Introduction This datasets have SQL injection attacks (SLQIA) as malicious Netflow data. The attacks carried out are SQL injection for Union Query and Blind SQL injection. To perform the attacks, the SQLMAP tool has been used. NetFlow traffic has generated using DOROTHEA (DOcker-based fRamework fOr gaTHering nEtflow trAffic). NetFlow is a network protocol developed by Cisco for the collection and monitoring of network traffic flow data generated. A flow is defined as a unidirectional sequence of packets with some common properties that pass through a network device. Datasets The firts dataset was colleted to train the detection models (D1) and other collected using different attacks than those used in training to test the models and ensure their generalization (D2). The datasets contain both benign and malicious traffic. All collected datasets are balanced. The version of NetFlow used to build the datasets is 5. Dataset Aim Samples Benign-malicious
traffic ratio D1 Training 400,003 50% D2 Test 57,239 50% Infrastructure and implementation Two sets of flow data were collected with DOROTHEA. DOROTHEA is a Docker-based framework for NetFlow data collection. It allows you to build interconnected virtual networks to generate and collect flow data using the NetFlow protocol. In DOROTHEA, network traffic packets are sent to a NetFlow generator that has a sensor ipt_netflow installed. The sensor consists of a module for the Linux kernel using Iptables, which processes the packets and converts them to NetFlow flows. DOROTHEA is configured to use Netflow V5 and export the flow after it is inactive for 15 seconds or after the flow is active for 1800 seconds (30 minutes) Benign traffic generation nodes simulate network traffic generated by real users, performing tasks such as searching in web browsers, sending emails, or establishing Secure Shell (SSH) connections. Such tasks run as Python scripts. Users may customize them or even incorporate their own. The network traffic is managed by a gateway that performs two main tasks. On the one hand, it routes packets to the Internet. On the other hand, it sends it to a NetFlow data generation node (this process is carried out similarly to packets received from the Internet). The malicious traffic collected (SQLI attacks) was performed using SQLMAP. SQLMAP is a penetration tool used to automate the process of detecting and exploiting SQL injection vulnerabilities. The attacks were executed on 16 nodes and launch SQLMAP with the parameters of the following table. Parameters Description '--banner','--current-user','--current-db','--hostname','--is-dba','--users','--passwords','--privileges','--roles','--dbs','--tables','--columns','--schema','--count','--dump','--comments', --schema' Enumerate users, password hashes, privileges, roles, databases, tables and columns --level=5 Increase the probability of a false positive identification --risk=3 Increase the probability of extracting data --random-agent Select the User-Agent randomly --batch Never ask for user input, use the default behavior --answers="follow=Y" Predefined answers to yes Every node executed SQLIA on 200 victim nodes. The victim nodes had deployed a web form vulnerable to Union-type injection attacks, which was connected to the MYSQL or SQLServer database engines (50% of the victim nodes deployed MySQL and the other 50% deployed SQLServer). The web service was accessible from ports 443 and 80, which are the ports typically used to deploy web services. The IP address space was 182.168.1.1/24 for the benign and malicious traffic-generating nodes. For victim nodes, the address space was 126.52.30.0/24.
The malicious traffic in the test sets was collected under different conditions. For D1, SQLIA was performed using Union attacks on the MySQL and SQLServer databases. However, for D2, BlindSQL SQLIAs were performed against the web form connected to a PostgreSQL database. The IP address spaces of the networks were also different from those of D1. In D2, the IP address space was 152.148.48.1/24 for benign and malicious traffic generating nodes and 140.30.20.1/24 for victim nodes. To run the MySQL server we ran MariaDB version 10.4.12.
Microsoft SQL Server 2017 Express and PostgreSQL version 13 were used.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global database testing tool market is anticipated to experience substantial growth in the coming years, driven by factors such as the increasing adoption of cloud-based technologies, the rising demand for data quality and accuracy, and the growing complexity of database systems. The market is expected to reach a value of USD 1,542.4 million by 2033, expanding at a CAGR of 7.5% during the forecast period of 2023-2033. Key players in the market include Apache JMeter, DbFit, SQLMap, Mockup Data, SQL Test, NoSQLUnit, Orion, ApexSQL, QuerySurge, DBUnit, DataFactory, DTM Data Generator, Oracle, SeLite, SLOB, and others. The North American region is anticipated to hold a significant share of the database testing tool market, followed by Europe and Asia Pacific. The increasing adoption of cloud-based database testing services, the presence of key market players, and the growing demand for data testing and validation are driving the market growth in North America. Asia Pacific, on the other hand, is expected to experience the highest growth rate due to the rapidly increasing IT spending, the emergence of new technologies, and the growing number of businesses investing in data quality management solutions.
