This dataset includes data on 25 transitions of a matrix demographic model of the invasive species Vincetoxicum nigrum (L.) Moench (black swallow-wort or black dog-strangling vine) and Vincetoxicum rossicum (Kleopow) Barb. (pale swallow-wort or dog-strangling vine) (Apocynaceae, subfamily Asclepiadoideae), two invasive perennial vines in the northeastern U.S.A. and southeastern Canada. The matrix model was developed for projecting population growth rates as a result of changes to lower-level vital rates from biological control although the model is generalizable to any control tactic. Transitions occurred among the five life stages of seeds, seedlings, vegetative juveniles (defined as being in at least their second season of growth), small flowering plants (having 1–2 stems), and large flowering plants (having 3 or more stems). Transition values were calculated using deterministic equations and data from 20 lower-level vital rates collected from 2009-2012 from two open field and two forest understory populations of V. rossicum (43°51’N, 76°17’W; 42°48'N, 76°40'W) and two open field populations of V. nigrum (41°46’N, 73°44’W; 41°18’N, 73°58’W) in New York State. Sites varied in plant densities, soil depth, and light levels (forest populations). Detailed descriptions of vital rate data collection may be found in: Milbrath et al. 2017. Northeastern Naturalist 24(1):37-53. Five replicate sets of transition data obtained from five separate spatial regions of a particular infestation were produced for each of the six populations. Note: Added new excel file of vital rate data on 12/7/2018. Resources in this dataset:Resource Title: Matrix model transition data for Vincetoxicum species. File Name: Matrix_model_transition_data.csvResource Description: This data set includes data on 25 transitions of a matrix demographic model of two invasive Vincetoxicum species from six field and forest populations in New York State.Resource Title: Variable definitions. File Name: Matrix_model_metadata.csvResource Description: Definitions of variables including equations for each transition and definitions of the lower-level vital rates in the equationsResource Title: Vital Rate definitions. File Name: Vital_Rate.csvResource Description: Vital Rate definitions of lower-level vital rates used in transition equations - to be substituted into the Data Dictionary for full definition of each transition equation.Resource Title: Data Dictionary. File Name: Matrix_Model_transition_data_DD.csvResource Description: See Vital Rate resource for definitions of lower-level vital rates used in transition equations where noted.Resource Title: Matrix model vital rate data for Vincetoxicum species. File Name: Matrix_model_vital rate_data.csvResource Description: This data set includes data on 20 lower-level vital rates used in the calculation of transitions of a matrix demographic model of two invasive Vincetoxicum species in New York State as well as definitions of the vital rates. (File added on 12/7/2018)Resource Software Recommended: Microsoft Excel,url: https://office.microsoft.com/excel/
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
In a time of global change, having an understanding of the nature of biotic and abiotic factors that drive a species’ range may be the sharpest tool in the arsenal of conservation and management of threatened species. However, such information is lacking for most tropical and epiphytic species due to the complexity of life history, the roles of stochastic events, and the diversity of habitat across the span of a distribution. In this study, we conducted repeated censuses across the core and peripheral range of Trichocentrum undulatum, a threatened orchid that is found throughout the island of Cuba (species core range) and southern Florida (the northern peripheral range). We used demographic matrix modeling as well as stochastic simulations to investigate the impacts of herbivory, hurricanes, and logging (in Cuba) on projected population growth rates (? and ?s) among sites. Methods Field methods Censuses took place between 2013 and 2021. The longest census period was that of the Peripheral population with a total of nine years (2013–2021). All four populations in Cuba used in demographic modeling that were censused more than once: Core 1 site (2016–2019, four years), Core 2 site (2018–2019, two years), Core 3 (2016 and 2018 two years), and Core 4 (2018–2019, two years) (Appendix S1: Table S1). In November 2017, Hurricane Irma hit parts of Cuba and southern Florida, impacting the Peripheral population. The Core 5 population (censused on 2016 and 2018) was small (N=17) with low survival on the second census due to logging. Three additional populations in Cuba were visited only once, Core 6, Core 7, and Core 8 (Table 1). Sites with one census or with a small sample size (Core 5) were not included in the life history and matrix model analyses of this paper due to the lack of population transition information, but they were included in the analysis on the correlation between herbivory and fruit rate, as