28 datasets found
  1. n

    Shuttle Radar Topography Mission (SRTM) Images

    • cmr.earthdata.nasa.gov
    • datasets.ai
    • +2more
    Updated Jan 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Shuttle Radar Topography Mission (SRTM) Images [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1220566448-USGS_LTA.html
    Explore at:
    Dataset updated
    Jan 29, 2016
    Time period covered
    Feb 11, 2000 - Present
    Area covered
    Description

    Culminating more than four years of processing data, NASA and the National Geospatial-Intelligence Agency (NGA) have completed Earth's most extensive global topographic map. The mission is a collaboration among NASA, NGA, and the German and Italian space agencies. For 11 days in February 2000, the space shuttle Endeavour conducted the Shuttle Radar Topography Mission (SRTM) using C-Band and X-Band interferometric synthetic aperture radars to acquire topographic data over 80% of the Earth's land mass, creating the first-ever near-global data set of land elevations. This data was used to produce topographic maps (digital elevation maps) 30 times as precise as the best global maps used today. The SRTM system gathered data at the rate of 40,000 per minute over land. They reveal for the first time large, detailed swaths of Earth's topography previously obscured by persistent cloudiness. The data will benefit scientists, engineers, government agencies and the public with an ever-growing array of uses. The SRTM radar system mapped Earth from 56 degrees south to 60 degrees north of the equator. The resolution of the publicly available data is three arc-seconds (1/1,200th of a degree of latitude and longitude, about 295 feet, at Earth's equator). The final data release covers Australia and New Zealand in unprecedented uniform detail. It also covers more than 1,000 islands comprising much of Polynesia and Melanesia in the South Pacific, as well as islands in the South Indian and Atlantic oceans. SRTM data are being used for applications ranging from land use planning to "virtual" Earth exploration. Currently, the mission's homepage "http://www.jpl.nasa.gov/srtm" provides direct access to recently obtained earth images. The Shuttle Radar Topography Mission C-band data for North America and South America are available to the public. A list of complete public data set is available at "http://www2.jpl.nasa.gov/srtm/dataprod.htm" The data specifications are within the following parameters: 30-meter X 30-meter spatial sampling with 16 meter absolute vertical height accuracy, 10-meter relative vertical height accuracy, and 20-meter absolute horizontal circular accuracy. From the JPL Mission Products Summary, "http://www.jpl.nasa.gov/srtm/dataprelimdescriptions.html". The primary products of the SRTM mission are the digital elevation maps of most of the Earth's surface. Visualized images of these maps are available for viewing online. Below you will find descriptions of the types of images that are being generated:

    • Radar Image
    • Radar Image with Color as Height
    • Radar Image with Color Wrapped Fringes
      -Shaded Relief
    • Perspective View with B/W Radar Image Overlaid
    • Perspective View with Radar Image Overlaid, Color as Height
    • Perspective View of Shaded Relief
    • Perspective View with Landsat or other Image Overlaid
    • Contour Map - B/W with Contour Lines
    • Stereo Pair
    • Anaglypgh

    The SRTM radar contained two types of antenna panels, C-band and X-band. The near-global topographic maps of Earth called Digital Elevation Models (DEMs) are made from the C-band radar data. These data were processed at the Jet Propulsion Laboratory and are being distributed through the United States Geological Survey's EROS Data Center. Data from the X-band radar are used to create slightly higher resolution DEMs but without the global coverage of the C-band radar. The SRTM X-band radar data are being processed and distributed by the German Aerospace Center, DLR.

  2. A

    SRTM v3 (NASA)

    • data.amerigeoss.org
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    esri rest, html
    Updated Dec 21, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEO ArcGIS (2017). SRTM v3 (NASA) [Dataset]. https://data.amerigeoss.org/bg/dataset/srtm-v3-nasa
    Explore at:
    html, esri restAvailable download formats
    Dataset updated
    Dec 21, 2017
    Dataset provided by
    AmeriGEO ArcGIS
    Description

    The Shuttle Radar Topography Mission (SRTM) is a collaborative effort from NASA (National Aeronautics and Space Administration) and NGA (National Geospatial-Intelligence Agency) as well as DLR (Deutsches Zentrum für Luft-und Raumfahrt) and ASI (Agenzia Spaziale Italiana). SRTM was flown aboard the Endeavour space shuttle in February 2000 to provide a high-resolution Digital Elevation Model (DEM). The SRTM instrumentation consisted of the Spaceborne Imaging Radar-C (SIR-C) with an additional antenna to form a 60 meters long baseline. As a result of the SRTM mission, several DEM versions have been released since 2003, which differ in terms of data processing and procedures applied for the filling of voids (areas not or poorly observed by the SRTM radar observations).

    SRTM v3.0 (SRTM Plus) is the newest version, published in 2015 by NASA as a part of NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) project, which incorporates topographic data to fill the gaps or voids in earlier versions of SRTM data. For the void filling with the Delta Surface Fill algorithm, ASTER DEMs have been used as auxiliary data source, or interpolations have been applied. Many variants of DEM are available in SRTM v3.0, with SRTMGL1 being one of the key products from SRTM v3.0. ‘GL1’ on its name stands for “Global 1-arc second”. It provides regularly spaced DEM grids of 1 arc-second (approximately 30 meters) and covering 80% of Earth’s landmass, between 60° North and 56° South. This product is divided into 1° x 1° latitude and longitude tiles in “geographic” projection, as shown here.

    A typical file of the SRTMGL1 dataset requires 25 MB memory (without compression) and stores exactly one 1°x1° tile; it contains 3,601 lines and 3,601 columns, which sum up to around 100 GB (compressed) and 350 GB (uncompressed) for the global data set of 14297 tiles. Individual tile names refer to the latitude and longitude of southwest (lower left) corner of the tile, e.g., tile N20W030 has lower left corner at 20°N and 30°W, covering area of 20-21°N and 30-29°W. The absolute vertical accuracy for SRTM heights has been found to be ~9 m (90 % confidence) or better (Rodriguez et al. 2005).

    Geodetic information: The SRTM GL1 DEMs are vertically referenced to the EGM96 geoid and horizontally referenced to the WGS84 (World Geodetic System 1984).

    Further notes: The SRTM DEM represents bare ground elevations only where vegetation cover and buildings are absent. Over most areas, the DEM elevations reside between the bare ground (terrain) and top of canopies (surface), so are technically a mixture of terrain and surface models. Few artefacts, e.g., pits or spikes may still be present in the data set.

    Data access: The homepage of SRTM mission is http://www2.jpl.nasa.gov/srtm/. SRTM v3.0 datasets can be searched in MEASURES webpage and acquired freely from USGS website (http://earthexplorer.usgs.gov/) and USGS data pool (http://e4ftl01.cr.usgs.gov/SRTM/).

    References:

    Farr, T.G., E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, P. Rosen, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, 2007, The Shuttle Radar Topography Mission. Reviews of Geophysics, volume 45, RG2004, doi:10.1029/2005RG000183.