WikiSQL consists of a corpus of 87,726 hand-annotated SQL query and natural language question pairs. These SQL queries are further split into training (61,297 examples), development (9,145 examples) and test sets (17,284 examples). It can be used for natural language inference tasks related to relational databases.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Image generated by DALL-E. See prompt for more details
synthetic_text_to_sql
gretelai/synthetic_text_to_sql is a rich dataset of high quality synthetic Text-to-SQL samples, designed and generated using Gretel Navigator, and released under Apache 2.0. Please see our release blogpost for more details. The dataset includes:
105,851 records partitioned into 100,000 train and 5,851 test records ~23M total tokens, including ~12M SQL tokens Coverage across 100 distinct… See the full description on the dataset page: https://huggingface.co/datasets/gretelai/synthetic_text_to_sql.
Objective: To enhance the accuracy of information retrieval from pharmacovigilance (PV) databases by employing Large Language Models (LLMs) to convert natural language queries (NLQs) into Structured Query Language (SQL) queries, leveraging a business context document. Materials and Methods: We utilized OpenAI’s GPT-4 model within a retrieval-augmented generation (RAG) framework, enriched with a business context document, to transform NLQs into executable SQL queries. Each NLQ was presented to the LLM randomly and independently to prevent memorization. The study was conducted in three phases, varying query complexity, and assessing the LLM's performance both with and without the business context document. Results: Our approach significantly improved NLQ-to-SQL accuracy, increasing from 8.3% with the database schema alone to 78.3% with the business context document. This enhancement was consistent across low, medium, and high complexity queries, indicating the critical role of contextual ..., Test set of NLQ's used in the paper Automating Pharmacovigilance Evidence Generation: Using Large Language Models to Produce Context-Aware SQL. Also included are the Python scripts for the LLM processing, the R code for statistical analysis of results, and a copy of the business context document and essential tables., , # Automating Pharmacovigilance Evidence Generation: Using Large Language Models to Produce Context-Aware SQL
https://doi.org/10.5061/dryad.2280gb63n
NLQ_Queries.xls contains the set of test NLQs along with the results of the LLM response in each phase of the experiment. Each NLQ also contains the complexity scores computed for each.
The business context document is supplied as a PDF, together with the Python and R code used to generate our results. The essential tables used in Phase 2 and 3 of the experiment are included in the text file.
Description:Â Contains all NLQ queries with the results of the LLM output and the pass, fail status of each.
Column Definitions:
Below are the column names in order with a detailed description.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Knowledge graph construction of heterogeneous data has seen a lot of uptake
in the last decade from compliance to performance optimizations with respect
to execution time. Besides execution time as a metric for comparing knowledge
graph construction, other metrics e.g. CPU or memory usage are not considered.
This challenge aims at benchmarking systems to find which RDF graph
construction system optimizes for metrics e.g. execution time, CPU,
memory usage, or a combination of these metrics.
Task description
The task is to reduce and report the execution time and computing resources
(CPU and memory usage) for the parameters listed in this challenge, compared
to the state-of-the-art of the existing tools and the baseline results provided
by this challenge. This challenge is not limited to execution times to create
the fastest pipeline, but also computing resources to achieve the most efficient
pipeline.
We provide a tool which can execute such pipelines end-to-end. This tool also
collects and aggregates the metrics such as execution time, CPU and memory
usage, necessary for this challenge as CSV files. Moreover, the information
about the hardware used during the execution of the pipeline is available as
well to allow fairly comparing different pipelines. Your pipeline should consist
of Docker images which can be executed on Linux to run the tool. The tool is
already tested with existing systems, relational databases e.g. MySQL and
PostgreSQL, and triplestores e.g. Apache Jena Fuseki and OpenLink Virtuoso
which can be combined in any configuration. It is strongly encouraged to use
this tool for participating in this challenge. If you prefer to use a different
tool or our tool imposes technical requirements you cannot solve, please contact
us directly.
The set of new specification for the RDF Mapping Language (RML) established by the W3C Community Group on Knowledge Graph Construction provide a set of test-cases for each module:
These test-cases are evaluated in this Track of the Challenge to determine their feasibility, correctness, etc. by applying them in implementations. This Track is in Beta status because these new specifications have not seen any implementation yet, thus it may contain bugs and issues. If you find problems with the mappings, output, etc. please report them to the corresponding repository of each module.