well as the use of mortality observations from logging for modeling. All Cuban sites were located between Western and Central Cuba, spanning four provinces: Mayabeque (Core 1), Pinar del Rio (Core 2 and Core 6), Matanzas (Core 3 and Core 5), and Sancti Spiritus (Core 4, Core 7, Core 8). At each population of T. undulatum presented in this study, individuals were studied within ~1-km strips where T. undulatum occurrence was deemed representative of the site, mostly occurring along informal forest trails. Once an individual of T. undulatum was located, all trees within a 5-m radius were searched for additional individuals. Since tagging was not permitted, we used a combination of information to track individual plants for the repeated censuses. These include the host species, height of the orchid, DBH of the host tree, and hand-drawn maps. Individual plants were also marked by GPS at the Everglades Peripheral site. If a host tree was found bearing more than one T. undulatum, then we systematically recorded the orchids in order from the lowest to highest as well as used the previous years’ observations in future censuses for individualized notes and size records. We recorded plant size and reproductive variables during each census including: the number of leaves, length of the longest leaf (cm), number of inflorescence stalks, number of flowers, and the number of mature fruits. We also noted any presence of herbivory, such as signs of being bored by M. miamensis, and whether an inflorescence was partially or completely affected by the fly, and whether there was other herbivory, such as D. boisduvalii on leaves. We used logistic regression analysis to examine the effects of year (at the Peripheral site) and sites (all sites) on the presence or absence of inflorescence herbivory at all the sites. Cross tabulation and chi-square analysis were done to examine the associations between whether a plant was able to fruit and the presence of floral herbivory by M. miamensis. The herbivory was scored as either complete or partial. During the orchid population scouting expeditions, we came across a small population in the Matanzas province (Core 5, within 10 km of the Core 3 site) and recorded the demographic information. Although the sampled population was small (N = 17), we were able to observe logging impacts at the site and recorded logging-associated mortality on the subsequent return to the site. Matrix modeling Definition of size-stage classes To assess the life stage transitions and population structures for each plant for each population’s census period we first defined the stage classes for the species. The categorization for each plant’s stage class depended on both its size and reproductive capabilities, a method deemed appropriate for plants (Lefkovitch 1965, Cochran and Ellner 1992). A size index score was calculated for each plant by taking the total number of observed leaves and adding the length of the longest leaf, an indication of accumulated biomass (Borrero et al. 2016). The smallest plant size that attempted to produce an inflorescence is considered the minimum size for an adult plant. Plants were classified by stage based on their size index and flowering capacity as the following: (1) seedlings (or new recruits), i.e., new and small plants with a size index score of less than 6, (2) juveniles, i.e., plants with a size index score of less than 15 with no observed history of flowering, (3) adults, plants with size index scores of 15 or greater. Adult plants of this size or larger are capable of flowering but may not produce an inflorescence in a given year. The orchid’s population matrix models were constructed based on these stages. In general, orchid seedlings are notoriously difficult to observe and easily overlooked in the field due to the small size of protocorms. A newly found juvenile on a subsequent site visit (not the first year) may therefore be considered having previously been a seedling in the preceding year. In this study, we use the discovered “seedlings” as indicatory of recruitment for the populations. Adult plants are able to shrink or transition into the smaller juvenile stage class, but a juvenile cannot shrink to the seedling stage. Matrix elements and population vital rates calculations Annual transition probabilities for every stage class were calculated. A total of 16 site- and year-specific matrices were constructed. When seedling or juvenile sample sizes were < 9, the transitions were estimated using the nearest year or site matrix elements as a proxy. Due to the length of the study and variety of vegetation types with a generally large population size at each site, transition substitutions were made with the average stage transition from all years at the site as priors. If the sample size of the averaged stage was still too small, the averaged transition from a different population located at the same vegetation type was used. We avoided using transition values from populations found in different vegetation types to conserve potential environmental differences. A