Commodities and Services (past 30 days). - Section 10 : Expenditures on Non – Food Commodities and Services (past 90 days). - Section 11: Expenditures on Non – Food Commodities and Services (past 12 months). - Section 12: Expenditures on Non-food Frequent Food Stuff and Commodities (7 days). - Section 12, Table 1: Meals Had Within the Residential Unit. - Section 12, table 2: Number of Persons Participate in the Meals within Household Expenditure Other Than its Members.

    Part 3: Income and Other Data: - Section 13: Job - Section 14: paid jobs - Section 15: Agriculture, forestry and fishing - Section 16: Household non – agricultural projects - Section 17: Income from ownership and transfers - Section 18: Durable goods - Section 19: Loans, advances and subsidies - Section 20: Shocks and strategy of dealing in the households - Section 21: Time use - Section 22: Justice - Section 23: Satisfaction in life - Section 24: Food consumption during past 7 days

    Part 4: Diary of Daily Expenditures: Diary of expenditure is an essential component of this survey. It is left at the household to record all the daily purchases such as expenditures on food and frequent non-food items such as gasoline, newspapers…etc. during 7 days. Two pages were allocated for recording the expenditures of each day, thus the roster will be consists of 14 pages.

    Cleaning operations

    ----> Raw Data:

    Data Editing and Processing: To ensure accuracy and consistency, the data were edited at the following stages: 1. Interviewer: Checks all answers on the household questionnaire, confirming that they are clear and correct. 2. Local Supervisor: Checks to make sure that questions has been correctly completed. 3. Statistical analysis: After exporting data files from excel to SPSS, the Statistical Analysis Unit uses program commands to identify irregular or non-logical values in addition to auditing some variables. 4. World Bank consultants in coordination with the CSO data management team: the World Bank technical consultants use additional programs in SPSS and STAT to examine and correct remaining inconsistencies within the data files. The software detects errors by analyzing questionnaire items according to the expected parameter for each variable.

    ----> Harmonized Data:

    • The SPSS package is used to harmonize the Iraq Household Socio Economic Survey (IHSES) 2007 with Iraq Household Socio Economic Survey (IHSES) 2012.
    • The harmonization process starts with raw data files received from the Statistical Office.
    • A program is generated for each dataset to create harmonized variables.
    • Data is saved on the household and individual level, in SPSS and then converted to STATA, to be disseminated.

    Response rate

    Iraq Household Socio Economic Survey (IHSES) reached a total of 25488 households. Number of households refused to response was 305, response rate was 98.6%. The highest interview rates were in Ninevah and Muthanna (100%) while the lowest rates were in Sulaimaniya (92%).

  11. SPSS analysis data of clinical outcomes

    • figshare.com
    jar
    Updated Apr 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hao Long (2025). SPSS analysis data of clinical outcomes [Dataset]. http://doi.org/10.6084/m9.figshare.28862399.v1
    Explore at:
    jarAvailable download formats
    Dataset updated
    Apr 25, 2025
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Hao Long
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This file contains the outcomes of relevant SPSS analysis.

  12. Leading data compilation and analytics presentation/reporting tools in U.S....

    • statista.com
    Updated Apr 30, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2016). Leading data compilation and analytics presentation/reporting tools in U.S. 2015 [Dataset]. https://www.statista.com/statistics/562654/united-states-data-analytics-data-compilation-and-presentation-tools/
    Explore at:
    Dataset updated
    Apr 30, 2016
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    This statistic depicts the distribution of tools used to compile data and present analytics and/or reports to management, according to a marketing survey of C-level executives, conducted in December 2015 by Black Ink. As of December 2015, 9 percent of respondents used statistical modeling tools, such as IBM's SPSS or the SAS Institute's Statistical Analysis System package, to compile and present their reports.

  13. f

    SPSS Dataset

    • figshare.com
    bin
    Updated Nov 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    bankole temitope (2023). SPSS Dataset [Dataset]. http://doi.org/10.6084/m9.figshare.23118368.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    Nov 1, 2023
    Dataset provided by
    figshare
    Authors
    bankole temitope
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Quantitative analysis of adolescent exposure to fast food marketing on Instagram. Descriptive statistics were calculated and the total frequency of each marketing strategy was obtained. For the continuous variables mean and standard deviation values were obtained. Mann-Whitney U tests were conducted to examine the association between the marketing strategies and user engagement, while the Kruskal-Wallis H test was completed to test for associations between brand name and engagement.