    NASA, The Shuttle Radar Topography Mission (SRTM) Collection User Guide. Available on https://lpdaac.usgs.gov/sites/default/files/public/measures/docs/NASA_SRTM_V3.pdf

    Rodriguez, E., C.S. Morris, J.E. Belz, E.C. Chapin, J.M. Martin, W. Daffer, S.Hensley, 2005, An assessment of the SRTM topographic products, Technical Report JPL D-31639, Jet Propulsion Laboratory, Pasadena, California, 143 pp. available on http://www2.jpl.nasa.gov/srtm/SRTM_D31639.pdf

  3. n

    Shuttle Radar Topography Mission DTED Level 1 (3-arc second) Data (DTED-1)

    • cmr.earthdata.nasa.gov
    • data.nasa.gov
    • +1more
    Updated Aug 25, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). Shuttle Radar Topography Mission DTED Level 1 (3-arc second) Data (DTED-1) [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1220555800-USGS_LTA.html
    Explore at:
    Dataset updated
    Aug 25, 2015
    Time period covered
    Feb 1, 2000 - Feb 29, 2000
    Area covered
    Description

    The Shuttle Radar Topography Mission (SRTM) successfully collected Interferometric Synthetic Aperture Radar (IFSAR) data over 80 percent of the landmass of the Earth between 60 degrees North and 56 degrees South latitudes in February 2000. The mission was co-sponsored by the National Aeronautics and Space Administration (NASA) and National Geospatial-Intelligence Agency (NGA). NASA's Jet Propulsion Laboratory (JPL) performed preliminary processing of SRTM data and forwarded partially finished data directly to NGA for finishing by NGA's contractors and subsequent monthly deliveries to the NGA Digital Products Data Wharehouse (DPDW). All the data products delivered by the contractors conform to the NGA SRTM products and the NGA Digital Terrain Elevation Data (DTED) to the Earth Resources Observation & Science (EROS) Center. The DPDW ingests the SRTM data products, checks them for formatting errors, loads the SRTM DTED into the NGA data distribution system, and ships the public domain SRTM DTED to the U.S. Geological Survey (USGS) Earth Resources Observation & Science (EROS) Center.

    Two resolutions of finished grade SRTM data are available through EarthExplorer from the collection held in the USGS EROS archive:

    1 arc-second (approximately 30-meter) high resolution elevation data are only available for the United States.

    3 arc-second (approximately 90-meter) medium resolution elevation data are available for global coverage. The 3 arc-second data were resampled using cubic convolution interpolation for regions between 60° north and 56° south latitude.

    [Summary provided by the USGS.]

  4. n

    NASA Earthdata

    • earthdata.nasa.gov
    Updated Nov 20, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LPCLOUD (2013). NASA Earthdata [Dataset]. http://doi.org/10.5067/MEASURES/SRTM/SRTMGL3N.003
    Explore at:
    Dataset updated
    Nov 20, 2013
    Dataset authored and provided by
    LPCLOUD
    Description

    The Land Processes Distributed Active Archive Center (LP DAAC) is responsible for the archive and distribution of NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) SRTM, which includes the global 3 arc second (~90 meter) number product.

    The NASA SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA - previously known as the National Imagery and Mapping Agency, or NIMA), as well as the participation of the German and Italian space agencies. This collaboration aims to generate a near-global digital elevation model (DEM) of Earth using radar interferometry. SRTM was the primary (and virtually only) payload on the STS-99 mission of the Space Shuttle Endeavour, which launched February 11, 2000 and flew for 11 days.

    The SRTM swaths extended from ~30 degrees off-nadir to ~58 degrees off-nadir from an altitude of 233 kilometers (km), creating swaths ~225 km wide, and consisted of all land between 60° N and 56° S latitude to account for 80% of Earth's total landmass.

    Ancillary one-byte (0 to 255) "NUM" (number) files were produced for NASA SRTM Version 3. These files have names corresponding to the elevation files, except with the extension ".NUM" (such as N37W105.NUM). The elevation files use the extension ".HGT", meaning height (such as N37W105.HGT). The separate NUM file indicates the source of each DEM pixel; the number of ASTER scenes used (up to 100), if ASTER; and the number of SRTM data takes (up to 24), if SRTM. The NUM file for both 3 arc second products (whether sampled or averaged) references the 3 x 3 center pixel. Note that NUMs less than 6 are water and those greater than 10 are land. The 3 arc second data was derived from the 1 arc second using sampling and averaging methods. (See Figure 3 in the User Guide)

    The global 3 arc second number product is also available in NetCDF4 format as the SRTMGL3_NUMNC dataset and can be used with the corresponding SRTMGL3_NC elevation product.

    Known Issues * Known issues in the NASA SRTM are described in the following publication: * Rodriguez, E., C. S. Morris, and J. E. Belz (2006), A global assessment of the SRTM performance, Photogramm. Eng. Remote Sens., 72, 249–260. https://doi.org/10.14358/PERS.72.3.249

    Improvements/Changes from Previous Version * Voids in the Version 3.0 products have been filled with ASTER Global Digital Elevation Model (GDEM) Version 2.0, the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010), and the National Elevation Dataset (NED).

  5. G

    NASA SRTM Digital Elevation 30m

    • developers.google.com
    Updated Feb 23, 2000
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NASA / USGS / JPL-Caltech (2000). NASA SRTM Digital Elevation 30m [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003
    Explore at:
    Dataset updated
    Feb 23, 2000
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Time period covered
    Feb 11, 2000 - Feb 22, 2000
    Area covered
    Description

    The Shuttle Radar Topography Mission (SRTM, see Farr et al. 2007) digital elevation data is an international research effort that obtained digital elevation models on a near-global scale. This SRTM V3 product (SRTM Plus) is provided by NASA JPL at a resolution of 1 arc-second (approximately 30m). This dataset has undergone a void-filling process using open-source data (ASTER GDEM2, GMTED2010, and NED), as opposed to other versions that contain voids or have been void-filled with commercial sources. For more information on the different versions see the SRTM Quick Guide. Documentation: User's Guide General Documentation Algorithm Theoretical Basis Document (ATBD)

  6. GLO DEM 1sec SRTM MGA56

    • researchdata.edu.au
    Updated May 31, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2018). GLO DEM 1sec SRTM MGA56 [Dataset]. https://researchdata.edu.au/glo-dem-1sec-srtm-mga56/2992390
    Explore at:
    Dataset updated
    May 31, 2018
    Dataset provided by
    Data.govhttps://data.gov/
    Authors
    Bioregional Assessment Program
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract

    The dataset was derived by the Bioregional Assessment Programme from the Geoscience Australia, 1 second SRTM Digital Elevation Model (DEM) dataset. The source dataset is identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.

    This dataset provides a userguide and setup information relating to accessing the Geoscience Australia, 1 second SRTM Digital Elevation Model (DEM), for visualisation and analysis using ESRI ArcMap and ArcCatalog.

    The 1 second DSM, DEM, DEM-S and DEM-H are national elevation data products derived from the Shuttle Radar Topography Mission (SRTM) data. The SRTM data is not suitable for routine application due to various artifacts and noise.