total of 20% (27/135) of the matrix elements were estimated in this fashion, the majority being seedling stage transitions (19/27) and noted in the Appendices alongside population size (Appendix S1: Table S1). The fertility element transitions from reproductive adults to seedlings were calculated as the number of seedlings produced (and that survived to the census) per adult plant. Deterministic modeling analysis We used integral projection models (IPM) to project the long-term population growth rates for each time period and population. The finite population growth rate (?), stochastic long-term growth rate (?s), and the elasticity were projected for each matrices using R Popbio Package 2.4.4 (Stubben and Milligan 2007, Caswell 2001). The elasticity matrices were summarized by placing each element into one of three categories: fecundity (transition from reproductive adults to seedling stage), growth (all transitions to new and more advanced stage, excluding the fecundity), and stasis (plants that transitioned into the same or a less advanced stage on subsequent census) (Liu et al. 2005). Life table response experiments (LTREs) were conducted to identify the stage transitions that had the greatest effects on observed differences in population growth between select sites and years (i.e., pre-post hurricane impact and site comparisons of same vegetation type). Due to the frequent disturbances that epiphytes in general experience as well as our species’ distribution in hurricane-prone areas, we ran transient dynamic models that assume that the populations censused were not at stable stage distributions (Stott et al. 2011). We calculated three indices for short-term transient dynamics to capture the variation during a 15-year transition period: reactivity, maximum amplification, and amplified inertia. Reactivity measures a population’s growth in a single measured timestep relative to the stable-stage growth, during the simulated transition period. Maximum amplification and amplified inertia are the maximum of future population density and the maximum long-term population density, respectively, relative to a stable-stage population that began at the same initial density (Stott et al. 2011). For these analyses, we used a mean matrix for Core 1, Core 2 Core 3, and Core 4 sites and the population structure of their last census. For the Peripheral site, we averaged the last three matrices post-hurricane disturbance and used the most-recent population structure. We standardized the indices across sites with the assumption of initial population density equal to 1 (Stott et al. 2011). Analysis was done using R Popdemo version 1.3-0 (Stott et al. 2012b). Stochastic simulation We created matrices to simulate the effects of episodic recruitment, hurricane impacts, herbivory, and logging (Appendix S1: Table S2). The Peripheral population is the longest-running site with nine years of censuses (eight
Environmental change continually perturbs populations from a stable state, leading to transient dynamics that can last multiple generations. Several long-term studies have reported changes in trait distributions along with demographic response to environmental change. Here we conducted an experimental study on soil mites and investigated the interaction between demography and an individual trait over a period of nonstationary dynamics. By following individual fates and body sizes at each life-history stage, we investigated how body size and population density influenced demographic rates. By comparing the ability of two alternative approaches, a matrix projection model and an integral projection model, we investigated whether consideration of trait-based demography enhances our ability to predict transient dynamics. By utilizing a prospective perturbation analysis, we addressed which stage-specific demographic or trait-transition rate had the greatest influence on population dynamics. Both body size and population density had important effects on most rates; however, these effects differed substantially among life-history stages. Considering the observed trait-demography relationships resulted in better predictions of a population’s response to perturbations, which highlights the role of phenotypic plasticity in transient dynamics. Although the perturbation analyses provided comparable predictions of stage-specific elasticities between the matrix and integral projection models, the order of importance of the life-history stages differed between the two analyses. In conclusion, we demonstrate how a trait-based demographic approach provides further insight into transient population dynamics. Daily sampling of individual mitesday: day of the study (day t) | no: individual ID for each day | surv: survival to day t+1? | stage: life-history stage at day t | stage1: life-history stage at day t+1 | trns: transition to next stage at day t+1? | tsex: transition to female stage at day t+1? | dens: weighted population density at day t | size: log(body size) at day t | size1: log(body size) at day t+1 | rep: produced eggs at