  14. d

    Data from: A Taste of SPSS

    • search.dataone.org
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elizabeth Hamilton (2023). A Taste of SPSS [Dataset]. http://doi.org/10.5683/SP3/QZB2MU
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Elizabeth Hamilton
    Description

    Producing a table that is not only yummy, but easy to digest! We'll review a few SPSS basics and talk about table interpretation, with a statistical test thrown in for fun. (Note: Data associated with this presentation is available on the DLI FTP site under folder 1873-219.)

  15. d

    Data from: Technical Note on the Extraction of StatCan Data Files

    • dataone.org
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rachad Antonius (2023). Technical Note on the Extraction of StatCan Data Files [Dataset]. http://doi.org/10.5683/SP3/QCFQ3X
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Rachad Antonius
    Description

    This is a translation of a workshop that describes the procedures for manipulating microdata files using SPSS software. It also points out a few things to keep in mind when opening a file or data extraction created by Statistics Canada. Translation of: "Un pas de plus avec SPSS".

  16. m

    Questionnaire data on land use change of Industrial Heritage: Insights from...

    • data.mendeley.com
    Updated Jul 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arsalan Karimi (2023). Questionnaire data on land use change of Industrial Heritage: Insights from Decision-Makers in Shiraz, Iran [Dataset]. http://doi.org/10.17632/gk3z8gp7cp.2
    Explore at:
    Dataset updated
    Jul 20, 2023
    Authors
    Arsalan Karimi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Iran, Shiraz
    Description

    The survey dataset for identifying Shiraz old silo’s new use which includes four components: 1. The survey instrument used to collect the data “SurveyInstrument_table.pdf”. The survey instrument contains 18 main closed-ended questions in a table format. Two of these, concern information on Silo’s decision-makers and proposed new use followed up after a short introduction of the questionnaire, and others 16 (each can identify 3 variables) are related to the level of appropriate opinions for ideal intervention in Façade, Openings, Materials and Floor heights of the building in four values: Feasibility, Reversibility, Compatibility and Social Benefits. 2. The raw survey data “SurveyData.rar”. This file contains an Excel.xlsx and a SPSS.sav file. The survey data file contains 50 variables (12 for each of the four values separated by colour) and data from each of the 632 respondents. Answering each question in the survey was mandatory, therefor there are no blanks or non-responses in the dataset. In the .sav file, all variables were assigned with numeric type and nominal measurement level. More details about each variable can be found in the Variable View tab of this file. Additional variables were created by grouping or consolidating categories within each survey question for simpler analysis. These variables are listed in the last columns of the .xlsx file. 3. The analysed survey data “AnalysedData.rar”. This file contains 6 “SPSS Statistics Output Documents” which demonstrate statistical tests and analysis such as mean, correlation, automatic linear regression, reliability, frequencies, and descriptives. 4. The codebook “Codebook.rar”. The detailed SPSS “Codebook.pdf” alongside the simplified codebook as “VariableInformation_table.pdf” provides a comprehensive guide to all 50 variables in the survey data, including numerical codes for survey questions and response options. They serve as valuable resources for understanding the dataset, presenting dictionary information, and providing descriptive statistics, such as counts and percentages for categorical variables.

  17. w

    Dataset of books called Adventures in social research : data analysis using...

    • workwithdata.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of books called Adventures in social research : data analysis using SPSS 14.0 and 15.0 for Windows [Dataset]. https://www.workwithdata.com/datasets/books?f=1&fcol0=book&fop0=%3D&fval0=Adventures+in+social+research+%3A+data+analysis+using+SPSS+14.0+and+15.0+for+Windows
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about books. It has 1 row and is filtered where the book is Adventures in social research : data analysis using SPSS 14.0 and 15.0 for Windows. It features 7 columns including author, publication date, language, and book publisher.