    The data has been treated with several processes to produce more usable products:

    \* A cleaned digital surface model (DSM)

    o regular grid representing ground surface topography as well as other features including vegetation and man-made structures

    \* A bare-earth digital elevation model (DEM)

    o regular grid representing ground surface topography, and where possible, excluding other features such as vegetation and man-made structures.

    \* A smoothed digital elevation model (DEM-S)

    o A smoothed DEM based on the bare-earth DEM that has been adaptively smoothed to reduce random noise typically associated with the SRTM data in low relief areas.

    \* A hydrologically enforced digital elevation model (DEM-H)

    o A hydrologically enforced DEM is based on DEM-S that has had drainage lines imposed and been further smoothed using the ANUDEM interpolation software.

    The last product, a hydrologically enforced DEM, is most similar to the DEMs commonly in use around Australia, such as the GEODATA 9 Second DEM and the 25 m resolution DEMs produced by State and Territory agencies from digitised topographic maps.

    For any analysis where surface shape is important, one of the smoothed DEMs (DEM-S or DEM-H) should be used. DEM-S is preferred for shape and vertical accuracy and DEM-H for hydrological connectivity. The DSM is suitable if you want to see the vegetation as well as the land surface height. There are few cases where DEM is the best data source, unless access to a less processed product is necessary.

    The 1 second DEM (in its various incarnations) has quite different characteristics to DEMs derived by interpolation from topographic data. Those DEMs are typically quite smooth and are based on fairly accurate but sparse source data, usually contours and spot heights supplemented by drainage lines. The SRTM data is derived from radar measurements that are dense (there is essentially a measurement at almost every grid cell) but noisy.

    Version 1.0 of the DSM was released in early 2009 and version 1.0 of the DEM was released in late 2009. Version 1.0 of the DEM-S was released in July 2010 and version 1.0 of the hydrologically enforced DEM-H was released in October 2011. These products provide substantial improvements in the quality and consistency of the data relative to the original SRTM data, but are not free from artefacts. Improved products will be released over time.

    The 3 second products were derived from the 1 second data and version 1.0 was released in August 2010. Future releases of these products will occur when the 1 second products have been improved. At this stage there is no 3 second DEM-H product, which requires re-interpolation with drainage enforcement at that resolution.

    Dataset History

    See readme file: readme file for gloucester basin 1sec srtm.xyz

    This is ascii file created by CSIRO 3 september 2013 using Geosoft Oasis Montaj software

    file is 1 second shuttle radar data (28.6 x 28.6 m) which has had buildings and vegetation removed

    (processing by CSIRO and GA) DEM-S product

    file format is gda94 easting, gda94 northing, height above sea level

    mga zone 56 coordinates, all data in metres

    origin (bottom left) is 379007E, 6400022N

    1260 pts in east direction

    2798 pts in north direction

    Dataset Citation

    Bioregional Assessment Programme (XXXX) GLO DEM 1sec SRTM MGA56. Bioregional Assessment Derived Dataset. Viewed 18 July 2018, http://data.bioregionalassessments.gov.au/dataset/ca38ed31-e15d-4bb5-a7ef-0aeba3dad3f4.

    Dataset Ancestors

  7. Smoothed Digital Elevation Model (DEM) - 1 arc second resolution - Clipped...

    • researchdata.edu.au
    • data.gov.au
    Updated Dec 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2018). Smoothed Digital Elevation Model (DEM) - 1 arc second resolution - Clipped to Galilee Subregion extent [Dataset]. https://researchdata.edu.au/smoothed-digital-elevation-subregion-extent/2993521
    Explore at:
    Dataset updated
    Dec 9, 2018
    Dataset provided by
    Data.govhttps://data.gov/
    Authors
    Bioregional Assessment Program
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract

    The dataset was derived by the Bioregional Assessment Programme from the 1 second SRTM Digital Elevation Model (DEM) dataset. The source dataset is identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.

    A clipped version of the Australia wide 1 second -S DEM, version 1, which limits the size to the rectangular extent of the Galilee Basin Subregion, enhancing speed and efficiency for visualisation and processing.

    The metadata for the Geoscience Australia 1 sec SRTM is below:

    The 1 second DSM, DEM, DEM-S and DEM-H are national elevation data products derived from the Shuttle Radar Topography Mission (SRTM) data. The SRTM data is not suitable for routine application due to various artefacts and noise.

    The data has been treated with several processes to produce more usable products:

    \* A cleaned digital surface model (DSM)

    \* regular grid representing ground surface topography as well as other features including vegetation and man-made structures

    \* A bare-earth digital elevation model (DEM)

    \* regular grid representing ground surface topography, and where possible, excluding other features such as vegetation and man-made structures.

    \* A smoothed digital elevation model (DEM-S)

    \* A smoothed DEM based on the bare-earth DEM that has been adaptively smoothed to reduce random noise typically associated with the SRTM data in low relief areas.

    \* A hydrologically enforced digital elevation model (DEM-H)

    \* A hydrologically enforced DEM is based on DEM-S that has had drainage lines imposed and been further smoothed using the ANUDEM interpolation software.

    The last product, a hydrologically enforced DEM, is most similar to the DEMs commonly in use around Australia, such as the GEODATA 9 Second DEM and the 25 m resolution DEMs produced by State and Territory agencies from digitised topographic maps.

    For any analysis where surface shape is important, one of the smoothed DEMs (DEM-S or DEM-H) should be used. DEM-S is preferred for shape and vertical accuracy and DEM-H for hydrological connectivity. The DSM is suitable if you want to see the vegetation as well as the land surface height. There are few cases where DEM is the best data source, unless access to a less processed product is necessary.

    The 1 second DEM (in its various incarnations) has quite different characteristics to DEMs derived by interpolation from topographic data. Those DEMs are typically quite smooth and are based on fairly accurate but sparse source data, usually contours and spot heights supplemented by drainage lines. The SRTM data is derived from radar measurements that are dense (there is essentially a measurement at almost every grid cell) but noisy.

    Version 1.0 of the DSM was released in early 2009 and version 1.0 of the DEM was released in late 2009. Version 1.0 of the DEM-S was released in July 2010 and version 1.0 of the hydrologically enforced DEM-H was released in October 2011. These products provide substantial improvements in the quality and consistency of the data relative to the original SRTM data, but are not free from artefacts. Improved products will be released over time.

    The 3 second products were derived from the 1 second data and version 1.0 was released in August 2010. Future releases of these products will occur when the 1 second products have been improved. At this stage there is no 3 second DEM-H product, which requires re-interpolation with drainage enforcement at that resolution.

    Purpose

    To enhance the speed and efficiency for visualisation and processing of the smoothed 1 second DEM data within the Galilee Basin Subregion

    Dataset History

    The original, Australia wide, 1 second smoothed DEM was clipped to rectangular extents of the Galilee subregion using the Spatial Analyst 'Extract By Rectangle' tool in ESRI ArcCatalog v10.0 with the following parameters:

    Input raster: source 1 second SRTM

    Extent: Galilee Basin subregion polygon

    Extraction Area: INSIDE

    'no data' values are created outside the clip extent therefore the extent of the dataset may still reflect the national DEM extent in ArcCatalog. Check the tool details for more info.