day t+1? | rec: number of eggs produced on day t+1 | day2: number of eggs hatched on day t+2 | day3: number of eggs hatched on day t+3 | day4: number of eggs hatched on day t+4 | day5: number of eggs hatched on day t+5 | day6: number of eggs hatched on day t+6 | day7: number of eggs hatched after day t+6 | eggsurv: proportion of eggs hatched | hrate: daily hatching rate | eggsize: average log(egg size)ind_data.csvAdditional experiment measuring egg-to-larva size transitioneggSize: log(egg size) | larvaSize: log(larva size)egg_data.csvDaily population censusday: day of the study (day t) | e: number of eggs | l: number of larvae | p: number of protonymphs | t: number of tritonymphs | f: number of female adults | m: number of male adults | group: (c)ontrol or (s)ample group? | dens: weighted population densitypop_census.csv
Throughout most of human history, global population growth was very low; between 10,000BCE and 1700CE, the average annual increase was just 0.04 percent. Therefore, it took several thousand years for the global population to reach one billion people, doing so in 1803. However, this period marked the beginning of a global phenomenon known as the demographic transition, from which point population growth skyrocketed. With the introduction of modern medicines (especially vaccination), as well as improvements in water sanitation, food supply, and infrastructure, child mortality fell drastically and life expectancy increased, causing the population to grow. This process is linked to economic and technological development, and did not take place concurrently across the globe; it mostly began in Europe and other industrialized regions in the 19thcentury, before spreading across Asia and Latin America in the 20th century. As the most populous societies in the world are found in Asia, the demographic transition in this region coincided with the fastest period of global population growth. Today, Sub-Saharan Africa is the region at the earliest stage of this transition. As population growth slows across the other continents, with the populations of the Americas, Asia, and Europe expected to be in decline by the 2070s, Africa's population is expected to grow by three billion people by the end of the 21st century.
The Sahel Women Empowerment and Demographic Dividend (P150080) project in Burkina Faso focuses on advancing women's empowerment to spur demographic transition and mitigate gender disparities. This project seeks to empower young women by promoting entrepreneurship through business skills training and grants, and by enhancing access to reproductive health information and contraception, thereby aiming to lower fertility rates.
The World Bank Africa Gender Innovation Lab, along with its partners, is conducting detailed impact evaluations of the SWEDD program’s key initiatives to gauge their effects on child marriage, fertility, and the empowerment of adolescent girls and young women.
This data represents the first round of data collection (baseline) for the impact evaluation and include a household and community level surveys. The household level sample comprises 9857 households, 70,169 individuals and 9382 adolescent girls and young wives aged 24 living in the Boucle du Mouhoun and the East regions of Burkina Faso. The community level sample includes 175 villages.
The insights derived from this survey could help policymakers develop strategies to: - Reduce fertility and child marriage by enhancing access to contraceptives and broadening reproductive health education. - Promote women’s empowerment by increasing their participation in economic activities
This data is valuable for planners who focus on improving living standards, particularly for women. The Ministry of Women, National Solidarity, Family, and Humanitarian Action of Burkina Faso, along with District Authorities, Research Institutions, NGOs, and the general public, stand to benefit from this survey data.
Burkina Faso, Regions of Boucle du Mouhoun and East
The unit of analysis is adolescent girls for the adolescent survey and households for the household survey.
Sample survey data [ssd]
We randomly selected 200 villages from the 11 provinces in the two regions of the Boucle du Mouhoun and the East. The 200 villages were selected proportionally, based on the formula (Np/N)*200, where Np represents the number of eligible villages in the province and N the total number of eligible villages. 25 villages were later dropped because of lack of safety.
A census was first administered in each village to identify eligible girls and young wives, as well as households with these eligible individuals. All households with at least one eligible person then constituted the universe from which the survey sample was drawn. In total 9857 households and 9382 girls and young wives were sampled. A village-level questionnaire was also administered.
The objective of the baseline survey was to build a comprehensive dataset, which would serve as a reference point for the entire sample, before treatment and control assignment and program implementation.