Through this Track we aim to spark development of implementations for the new specifications and improve the test-cases. Let us know your problems with the test-cases and we will try to find a solution.
Part 1: Knowledge Graph Construction Parameters
These parameters are evaluated using synthetic generated data to have more
insights of their influence on the pipeline.
Data
Mappings
Part 2: GTFS-Madrid-Bench
The GTFS-Madrid-Bench provides insights in the pipeline with real data from the
public transport domain in Madrid.
Scaling
Heterogeneity
Example pipeline
The ground truth dataset and baseline results are generated in different steps
for each parameter:
The pipeline is executed 5 times from which the median execution time of each
step is calculated and reported. Each step with the median execution time is
then reported in the baseline results with all its measured metrics.
Knowledge graph construction timeout is set to 24 hours.
The execution is performed with the following tool: https://github.com/kg-construct/challenge-tool,
you can adapt the execution plans for this example pipeline to your own needs.
Each parameter has its own directory in the ground truth dataset with the
following files:
metadata.json
.Datasets
Knowledge Graph Construction Parameters
The dataset consists of:
Format
All input datasets are provided as CSV, depending on the parameter that is being
evaluated, the number of rows and columns may differ. The first row is always
the header of the CSV.
GTFS-Madrid-Bench
The dataset consists of:
Format
CSV datasets always have a header as their first row.
JSON and XML datasets have their own schema.
Evaluation criteria
Submissions must evaluate the following metrics:
Expected output
Duplicate values
Scale | Number of Triples |
---|---|
0 percent | 2000000 triples |
25 percent | 1500020 triples |
50 percent | 1000020 triples |
75 percent | 500020 triples |
100 percent | 20 triples |
Empty values
Scale | Number of Triples |
---|---|
0 percent | 2000000 triples |
25 percent | 1500000 triples |
50 percent | 1000000 triples |
75 percent | 500000 triples |
100 percent | 0 triples |
Mappings
Scale | Number of Triples |
---|---|
1TM + 15POM | 1500000 triples |
3TM + 5POM | 1500000 triples |
5TM + 3POM | 1500000 triples |
15TM + 1POM | 1500000 triples |
Properties
Scale | Number of Triples |
---|---|
1M rows 1 column | 1000000 triples |
1M rows 10 columns | 10000000 triples |
1M rows 20 columns | 20000000 triples |
1M rows 30 columns | 30000000 |
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
McKinsey's Solve is a gamified problem-solving assessment used globally in the consulting firm’s recruitment process. This dataset simulates assessment results across geographies, education levels, and roles over a 7-year period. It aims to provide deep insights into performance trends, candidate readiness, resume quality, and cognitive task outcomes.
Inspired by McKinsey’s real-world assessment framework, this dataset was designed to enable: - Exploratory Data Analysis (EDA) - Recruitment trend analysis - Gamified performance modelling - Dashboard development in Excel / Power BI - Resume and education impact evaluation - Regional performance benchmarking - Data storytelling for portfolio projects
Whether you're building dashboards or training models, this dataset offers practical and relatable data for HR analytics and consulting use cases.
This dataset includes 4,000 rows and the following columns: - Testtaker ID: Unique identifier - Country / Region: Geographic segmentation - Gender / Age: Demographics - Year: Assessment year (2018–2025) - Highest Level of Education: From high school to PhD / MBA - School or University Attended: Mapped to country and education level - First-generation University Student: Yes/No - Employment Status: Student, Employed, Unemployed - Role Applied For and Department / Interest: Business/tech disciplines - Past Test Taker: Indicates repeat attempts - Prepared with Online Materials: Indicates test prep involvement - Desired Office Location: Mapped to McKinsey's international offices - Ecosystem / Redrock / Seawolf (%): Game performance scores - Time Spent on Each Game (mins) - Total Product Score: Average of the 3 game scores - Process Score: A secondary assessment component - Resume Score: Scored based on education prestige, role fit, and clarity - Total Assessment Score (%): Final decision metric - Status (Pass/Fail): Based on total score ≥ 75%
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Dataset Card for Spider
Dataset Summary
Spider is a large-scale complex and cross-domain semantic parsing and text-to-SQL dataset annotated by 11 Yale students. The goal of the Spider challenge is to develop natural language interfaces to cross-domain databases.