    The lineage of the source 1 second SRTM is below:

    The following datasets were used to derive this version of the 1 second DEM products:

    Source data

    1. SRTM 1 second Version 2 data (Slater et al., 2006), supplied by Defence Imagery and Geospatial Organisation (DIGO) as 813 1 x 1 degree tiles. Data were produced by NASA from radar data collected by the Shuttle Radar Topography Mission in February 2000.

    2. GEODATA 9 second DEM Version 3 (Geoscience Australia, 2008) used to fill voids.

    3. SRTM Water Body Data (SWBD) shapefile accompanying the SRTM data (Slater et al., 2006). This defines the coastline and larger inland waterbodies for the DEM and DSM.

    4. Vegetation masks and water masks applied to the DEM to remove vegetation.

    Full metadata, methodologies and lineage descriptions can be found in the PDF userguide within this dataset.

    Dataset Citation

    Bioregional Assessment Programme (2014) Smoothed Digital Elevation Model (DEM) - 1 arc second resolution - Clipped to Galilee Subregion extent. Bioregional Assessment Derived Dataset. Viewed 10 December 2018, http://data.bioregionalassessments.gov.au/dataset/0fe257aa-8845-4183-9d05-5b48edd98f34.

    Dataset Ancestors

  8. n

    NASA Earthdata

    • earthdata.nasa.gov
    Updated Jan 28, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LPCLOUD (2015). NASA Earthdata [Dataset]. http://doi.org/10.5067/MEASURES/SRTM/SRTMIMGM.003
    Explore at:
    Dataset updated
    Jan 28, 2015
    Dataset authored and provided by
    LPCLOUD
    Description

    The Land Processes Distributed Active Archive Center (LP DAAC) is responsible for the archive and distribution of NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) SRTM, which includes the global 1 arc second (~30 meter) combined (merged) image data product. (See User Guide Section 2.2.2)

    The combined image data set contains mosaicked one degree by one degree images/tiles of uncalibrated radar brightness values at 1 arc second. To create a smooth mosaic image, each pixel in an output is an average of all the image pixels for a location. Pixels with a value of zero (voids) were not counted. Because SRTM imaged a given location with two like-polarization channels (VV = vertical transmit and vertical receive, and HH = horizontal transmit and horizontal receive) and at a variety of look and azimuth angles, the quantitative scattering information was lost in the pursuit of a smoother image product unlike the SRTM swath image product SRTMIMGR, which preserved the quantitative scattering information.

    The NASA SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA - previously known as the National Imagery and Mapping Agency, or NIMA), as well as the participation of the German and Italian space agencies. This collaboration aims to generate a near-global digital elevation model (DEM) of Earth using radar interferometry. SRTM was the primary (and virtually only) payload on the STS-99 mission of the Space Shuttle Endeavour, which launched February 11, 2000 and flew for 11 days.

    The SRTM swaths extended from ~30 degrees off-nadir to ~58 degrees off-nadir from an altitude of 233 kilometers (km), creating swaths ~225 km wide, and consisted of all land between 60° N and 56° S latitude to account for 80% of Earth's total landmass.

    Known Issues * Known issues in the NASA SRTM are described in the following publication: * Rodriguez, E., C. S. Morris, and J. E. Belz (2006), A global assessment of the SRTM performance, Photogramm. Eng. Remote Sens., 72, 249–260. https://doi.org/10.14358/PERS.72.3.249

    Improvements/Changes from Previous Version * Version 3.0 products are filled with ASTER Global Digital Elevation Model (GDEM) Version 2.0, the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010), and the National Elevation Dataset (NED).

  9. d

    NASA Shuttle Radar Topography Mission Global 30 arc second V002

    • catalog.data.gov
    • s.cnmilf.com
    Updated Sep 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LP DAAC;NASA/JPL/SRTM (2025). NASA Shuttle Radar Topography Mission Global 30 arc second V002 [Dataset]. https://catalog.data.gov/dataset/nasa-shuttle-radar-topography-mission-global-30-arc-second-v002-cb909
    Explore at:
    Dataset updated
    Sep 18, 2025
    Dataset provided by
    LP DAAC;NASA/JPL/SRTM
    Description

    The Land Processes Distributed Active Archive Center (LP DAAC) is responsible for the archive and distribution of NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) SRTM, which includes the global 30 arc second (~1,000 meter) product. The NASA SRTM product with sample spacing of 3 arc second (~90 meter) generated by a 3 X 3 averaging of the 1 arc second data are then 10 X 10 averaged to produce thirty 30 arc second (~1,000 meter) data to correspond with Global 30 Arc Second Elevation (GTOPO30). (See the User Guide Section 2.1.4)The NASA SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA - previously known as the National Imagery and Mapping Agency, or NIMA), as well as the participation of the German and Italian space agencies. This collaboration aims to generate a near-global digital elevation model (DEM) of Earth using radar interferometry. SRTM was the primary (and virtually only) payload on the STS-99 mission of the Space Shuttle Endeavour, which launched February 11, 2000 and flew for 11 days.The SRTM swaths extended from ~30 degrees off-nadir to ~58 degrees off-nadir from an altitude of 233 kilometers (km), creating swaths ~225 km wide, and consisted of all land between 60° N and 56° S latitude to account for 80% of Earth's total landmass. Known Issues SRTMGL30 is Version 2.1 and has not been updated for the NASA SRTM V3.0 release as described in the User Guide. Known issues in the NASA SRTM are described in the following publication: * Rodriguez, E., C. S. Morris, and J. E. Belz (2006), A global assessment of the SRTM performance, Photogramm. Eng. Remote Sens., 72, 249–260. https://doi.org/10.14358/PERS.72.3.249Improvements/Changes from Previous Version* Editing, spike and pit removal, waterbody leveling, and coastline definition.

  10. a

    MERIT DEM (SRTM-based Bare-Earth model), 2017

    • hub.arcgis.com
    • catalog-usgs.opendata.arcgis.com
    Updated Oct 26, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    International Digital Elevation Model Service (2017). MERIT DEM (SRTM-based Bare-Earth model), 2017 [Dataset]. https://hub.arcgis.com/documents/8305e783c44a4104b8eba5badded3e02
    Explore at:
    Dataset updated
    Oct 26, 2017
    Dataset authored and provided by
    International Digital Elevation Model Service
    Area covered
    Earth
    Description

    MERIT (Multi-Error-Removed Improved Terrain DEM) is a substantially improved near-global terrain description with 90 m (3 arc-seconds) spatial resolution (Yamazaki et al. 2017). MERIT covers almost all of Earth’s land areas within 90N-60S, except of Antarctica. Different to most other global DEM data sets, MERIT provides – in good approximation – elevations of the bare ground. This has been achieved by reducing vegetation heights (known as tree height bias) using tree density and tree height maps as auxiliary information in the production of the MERIT DEM. However, over built areas, MERIT elevations may contain a bias due to urban canopy.MERIT relies on SRTM v2.1 South of 60° latitude, ALOS AW3D North of 60° latitude, and uses elevations from Viewfinder Panoramas (VFP-DEM) to fill voids (unobserved areas) where present. For the void-filling with VFP-DEM, an average matching method has been applied by Yamazaki et al. (2017) to ensure smooth transitions. Within the SRTM data area, about 0.5 % of MERIT land cells rely on VFP-DEM. North of 60°, the contribution of VFP-DEM is about ~30 %. As a result, elevation errors previously present in the SRTM model have been reduced such that actual terrain features stand out more clearly.