Computer Assisted Personal Interview [capi]
The data consists of responses from households to questions pertaining to: 1. List of household members 2. Education of household members 3. Occupations of household members 4. Characteristics of housing and durable goods 5. Food security 6. Household head's aspirations, as well as those of a boy aged 12 to 24 7. Opinions on women's empowerment and gender equality
The questionnaire administrated to girls contains the following sections: 1. Education 2. Marriage and children 3. Aspirations 4. Health and family planning 5. Knowledge of HIV/AIDS 6. Women's empowerment 7. Gender-based violence 8. Income-generating activities 9. Savings and credit 10. Personal relationships and social networks 11. Committee members and community participation
The questionnaire administered at the village-level contains the following sections: 1. Social norms (marriage norms) 2. Ethnic and religious compositions 3. Economic infrastructures (markets and roads) 4. Social services a. Health b. Education
The household questionnaire was administered to the head of the household or to an authorized person capable of answering questions about all individuals in the household. The adolescent questionnaire was administered to each eligible pre-selected individual within the household. Considering the modules of the adolescent questionnaire, it was only administered by female enumerators. The village-level questionnaire was administered to a group of three to five village leaders with enough knowledge of the village. The enumerators were instructed to include women in this group whenever possible. The questionnaires were written in French, translated into the local languages, and programmed on tablets in French using the CAPI program.
Data was anonymized through decoding and local suppression.
THE GEOINQUIRIES™ COLLECTION FOR U.S. Historyhttp://www.esri.com/geoinquiriesThe GeoInquiry™ collection for U.S. History contains 15 free, web-mapping activities that correspond and extend map-based concepts in leading history textbooks. The activities use a standard inquiry-based instructional model, require only 15 minutes for a teacher to deliver, and are device/laptop agnostic. The activities harmonize with the C3 Framework. All History GeoInquiries™ can be found at: http://esriurl.com/historyGeoInquiries All GeoInquiries™ can be found at: http://www.esri.com/geoinquiries
https://www.icpsr.umich.edu/web/ICPSR/studies/37141/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/37141/terms
The National Association of County and City Health Officials' (NACCHO) Forces of Change Survey is an evolution of NACCHO's Job Losses and Program Cuts Surveys (also known as the Economic Surveillance Surveys) which measured the impact of the economic recession on local health departments' (LHD) budgets, staff, and programs. The Forces of Change Survey continues to measure changes in LHD budgets, staff, and programs and assess more broadly the impact of forces affecting change in LHDs, such as health reform and accreditation. This current iteration of the survey collected information about Zika response; LHDs involvement in multi-sectoral partnerships; and workforce recruitment. The collection is comprised of the restricted-use version (Restricted-Use Level 2) of the Forces of Change 2017 dataset, and includes 195 variables for 948 cases, with demographic variables related to LHD budgets.