  18. n

    Substance Abuse and Mental Health Data Archive

    • neuinfo.org
    • dknet.org
    • +2more
    Updated Sep 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Substance Abuse and Mental Health Data Archive [Dataset]. http://identifiers.org/RRID:SCR_007002
    Explore at:
    Dataset updated
    Sep 10, 2024
    Description

    Database of the nation''s substance abuse and mental health research data providing public use data files, file documentation, and access to restricted-use data files to support a better understanding of this critical area of public health. The goal is to increase the use of the data to most accurately understand and assess substance abuse and mental health problems and the impact of related treatment systems. The data include the U.S. general and special populations, annual series, and designs that produce nationally representative estimates. Some of the data acquired and archived have never before been publicly distributed. Each collection includes survey instruments (when provided), a bibliography of related literature, and related Web site links. All data may be downloaded free of charge in SPSS, SAS, STATA, and ASCII formats and most studies are available for use with the online data analysis system. This system allows users to conduct analyses ranging from cross-tabulation to regression without downloading data or relying on other software. Another feature, Quick Tables, provides the ability to select variables from drop down menus to produce cross-tabulations and graphs that may be customized and cut and pasted into documents. Documentation files, such as codebooks and questionnaires, can be downloaded and viewed online.

  19. r

    Online survey data for the 2017 Aesthetic value project (NESP 3.2.3,...

    • researchdata.edu.au
    bin
    Updated 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Becken, Susanne, Professor; Connolly, Rod, Professor; Stantic, Bela, Professor; Scott, Noel, Professor; Mandal, Ranju, Dr; Le, Dung (2019). Online survey data for the 2017 Aesthetic value project (NESP 3.2.3, Griffith Institute for Tourism Research) [Dataset]. https://researchdata.edu.au/online-survey-2017-tourism-research/1440092
    Explore at:
    binAvailable download formats
    Dataset updated
    2019
    Dataset provided by
    eAtlas
    Authors
    Becken, Susanne, Professor; Connolly, Rod, Professor; Stantic, Bela, Professor; Scott, Noel, Professor; Mandal, Ranju, Dr; Le, Dung
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Time period covered
    Jan 28, 2017 - Jan 28, 2018
    Description

    This dataset consists of three data folders including all related documents of the online survey conducted within the NESP 3.2.3 project (Tropical Water Quality Hub) and a survey format document representing how the survey was designed. Apart from participants’ demographic information, the survey consists of three sections: conjoint analysis, picture rating and open question. Correspondent outcome of these three sections are downloaded from Qualtrics website and used for three different data analysis processes.

    Related data to the first section “conjoint analysis” is saved in the Conjoint analysis folder which contains two sub-folders. The first one includes a plan file of SAV. Format representing the design suggestion by SPSS orthogonal analysis for testing beauty factors and 9 photoshoped pictures used in the survey. The second (i.e. Final results) contains 1 SAV. file named “data1” which is the imported results of conjoint analysis section in SPSS, 1 SPS. file named “Syntax1” representing the code used to run conjoint analysis, 2 SAV. files as the output of conjoint analysis by SPSS, and 1 SPV file named “Final output” showing results of further data analysis by SPSS on the basis of utility and importance data.

    Related data to the second section “Picture rating” is saved into Picture rating folder including two subfolders. One subfolder contains 2500 pictures of Great Barrier Reef used in the rating survey section. These pictures are organised by named and stored in two folders named as “Survey Part 1” and “Survey Part 2” which are correspondent with two parts of the rating survey sections. The other subfolder “Rating results” consist of one XLSX. file representing survey results downloaded from Qualtric website.

    Finally, related data to the open question is saved in “Open question” folder. It contains one csv. file and one PDF. file recording participants’ answers to the open question as well as one PNG. file representing a screenshot of Leximancer analysis outcome.

    Methods: This dataset resulted from the input and output of an online survey regarding how people assess the beauty of Great Barrier Reef. This survey was designed for multiple purposes including three main sections: (1) conjoint analysis (ranking 9 photoshopped pictures to determine the relative importance weights of beauty attributes), (2) picture rating (2500 pictures to be rated) and (3) open question on the factors that makes a picture of the Great Barrier Reef beautiful in participants’ opinion (determining beauty factors from tourist perspective). Pictures used in this survey were downloaded from public sources such as websites of the Tourism and Events Queensland and Tropical Tourism North Queensland as well as tourist sharing sources (i.e. Flickr). Flickr pictures were downloaded using the key words “Great Barrier Reef”. About 10,000 pictures were downloaded in August and September 2017. 2,500 pictures were then selected based on several research criteria: (1) underwater pictures of GBR, (2) without humans, (3) viewed from 1-2 metres from objects and (4) of high resolution.