Supported Tasks and Leaderboards
The leaderboard can be seen at https://yale-lily.github.io/spider
Languages
The text in the dataset is in English.
Dataset Structure
Data… See the full description on the dataset page: https://huggingface.co/datasets/xlangai/spider.
Spider dataset is used for evaluation in the paper "Structure-Grounded Pretraining for Text-to-SQL". The dataset is created based on the dev split of the Spider dataset (2020-06-07 version from https://yale-lily.github.io/spider). We manually modified the original questions to remove the explicit mention of column names while keeping the SQL queries unchanged to better evaluate the model's capability in aligning the NL utterance and the DB schema. For more details, please check our paper at https://arxiv.org/abs/2010.12773.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Introduction This datasets have SQL injection attacks (SLQIA) as malicious Netflow data. The attacks carried out are SQL injection for Union Query and Blind SQL injection. To perform the attacks, the SQLMAP tool has been used. NetFlow traffic has generated using DOROTHEA (DOcker-based fRamework fOr gaTHering nEtflow trAffic). NetFlow is a network protocol developed by Cisco for the collection and monitoring of network traffic flow data generated. A flow is defined as a unidirectional sequence of packets with some common properties that pass through a network device. Datasets The firts dataset was colleted to train the detection models (D1) and other collected using different attacks than those used in training to test the models and ensure their generalization (D2). The datasets contain both benign and malicious traffic. All collected datasets are balanced. The version of NetFlow used to build the datasets is 5. Dataset Aim Samples Benign-malicious
traffic ratio D1 Training 400,003 50% D2 Test 57,239 50% Infrastructure and implementation Two sets of flow data were collected with DOROTHEA. DOROTHEA is a Docker-based framework for NetFlow data collection. It allows you to build interconnected virtual networks to generate and collect flow data using the NetFlow protocol. In DOROTHEA, network traffic packets are sent to a NetFlow generator that has a sensor ipt_netflow installed. The sensor consists of a module for the Linux kernel using Iptables, which processes the packets and converts them to NetFlow flows. DOROTHEA is configured to use Netflow V5 and export the flow after it is inactive for 15 seconds or after the flow is active for 1800 seconds (30 minutes) Benign traffic generation nodes simulate network traffic generated by real users, performing tasks such as searching in web browsers, sending emails, or establishing Secure Shell (SSH) connections. Such tasks run as Python scripts. Users may customize them or even incorporate their own. The network traffic is managed by a gateway that performs two main tasks. On the one hand, it routes packets to the Internet. On the other hand, it sends it to a NetFlow data generation node (this process is carried out similarly to packets received from the Internet). The malicious traffic collected (SQLI attacks) was performed using SQLMAP. SQLMAP is a penetration tool used to automate the process of detecting and exploiting SQL injection vulnerabilities. The attacks were executed on 16 nodes and launch SQLMAP with the parameters of the following table. Parameters Description '--banner','--current-user','--current-db','--hostname','--is-dba','--users','--passwords','--privileges','--roles','--dbs','--tables','--columns','--schema','--count','--dump','--comments', --schema' Enumerate users, password hashes, privileges, roles, databases, tables and columns --level=5 Increase the probability of a false positive identification --risk=3 Increase the probability of extracting data --random-agent Select the User-Agent randomly --batch Never ask for user input, use the default behavior --answers="follow=Y" Predefined answers to yes Every node executed SQLIA on 200 victim nodes. The victim nodes had deployed a web form vulnerable to Union-type injection attacks, which was connected to the MYSQL or SQLServer database engines (50% of the victim nodes deployed MySQL and the other 50% deployed SQLServer). The web service was accessible from ports 443 and 80, which are the ports typically used to deploy web services. The IP address space was 182.168.1.1/24 for the benign and malicious traffic-generating nodes. For victim nodes, the address space was 126.52.30.0/24.
The malicious traffic in the test sets was collected under different conditions. For D1, SQLIA was performed using Union attacks on the MySQL and SQLServer databases. However, for D2, BlindSQL SQLIAs were performed against the web form connected to a PostgreSQL database. The IP address spaces of the networks were also different from those of D1. In D2, the IP address space was 152.148.48.1/24 for benign and malicious traffic generating nodes and 140.30.20.1/24 for victim nodes. To run the MySQL server we ran MariaDB version 10.4.12.
Microsoft SQL Server 2017 Express and PostgreSQL version 13 were used.