Investigate the farms in Dust Bowl states by summarizing to the state level.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
The American black bear (Ursus americanus) has one of the broadest geographic distributions of any mammalian carnivore in North America. Populations occur from high to low elevations and from mesic to arid environments, and their demographic traits have been documented in a wide variety of environments. However, the demography of American black bears in semiarid environments, which comprise a significant portion of the geographic range, is poorly documented. To fill this gap in understanding, we used data from a long-term mark-recapture study of black bears in the semiarid environment of eastern Utah, USA. Cub and yearling survival were low and adult survival was high relative to other populations. Adult life stages had the highest reproductive value, comprised the largest proportion of the population, and exhibited the highest elasticity contribution to the population growth rate (i.e., λ). Vital rates of black bears in this semiarid environment are skewed toward higher survival of adults, and lower survival of cubs compared to other populations. Methods Mark-Recapture study We estimated survival rates from long-term mark-recapture data gathered as part of a 27-year study on American black bears of the East Tavaputs Plateau. During the first 12 years of the study (June to August 1991-2003) female bears were captured and radio-collared, and all bears were tagged in the ear, except for cubs and yearlings. For the entire study (1992 – 2019), collared females were visited in their dens annually during their winter hibernation to count newborn cubs and surviving yearlings. Age of individual bears was determined by 2 methods: (1) direct observation of cubs or yearlings (i.e., year of birth was known) or (2) cementum annuli analysis of a cross-section of the root of an extracted premolar (Palochak, 2004; Willey, 1974). The data we used to derive survival and fecundity rates consisted of the ID_number, cohort (cub, yearling, subadult, prime-aged adult, and old adult), age in years, sex (female, male, unknown), number of cubs, number of yearlings, first observation of individual, last observation of individual, days from last observation, and survival status. We did not include subadult and adult male bears in the analysis. Survival rates To determine the average survival rates for each life stage, we used a Cox proportional hazards model in program R (Team, 2022). This model accommodates staggered entries, where individuals enter the study at different times, and censoring, where the event of interest (e.g., mortality) is not observed for all individuals due to the inability to follow-up or the study ending before the event occurs. These features allow for a more accurate representation of survival over time, even with incomplete data (Cox, 1972). The Cox model is a semi-parametric approach that examines how covariates, such as age and environmental factors, influence the risk of death at any given point in time. Unlike fully parametric models, which require defining the baseline hazard function (the risk of death when all covariates are at baseline levels), the Cox model does not require this step, making it highly flexible and suitable for diverse data and applications (Zhang, 2016). The hazard function in this context refers to the rate or likelihood of an event (e.g., death) occurring at a specific moment, given that the individual has survived up to that time. The Cox model is expressed as follows: h(t|X) = h0(t) exp(β1X1 + β2X2 +...+ βpXp) where h(t|X) is the hazard function at time t given covariates X, h0(t) is the baseline hazard function β1, β2, …, βp are the coefficients for the predictor variables X1, X2, …, Xp. The model assumes proportional hazards, meaning the relative risk of death (the hazard ratio) between two groups remains constant over time (Zhang, 2016). The advantage of the Cox model is its ability to handle censored data, common in survival analysis. Censoring occurs when some individuals have not experienced mortality by the end of the study, so we only know that they survived up to that point. Moreover, the Cox model can incorporate time-dependent covariates, enabling a dynamic analysis of how risk factors influence survival over time (Therneau & Grambsch, 2000). For our analysis, we formulated four Cox proportional hazards models as follows: 1) constant survival, 2) a model with the effect of maternal age, 3) a model with the effect of cohort, and 4) a model with the combined effect of age and cohort. We compared these models using Akaike’s Information Criterion (AIC) to identify the best fit and then evaluate the effect sizes of covariates based on the β coefficients from the top-performing model (Burnham et al., 2011; Symonds & Moussalli, 2011). When there was uncertainty in model selection, we used model averaging to estimate effect sizes and β coefficients. Each model was also checked for uninformative parameters (Arnold, 2010). We reviewed the model summaries to assess the estimated effects of covariates (constant survival, maternal age, cohort, and the combination of age and cohort) on survival outcomes. Fecundity rates To determine fecundity rates, we used females monitored through the use of radio-collars. All females that were ≥ four years old were counted in the breeding pool. We removed any female ≥ 25 years of age from the breeding pool (Noyce, 2010). We classified old adults as ≥ 15 years old and prime-aged adults as 4-14 years of age. We visited dens of females to observe whether they were alone or accompanied by cubs or yearlings as well as the sexes of their offspring. At the height of the study, we had 15 prime-aged adult females, along with a few old-adult females. There was variation in the number of adult females and old-adult females throughout the study period and we had at least two old-adult females in each year for 12 years during the study. Matrix Transition Model and Analysis We developed a transition matrix model based on adult females and their offspring to estimate population growth and additional demographic parameters. In the model, we assumed every cub was born on January 1st and survived through the full year if they were alive through the 15th of October. We assumed density of males does not affect breeding success (Lewis et al., 2014). We divided the population into five age-based stages: cub (0–1 year-old); yearling (1–2 years old), subadult (2–4 years old), prime-aged adult (4–14 years old), and old adult (15+). We used the term sm to indicate