    Geodetic information: The MERIT DEMs are vertically referenced to the EGM96 geoid and horizontally referenced to the WGS84 (World Geodetic System 1984).

    Further notes: The MERIT DEM mostly represents bare ground elevations, so is technically close to a digital terrain model (DTM). This makes the data set suitable for applications requiring heights of the bare ground. Example areas are hydrology, hydrodynamics, physical geodesy and geophysics.

    Data access: The authors freely share their model for non-commercial applications (e.g. science and education) via URL: hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/

    References:

    Yamazaki, D., D. Ikeshima, R. Tawatari, T. Yamaguchi, F. O’Loughlin, J.C. Neal, C.C. Sampson, S. Kanae, P.D. Bates (2017), A high accuracy map of global terrain elevations, Geophysical Research Letters, Doi: 10.1002/2017GL072874

  11. e

    Digital Elevation Model of Ireland, from NASA’s Shuttle Radar topography...

    • data.europa.eu
    qgs, unknown
    Updated Apr 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dublin City Council (2021). Digital Elevation Model of Ireland, from NASA’s Shuttle Radar topography Mission (SRTM) DCC [Dataset]. https://data.europa.eu/data/datasets/6ce74d5c-44e7-49f9-8f5a-02aacf1e83e2?locale=en
    Explore at:
    qgs, unknownAvailable download formats
    Dataset updated
    Apr 5, 2021
    Dataset authored and provided by
    Dublin City Council
    Area covered
    Ireland
    Description

    UPDATE: Data no longer available from this page. All non-working links have been removed (19/7/21)

    Users must follow instructions below from NASA to access data:

    SRTM data are also available globally at 1 arc second resolution (SRTMGL1.003) through the Data Pool (https://e4ftl01.cr.usgs.gov/MEASURES/SRTMGL1.003/) or from EarthExplorer where it is listed as NASA SRTM3 SRTMGL1. Please sign in with NASA Earthdata Login Credentials to download data from the NASA LP DAAC Collections. These datasets require login on both NASA Earthdata and USGS EarthExplorer systems to access data. After you create your account, you will also need to “authorize” the LP DAAC Data Pool application. On the Profile page in your Earthdata account you will need to select My Applications. On that page make sure the LP DAAC Data Pool is listed. If it isn't then select Authorize More Applications. In the dialog box type in LP DAAC Data Pool and click Search For Applications. Select Approve when presented with the lpdaac_datapool. Keep everything checked but you can uncheck the Yes, I would like to be notified box. Select Authorize and the LP DAAC Data Pool should be added to your Approved Applications. You might benefit from using the AppEEARS tool. ·
    o AppEEARS landing page: https://lpdaacsvc.cr.usgs.gov/appeears/

    ·
    o The users will need and https://urs.earthdata.nasa.gov/?_ga=2.148606453.334533939.1615325167-1213876668.1613754504. Click or tap if you trust this link.">Earthdata Login

    ·
    o Getting started instructions can be found here: https://lpdaacsvc.cr.usgs.gov/appeears/help

    Previously available here: Digital Elevation Model of Ireland, from NASA's Shuttle Radar Topography Mission (SRTM), sampled at 3 arc second intervals in latitude & longitude (about every 90m) in heightmap (.HGT) format.''Latitudes & longitudes are referenced to WGS84, heights are in meters referenced to the WGS84/EGM96 geoid.'' Please see the linked pdf files for further documentation.''A QGIS project for the hgt files is also attached.

  12. T

    Glacier height change data of QTP V1.0 (1970-2012)

    • poles.tpdc.ac.cn
    • tpdc.ac.cn
    zip
    Updated Oct 31, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jianming ZHOU (2019). Glacier height change data of QTP V1.0 (1970-2012) [Dataset]. http://doi.org/10.11888/Glacio.tpdc.270986
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 31, 2019
    Dataset provided by
    TPDC
    Authors
    Jianming ZHOU
    Area covered
    Description

    This product is based on multi-source remote sensing DEM data generation. The steps are as follows: select control points in relatively stable and flat terrain area with Landsat ETM +, SRTM and ICESat remote sensing data as reference. The horizontal coordinates of the control points are obtained with Landsat ETM + l1t panchromatic image as the horizontal reference. The height coordinates of the control points are mainly obtained by ICESat gla14 elevation data, and are supplemented by SRTM elevation data in areas without ICESat distribution. Using the selected control points and automatically generated connection points, the lens distortion and residual deformation are compensated by Brown's physical model, so that the total RMSE of all stereo image pairs in the aerial triangulation results is less than 1 pixel. In order to edit the extracted DEM data to eliminate the obvious elevation abnormal value, DEM Interpolation, DEM filtering and DEM smoothing are used to edit the DEM on the glacier, and kh-9 DEM data in the West Kunlun West and West Kunlun east regions are spliced to form products.

  13. G

    High Resolution Digital Elevation Model (HRDEM) - CanElevation Series

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    esri rest, geotif +5
    Updated Sep 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2025). High Resolution Digital Elevation Model (HRDEM) - CanElevation Series [Dataset]. https://open.canada.ca/data/en/dataset/957782bf-847c-4644-a757-e383c0057995
    Explore at:
    shp, geotif, html, pdf, esri rest, json, kmzAvailable download formats
    Dataset updated
    Sep 25, 2025
    Dataset provided by
    Natural Resources Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.

  14. S

    Shuttle Radar Topography Mission (SRTM GL3) Global 90m

    • portal.opentopography.org
    • search.dataone.org
    • +2more
    raster
    Updated Apr 1, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenTopography (2013). Shuttle Radar Topography Mission (SRTM GL3) Global 90m [Dataset]. http://doi.org/10.5069/G9445JDF
    Explore at:
    rasterAvailable download formats
    Dataset updated
    Apr 1, 2013
    Dataset provided by
    OpenTopography
    Time period covered
    Feb 11, 2000 - Feb 22, 2000
    Area covered
    Variables measured
    Area, Unit, RasterResolution
    Description

    The Shuttle Radar Topography Mission (SRTM) obtained elevation data on a near-global scale to generate the most complete high-resolution digital topographic database of Earth. SRTM consisted of a specially modified radar system that flew onboard the Space Shuttle Endeavour during an 11-day mission in February of 2000. SRTM is an international project spearheaded by the National Geospatial-Intelligence Agency (NGA) and the National Aeronautics and Space Administration (NASA).