    The survey was created on Qualtrics website and launched on 4th October 2017 using Qualtrics survey service. Each participant rated 50 pictures randomly selected from the pool of 2500 survey pictures. 772 survey completions were recorded and 705 questionnaires were eligible for data analysis after filtering unqualified questionnaires. Conjoint analysis data was imported to IBM SPSS using SAV. format and the output was saved using SPV. format. Automatic aesthetic rating of 2500 Great Barrier Reef pictures –all these pictures are rated (1 – 10 scale) by at least 10 participants and this dataset was saved in a XLSX. file which is used to train and test an Artificial Intelligence (AI)-based system recognising and assessing the beauty of natural scenes. Answers of the open-question were saved in a XLSX. file and a PDF. file to be employed for theme analysis by Leximancer software.

    Further information can be found in the following publication: Becken, S., Connolly R., Stantic B., Scott N., Mandal R., Le D., (2018), Monitoring aesthetic value of the Great Barrier Reef by using innovative technologies and artificial intelligence, Griffith Institute for Tourism Research Report No 15.

    Format: The Online survey dataset includes one PDF file representing the survey format with all sections and questions. It also contains three subfolders, each has multiple files. The subfolder of Conjoint analysis contains an image of the 9 JPG. Pictures, 1 SAV. format file for the Orthoplan subroutine outcome and 5 outcome documents (i.e. 3 SAV. files, 1 SPS. file, 1 SPV. file). The subfolder of Picture rating contains a capture of the 2500 pictures used in the survey, 1 excel file for rating results. The subfolder of Open question includes 1 CSV. file, 1 PDF. file representing participants’ answers and one PNG. file for the analysis outcome.

    Data Dictionary:

    Card 1: Picture design option number 1 suggested by SPSS orthogonal analysis. Importance value: The relative importance weight of each beauty attribute calculated by SPSS conjoint analysis. Utility: Score reflecting influential valence and degree of each beauty attribute on beauty score. Syntax: Code used to run conjoint analysis by SPSS Leximancer: Specialised software for qualitative data analysis. Concept map: A map showing the relationship between concepts identified Q1_1: Beauty score of the picture Q1_1 by the correspondent participant (i.e. survey part 1) Q2.1_1: Beauty score of the picture Q2.1_1 by the correspondent participant (i.e. survey part 2) Conjoint _1: Ranking of the picture 1 designed for conjoint analysis by the correspondent participant

    References: Becken, S., Connolly R., Stantic B., Scott N., Mandal R., Le D., (2018), Monitoring aesthetic value of the Great Barrier Reef by using innovative technologies and artificial intelligence, Griffith Institute for Tourism Research Report No 15.

    Data Location:

    This dataset is filed in the eAtlas enduring data repository at: data esp3\3.2.3_Aesthetic-value-GBR

  20. f

    SPSS Statistics Data file.

    • plos.figshare.com
    bin
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Filip Ventorp; Anna Gustafsson; Lil Träskman-Bendz; Åsa Westrin; Lennart Ljunggren (2023). SPSS Statistics Data file. [Dataset]. http://doi.org/10.1371/journal.pone.0140052.s001
    Explore at:
    binAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Filip Ventorp; Anna Gustafsson; Lil Träskman-Bendz; Åsa Westrin; Lennart Ljunggren
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A SPSS file with data used in the statistical analysis. Covariates were excluded in the file due to restrictions of the ethical permission. However a complete file is provided for researchers after request at publication@ventorp.com. (SAV)

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Department of State (2021). PISA Data Analysis Manual: SPSS, Second Edition [Dataset]. https://catalog.data.gov/dataset/pisa-data-analysis-manual-spss-second-edition
Organization logo

Data from: PISA Data Analysis Manual: SPSS, Second Edition

Related Article
Explore at:
Dataset updated
Mar 30, 2021
Dataset provided by
United States Department of Statehttp://state.gov/
Description

The OECD Programme for International Student Assessment (PISA) surveys collected data on students’ performances in reading, mathematics and science, as well as contextual information on students’ background, home characteristics and school factors which could influence performance. This publication includes detailed information on how to analyse the PISA data, enabling researchers to both reproduce the initial results and to undertake further analyses. In addition to the inclusion of the necessary techniques, the manual also includes a detailed account of the PISA 2006 database and worked examples providing full syntax in SPSS.

Search
Clear search
Close search
Google apps
Main menu