the probability of surviving and transitioning to a new stage (matrix sub diagonal), and the term ss indicated the probability of surviving and staying in the same stage (matrix diagonal). We used f to indicate fecundity or reproduction (matrix upper right corner; Fig. 1A, 1B). We used the software Unified Life Models (ULM; (Legendre & Clobert, 1995) to evaluate the matrix model and to calculate population growth rate, stable age distribution, reproductive value, and sensitivity and elasticity matrices. We summed elasticity values across all stages for the three demographic processes: fecundity (f), growth (sm, transition from one age stage to another), and stasis (ss, survival without transitioning). Our matrix transition model differed from the matrix transition model generated by Beston (2011), which used nine life stages. To ensure an accurate comparison between the two models, we combined the nine life stages from the matrix transition model in the meta-analysis (Beston, 2011) into five broader stages: cub, yearling, subadult, adult, and old adult. We selected five life stages due to the assumption that age might influence reproductive output, a pattern supported by research on other mammals (Hilderbrand et al., 2019; Nussey et al., 2008; Promislow & Harvey, 1990).
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de441964https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de441964
Abstract (en): Comparative Cities is a teaching package designed to introduce students to analysis of manuscript schedules of the nineteenth century census for social, urban, family, and demographic history. The files are designed for use with SPSS. It was initially developed at Brown University with assistance of a project grant from the National Endowment for the Humanities. The file is organized to illustrate contrasts among cities at different stages of industrialization and the demographic transition in Europe and America: Pisa, Italy (1841), Amiens, France (1851), Stockport, England (1841 and 1851), and Providence, R.I. (1850, 1865, and 1880). The rural district around Pisa and part of Providence County are also included. There are approximately 1400 cases with information for individuals in each of eleven subfiles. These are random samples from the original 1:10 house samples for the four places made to permit flexible and economical student use. Summaries imbedded in the file permit analysis at the individual, household, or nuclear unit level. There are 142 variables for each individual. The package also contains a coursebook with explanation of each variable, a dictionary with occupational titles that appear in the censuses, course syllabus, and other instructions for use. The files are being used in the separate ongoing research of the two principal investigators and should be used for instructional purposes only. This teaching package can be supplied as two card-image data files, two files of SPSS instruction cards, and associated printed documentation. The package has also been updated with several files designed to be used with microcomputers. Included in the updated materials are four text files (Contents of Tape, Coursebook, Explanatory Materials, and Dictionary of Occupational Titles and Codes), a file of SPSSx data definition statements for use with PC-SPSSx, and a file of data definition statements for use with the Consortium's ABC statistical analysis package. Nine separate sub-files, each derived from the original census data and designed for analysis on micro-computers which are equipped with PC-SPSSx or ABC, are also provided. Finally, the package includes two mainframe SPSSx "Export" files which contain all of the data collected for each city. While these latter files duplicate the SPSS files contained in the earlier Comparative Cities package, they have been modified for use with SPSSx. The original Comparative Cities Teaching Package files can still be supplied as well. These files are oriented towards use of SPSS Version 9 on mainframe computers. 2006-01-12 All files were removed from dataset 20 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 20 and flagged as study-level files, so that they will accompany all downloads.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
1.Natural and anthropogenic forest canopy disturbances significantly alter forest dynamics and lead to multi-dimensional shifts in the forest understorey. An understorey plant's ability to exploit alterations to the light environment caused by canopy disturbance leads to changes in population dynamics. The purpose of this work was to determine if population growth of a species adapted to low light increases in response to additional light inputs caused by canopy disturbance, or alternatively, declines due to long-term selection under low light conditions. 2.To address this question, we quantified the demographic response of an understorey herb to three contrasting forest canopy disturbances (ice storms, tent caterpillar defoliation and lightning strikes) that encompass a broad range of disturbance severity. We used a model shade-adapted understorey species, Panax quinquefolius, to parameterize stage-based matrix models. Asymptotic growth rates, stochastic growth rates and simulations of transient dynamics were used to quantify the population-level response to canopy disturbance. Life table response experiments were used to partition the underlying controls over differences in population growth rates. 3.Population growth rates at all three disturbed sites increased in the transition period immediately after the canopy disturbance relative to the transition period prior to disturbance. Stochastic population models revealed that growth rates increased significantly in simulations that included disturbance matrices relative to those simulations that excluded disturbance. Additionally, transient models indicated that population size (n) was larger for all three populations when the respective disturbance matrix was included in the model. 4.Synthesis Obligate shade species are most likely to be pre-adapted to take advantage of canopy gaps and light influx to a degree, and this pre-adaptation may be due to long-term selection under dynamic old growth forest canopies. We propose a model whereby population performance is represented by a parabolic curve where performance is maximized under intermediate levels of canopy disturbance. This study provides new evidence to aid our understanding of the population-level response of understorey herbs to disturbances whose frequency and intensity are predicted to increase as global climates continue to shift.