    Version 3: Elimination of the voids in the NASA SRTM DEM was the primary goal of a project under the NASA MEaSUREs (Making Earth System Data Records for Use in Research Environments) Program. Ultimately this was achieved by filling the voids with elevation data primarily from the ASTER GDEM2 (Global Digital Elevation Model Version 2) and secondarily from the USGS GMTED2010 elevation model or the USGS National Elevation Dataset (NED). For more information on this dataset visit the LP DAAC NASA Shuttle Radar Topography Mission Global 3 arc second page.

  15. NASA Shuttle Radar Topography Mission United States 1 arc second number -...

    • data.nasa.gov
    Updated Jun 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). NASA Shuttle Radar Topography Mission United States 1 arc second number - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/nasa-shuttle-radar-topography-mission-united-states-1-arc-second-number
    Explore at:
    Dataset updated
    Jun 12, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Area covered
    United States
    Description

    The SRTMUS1N collection was retired on November 20, 2014, when global SRTM data became available at a resolution of 1 arc second. The data for the United States are included in the SRTMGL1N dataset.The Land Processes Distributed Active Archive Center (LP DAAC) is responsible for the archive and distribution of NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Shuttle Radar Topography Mission (SRTM), which includes the United States 1 arc second (~30 meter) number product. Ancillary one-byte (0 to 255) “NUM” (number) files were produced for NASA SRTM Version 3. These files have names corresponding to the elevation files, except with the extension “.NUM” (such as N37W105.NUM). The elevation files use the extension “.HGT”, meaning height (such as N37W105.HGT). The separate NUM file indicates the source of each DEM pixel; the number of ASTER scenes used (up to 100), if ASTER; and the number of SRTM data takes (up to 24), if SRTM. The NUM file for both 3 arc second products (whether sampled or averaged) references the 3 x 3 center pixel. The NASA SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA - previously known as the National Imagery and Mapping Agency, or NIMA), as well as the participation of the German and Italian space agencies. This collaboration aims to generate a near-global digital elevation model (DEM) of Earth using radar interferometry. SRTM was the primary (and virtually only) payload on the STS-99 mission of the Space Shuttle Endeavour, which launched February 11, 2000 and flew for 11 days.The SRTM swaths extended from ~30 degrees off-nadir to ~58 degrees off-nadir from an altitude of 233 kilometers (km), creating swaths ~225 km wide, and consisted of all land between 60 degrees N and 56 degrees S latitude to account for 80% of Earth’s total landmass.Known Issues Known issues in the NASA SRTM are described in the following publication:Rodriguez, E., C. S. Morris, and J. E. Belz (2006), A global assessment of the SRTM performance, Photogramm. Eng. Remote Sens., 72, 249–260. https://doi.org/10.14358/PERS.72.3.249Improvements/Changes from Previous Version Voids in the Version 3.0 products have been filled with ASTER Global Digital Elevation Model (GDEM) Version 2.0, the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010), and the National Elevation Dataset (NED).

  16. g

    NASA Shuttle Radar Topography Mission Global 3 arc second number V003 |...

    • gimi9.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NASA Shuttle Radar Topography Mission Global 3 arc second number V003 | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_nasa-shuttle-radar-topography-mission-global-3-arc-second-number-v003-6f6d3
    Explore at:
    Description

    The Land Processes Distributed Active Archive Center (LP DAAC) is responsible for the archive and distribution of NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs (https://earthdata.nasa.gov/about/competitive-programs/measures)) SRTM, which includes the global 3 arc second (~90 meter) number product. The NASA SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA - previously known as the National Imagery and Mapping Agency, or NIMA), as well as the participation of the German and Italian space agencies. This collaboration aims to generate a near-global digital elevation model (DEM) of Earth using radar interferometry. SRTM was the primary (and virtually only) payload on the STS-99 mission of the Space Shuttle Endeavour, which launched February 11, 2000, and flew for 11 days. The SRTM swaths extended from ~30 degrees off-nadir to ~58 degrees off-nadir from an altitude of 233 kilometers (km), creating swaths ~225 km wide, and consisted of all land between 60 degrees N and 56 degrees S latitude to account for 80 percent of Earth’s total landmass. Ancillary one-byte (0 to 255) “NUM” (number) files were produced for NASA SRTM Version 3. These files have names corresponding to the elevation files, except with the extension “.NUM” (such as N37W105.NUM). The elevation files use the extension “.HGT”, meaning height (such as N37W105.HGT). The separate NUM file indicates the source of each DEM pixel; the number of ASTER scenes used (up to 100), if ASTER; and the number of SRTM data takes (up to 24), if SRTM. The NUM file for both 3 arc second products (whether sampled or averaged) references the 3 x 3 center pixel. Note that NUMs less than 6 are water and those greater than 10 are land. The 3 arc second data was derived from the 1 arc second using sampling and averaging methods (See Figure 3 in the User Guide). The global 3 arc second number product is also available in NetCDF4 format as the SRTMGL3_NUMNC dataset and can be used with the corresponding SRTMGL3_NC elevation product. Known Issues * Known issues in the NASA SRTM are described in the following publication: Rodriguez, E., C. S. Morris, and J. E. Belz (2006), A global assessment of the SRTM performance, Photogramm. Eng. Remote Sens., 72, 249–260. https://doi.org/10.14358/PERS.72.3.249 Improvements/Changes from Previous Versions * Voids in the Version 3.0 products have been filled with ASTER Global Digital Elevation Model (GDEM) Version 2.0, the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010), and the National Elevation Dataset (NED).

  17. c

    NASA Shuttle Radar Topography Mission Global 1 arc second number V003

    • s.cnmilf.com
    • catalog.data.gov
    Updated Sep 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LP DAAC;NASA/JPL/SRTM (2025). NASA Shuttle Radar Topography Mission Global 1 arc second number V003 [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/nasa-shuttle-radar-topography-mission-global-1-arc-second-number-v003-e471c
    Explore at:
    Dataset updated
    Sep 18, 2025
    Dataset provided by
    LP DAAC;NASA/JPL/SRTM
    Description

    The Land Processes Distributed Active Archive Center (LP DAAC) is responsible for the archive and distribution of NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Shuttle Radar Topography Mission (SRTM), which includes the global 1 arc second (~30 meter) number product. The NASA SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA - previously known as the National Imagery and Mapping Agency, or NIMA), as well as the participation of the German and Italian space agencies. This collaboration aims to generate a near-global digital elevation model (DEM) of Earth using radar interferometry. SRTM was the primary (and virtually only) payload on the STS-99 mission of the Space Shuttle Endeavour, which launched February 11, 2000 and flew for 11 days.The SRTM swaths extended from ~30 degrees off-nadir to ~58 degrees off-nadir from an altitude of 233 kilometers (km), creating swaths ~225 km wide, and consisted of all land between 60° N and 56° S latitude to account for 80% of Earth's total landmass.Ancillary one-byte (0 to 255) "NUM" (number) files were produced for NASA SRTM Version 3. These files have names corresponding to the elevation files, except with the extension ".NUM" (such as N37W105.NUM). The elevation files use the extension ".HGT", meaning height (such as N37W105.HGT). The separate NUM file indicates the source of each DEM pixel; the number of ASTER scenes used (up to 100), if ASTER; and the number of SRTM data takes (up to 24), if SRTM. The global 1 arc second number product is also available in NetCDF4 format as the SRTMGL1_NUMNC dataset and can be used with the corresponding SRTMGL1_NC elevation product.Known Issues Known issues in the NASA SRTM are described in the following publication: * Rodriguez, E., C. S. Morris, and J. E. Belz (2006), A global assessment of the SRTM performance, Photogramm. Eng. Remote Sens., 72, 249–260. https://doi.org/10.14358/PERS.72.3.249Improvements/Changes from Previous Version Voids in the Version 3.0 products have been filled with ASTER Global Digital Elevation Model (GDEM) Version 2.0, the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010), and the National Elevation Dataset (NED).

  18. Continental Europe Digital Terrain Model at 30 m resolution based on GEDI...

    • zenodo.org
    bin, png, tiff
    Updated Jul 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tomislav Hengl; Tomislav Hengl; Leandro Leal Parente; Leandro Leal Parente; Josip Krizan; Josip Krizan; Carmelo Bonannella; Carmelo Bonannella (2024). Continental Europe Digital Terrain Model at 30 m resolution based on GEDI and background layers [Dataset]. http://doi.org/10.5281/zenodo.4057883
    Explore at:
    tiff, png, binAvailable download formats
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Tomislav Hengl; Tomislav Hengl; Leandro Leal Parente; Leandro Leal Parente; Josip Krizan; Josip Krizan; Carmelo Bonannella; Carmelo Bonannella
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Continental Europe
    Description

    Digital Terrain Model for Continental Europe based on the three publicly available Digital Surface Models and predicted using an Ensemble Machine Learning (EML). EML was trainined using GEDI level 2B points (column "elev.lowestmode"): about 7 million GEDI points were overlaid vs NASADEM, AW3D, EU DEM, canopy height, tree cover and surface water cover maps, then an ensemble prediction model was fitted using random forest, GLM with Lasso, Cubist and GLMnet, and used to predict most probable terrain height (bare earth). Input layers used to train the EML include:

    Detailed processing steps can be found here. Read more about the processing steps here. Training data set can be obtained in the file "gedi_elev.lowestmode_2019_eumap.RDS". Summary results of the model training (mlr::makeStackedLearner) report:

    Call:
    stats::lm(formula = f, data = d)
    
    Residuals:
      Min   1Q Median   3Q   Max 
    -65.580 -2.630  0.648  3.120 181.769 
    
    Coefficients:
            Estimate Std. Error t value Pr(>|t|)  
    (Intercept)  -4.1448129 0.4663283 -8.888 < 2e-16 ***
    regr.ranger  0.2667469 0.0009676 275.677 < 2e-16 ***
    regr.glmnet  -4.7183974 0.6038334 -7.814 5.54e-15 ***
    regr.cvglmnet 4.6966219 0.6042481  7.773 7.69e-15 ***
    regr.cubist  0.7643997 0.0012860 594.378 < 2e-16 ***
    ---
    Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
    Residual standard error: 6.729 on 6757726 degrees of freedom
    Multiple R-squared: 0.9996,  Adjusted R-squared: 0.9996 
    F-statistic: 4.644e+09 on 4 and 6757726 DF, p-value: < 2.2e-16

    Which indicates that the elevation errors are in average (2/3rd of pixels) between +2-3 m. The output predicted terrain model includes the following two layers:

    • "dtm_elev.lowestmode_gedi.eml_m": mean estimate of the terrain elevation,
    • "dtm_elev.lowestmode_gedi.eml_md": standard deviation of the independently fitted stacked predictors quantifying the prediction uncertainty,

    The predicted elevations are based on the GEDI data hence the reference water surface (WGS84 ellipsoid) is about 43 m higher than the sea water surface for a specific EU country. All GeoTIFFs were prepared using Integer format (elevations rounded to 1 m) and have been converted to Cloud Optimized GeoTIFFs using GDAL.

    Disclaimer: The output DTM still shows forest canopy (overestimation of the terrain elevation) and has not been hydrologically corrected for spurious sinks and similar. This data set is continuously updated. To report a bug or suggest an improvement, please visit here. To register for updates please subscribe to: https://twitter.com/HarmonizerGeo.

  19. A

    Surging Seas: Risk Zone Map

    • data.amerigeoss.org
    • amerigeo.org
    • +1more
    esri rest, html
    Updated Feb 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEO ArcGIS (2019). Surging Seas: Risk Zone Map [Dataset]. https://data.amerigeoss.org/ar/dataset/surging-seas-risk-zone-map
    Explore at:
    esri rest, htmlAvailable download formats
    Dataset updated
    Feb 18, 2019
    Dataset provided by
    AmeriGEO ArcGIS
    Description

    Introduction

    Climate Central’s Surging Seas: Risk Zone map shows areas vulnerable to near-term flooding from different combinations of sea level rise, storm surge, tides, and tsunamis, or to permanent submersion by long-term sea level rise. Within the U.S., it incorporates the latest, high-resolution, high-accuracy lidar elevation data supplied by NOAA (exceptions: see Sources), displays points of interest, and contains layers displaying social vulnerability, population density, and property value. Outside the U.S., it utilizes satellite-based elevation data from NASA in some locations, and Climate Central’s more accurate CoastalDEM in others (see Methods and Qualifiers). It provides the ability to search by location name or postal code.

    The accompanying Risk Finder is an interactive data toolkit available for some countries that provides local projections and assessments of exposure to sea level rise and coastal flooding tabulated for many sub-national districts, down to cities and postal codes in the U.S. Exposure assessments always include land and population, and in the U.S. extend to over 100 demographic, economic, infrastructure and environmental variables using data drawn mainly from federal sources, including NOAA, USGS, FEMA, DOT, DOE, DOI, EPA, FCC and the Census.

    This web tool was highlighted at the launch of The White House's Climate Data Initiative in March 2014. Climate Central's original Surging Seas was featured on NBC, CBS, and PBS U.S. national news, the cover of The New York Times, in hundreds of other stories, and in testimony for the U.S. Senate. The Atlantic Cities named it the most important map of 2012. Both the Risk Zone map and the Risk Finder are grounded in peer-reviewed science.

    Back to top


    Methods and Qualifiers

    This map is based on analysis of digital elevation models mosaicked together for near-total coverage of the global coast. Details and sources for U.S. and international data are below. Elevations are transformed so they are expressed relative to local high tide lines (Mean Higher High Water, or MHHW). A simple elevation threshold-based “bathtub method” is then applied to determine areas below different water levels, relative to MHHW. Within the U.S., areas below the selected water level but apparently not connected to the ocean at that level are shown in a stippled green (as opposed to solid blue) on the map. Outside the U.S., due to data quality issues and data limitations, all areas below the selected level are shown as solid blue, unless separated from the ocean by a ridge at least 20 meters (66 feet) above MHHW, in which case they are shown as not affected (no blue).

    Areas using lidar-based elevation data: U.S. coastal states except Alaska
    Elevation data used for parts of this map within the U.S. come almost entirely from ~5-meter horizontal resolution digital elevation models curated and distributed by NOAA in its Coastal Lidar collection, derived from high-accuracy laser-rangefinding measurements. The same data are used in NOAA’s Sea Level Rise Viewer. (High-resolution elevation data for Louisiana, southeast Virginia, and limited other areas comes from the U.S. Geological Survey (USGS)).

    Areas using CoastalDEM™ elevation data: Antigua and Barbuda, Barbados, Corn Island (Nicaragua), Dominica, Dominican Republic, Grenada, Guyana, Haiti, Jamaica, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, San Blas (Panama), Suriname, The Bahamas, Trinidad and Tobago.

    CoastalDEM™ is a proprietary high-accuracy bare earth elevation dataset developed especially for low-lying coastal areas by Climate Central. Use our contact form to request more information.

    Warning for areas using other elevation data (all other areas)
    Areas of this map not listed above use elevation data on a roughly 90-meter horizontal resolution grid derived from NASA’s Shuttle Radar Topography Mission (SRTM). SRTM provides surface elevations, not bare earth elevations, causing it to commonly overestimate elevations, especially in areas with dense and tall buildings or vegetation. Therefore, the map under-portrays areas that could be submerged at each water level, and exposure is greater than shown (Kulp and Strauss, 2016). However, SRTM includes error in both directions, so some areas showing exposure may not be at risk.

    SRTM data do not cover latitudes farther north than 60 degrees or farther south than 56 degrees, meaning that sparsely populated parts of Arctic Circle nations are not mapped here, and may show visual artifacts.

    Areas of this map in Alaska use elevation data on a roughly 60-meter horizontal resolution grid supplied by the U.S. Geological Survey (USGS). This data is referenced to a vertical reference frame from 1929, based on historic sea levels, and with no established conversion to modern reference frames. The data also do not take into account subsequent land uplift and subsidence, widespread in the state. As a consequence, low confidence should be placed in Alaska map portions.

    Flood control structures (U.S.)
    Levees, walls, dams or other features may protect some areas, especially at lower elevations. Levees and other flood control structures are included in this map within but not outside of the U.S., due to poor and missing data. Within the U.S., data limitations, such as an incomplete inventory of levees, and a lack of levee height data, still make assessing protection difficult. For this map, levees are assumed high and strong enough for flood protection. However, it is important to note that only 8% of monitored levees in the U.S. are rated in “Acceptable” condition

  20. e

    Mapzen DEM

    • collections.eurodatacube.com
    • collections.sentinel-hub.com
    Updated May 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sentinel Hub (2021). Mapzen DEM [Dataset]. https://collections.eurodatacube.com/mapzen-dem/
    Explore at:
    Dataset updated
    May 14, 2021
    Dataset provided by
    <a href="https://www.sentinel-hub.com/">Sentinel Hub</a>
    Description

    Mapzen DEM is based on Mapzen's terrain tiles that provide global DEM and bathymetry data. Mapzen terrain tiles is a composite of elevation data of varying resolutions from multiple open data sources including SRTM, ETOPO1, and other higher resolution sources for some parts of the world. Mapzen DEM provides bare-earth terrain heights and can also be used for the orthorectification of satellite imagery (e.g Sentinel 1).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2016). Shuttle Radar Topography Mission (SRTM) Images [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1220566448-USGS_LTA.html

Shuttle Radar Topography Mission (SRTM) Images

JPL_SRTM_Not provided

Explore at:
201 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jan 29, 2016
Time period covered
Feb 11, 2000 - Present
Area covered
Description

Culminating more than four years of processing data, NASA and the National Geospatial-Intelligence Agency (NGA) have completed Earth's most extensive global topographic map. The mission is a collaboration among NASA, NGA, and the German and Italian space agencies. For 11 days in February 2000, the space shuttle Endeavour conducted the Shuttle Radar Topography Mission (SRTM) using C-Band and X-Band interferometric synthetic aperture radars to acquire topographic data over 80% of the Earth's land mass, creating the first-ever near-global data set of land elevations. This data was used to produce topographic maps (digital elevation maps) 30 times as precise as the best global maps used today. The SRTM system gathered data at the rate of 40,000 per minute over land. They reveal for the first time large, detailed swaths of Earth's topography previously obscured by persistent cloudiness. The data will benefit scientists, engineers, government agencies and the public with an ever-growing array of uses. The SRTM radar system mapped Earth from 56 degrees south to 60 degrees north of the equator. The resolution of the publicly available data is three arc-seconds (1/1,200th of a degree of latitude and longitude, about 295 feet, at Earth's equator). The final data release covers Australia and New Zealand in unprecedented uniform detail. It also covers more than 1,000 islands comprising much of Polynesia and Melanesia in the South Pacific, as well as islands in the South Indian and Atlantic oceans. SRTM data are being used for applications ranging from land use planning to "virtual" Earth exploration. Currently, the mission's homepage "http://www.jpl.nasa.gov/srtm" provides direct access to recently obtained earth images. The Shuttle Radar Topography Mission C-band data for North America and South America are available to the public. A list of complete public data set is available at "http://www2.jpl.nasa.gov/srtm/dataprod.htm" The data specifications are within the following parameters: 30-meter X 30-meter spatial sampling with 16 meter absolute vertical height accuracy, 10-meter relative vertical height accuracy, and 20-meter absolute horizontal circular accuracy. From the JPL Mission Products Summary, "http://www.jpl.nasa.gov/srtm/dataprelimdescriptions.html". The primary products of the SRTM mission are the digital elevation maps of most of the Earth's surface. Visualized images of these maps are available for viewing online. Below you will find descriptions of the types of images that are being generated:

  • Radar Image
  • Radar Image with Color as Height
  • Radar Image with Color Wrapped Fringes
    -Shaded Relief
  • Perspective View with B/W Radar Image Overlaid
  • Perspective View with Radar Image Overlaid, Color as Height
  • Perspective View of Shaded Relief
  • Perspective View with Landsat or other Image Overlaid
  • Contour Map - B/W with Contour Lines
  • Stereo Pair
  • Anaglypgh

The SRTM radar contained two types of antenna panels, C-band and X-band. The near-global topographic maps of Earth called Digital Elevation Models (DEMs) are made from the C-band radar data. These data were processed at the Jet Propulsion Laboratory and are being distributed through the United States Geological Survey's EROS Data Center. Data from the X-band radar are used to create slightly higher resolution DEMs but without the global coverage of the C-band radar. The SRTM X-band radar data are being processed and distributed by the German Aerospace Center, DLR.

Search
Clear search
Close search
Google apps
Main menu