OverviewThis feature layer shows population change compared to pre-crisis baseline in Pakistan on a daily basis for all level 2 administrative units of Pakistan. The layer has time enabled to show the change from 2022-08-13 to the latest date when population change data harvested by Data for Good at Meta is available.Population maps provided by Data for Good at Meta are generated based on users of Facebook. For more information about the disaster population maps provided by Data for Good at Meta, please refer to this link.Default data visualizationA divergent color ramp was employed to create a choropleth map for % population change compared to the pre-crisis baseline. The size of pre-crisis baseline is visualized using circles in different sizes. Each circle represents one Level 3 administrative unit in Pakistan.This feature layer contains the following metrics for mapping and analysis:Baseline population - an estimated number of Facebook users during the pre-crisis period. It is calculated as an average of 90 days before the crisis (in this case, 2022-08-14 was used as the onset of crisis).Crisis population - an estimated number of Facebook users during the crisis. Original data are provided every 8 hours.Difference in population - the difference between crisis population and the baseline populationPercent change in population - the percentage of population change from baseline to a given date during the crisisZ-score - a unitless normalized measurement to quantify the population change from baselineDate - Date of data acquisition. Original data are provided three times a day (8-hour interval). We calculated a daily average using all three timestamps available for each day. Users can filter by Date to create a subset showing the population change on a selected dateMethod of data preparationRemove data points without a valid baseline population or percent change in populationCalculate daily average using the three timestamps available for each dayAggregate the original point data to Level 3 administrative units of PakistanAppend all daily average level 3 administrative units data to a single file to enable time option of the layer
https://borealisdata.ca/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.5683/SP3/LR2Y4Chttps://borealisdata.ca/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.5683/SP3/LR2Y4C
AbstractConserving species requires knowledge of demographic rates (survival, recruitment) that govern population dynamics to allow the allocation of limited resources to the most vulnerable stages of target species' life cycles. Additionally, quantifying drivers of demographic change facilitates the enactment of specific remediation strategies. However, knowledge gaps persist in how similar environmental changes lead to contrasting population dynamics through demographic rates. For sympatric hummingbird species, the population of urban-associated partial-migrant Anna's hummigbird (Calypte anna) has increased, yet the populations of Neotropical migrants including rufous, calliope, and black-chinned hummingbirds have decreased. Here, we developed an integrated population model to jointly analyze 25 years of mark-recapture data and population survey data for these four species. We examined the contributions of demographic rates on population growth and evaluated the effects of anthropogenic stressors including human population density and crop cover on demographic change in relation to species' life histories. While recruitment appeared to drive the population increase of urban-associated Anna's hummingbirds, decreases in juvenile survival contributed most strongly to population declines of Neotropical migrants and highlight a potentially vulnerable phase in their life-history. Moreover, rufous hummingbird adult and juvenile survival rates were negatively impacted by human population density. Mitigating threats associated with intensively modified anthropogenic environments is a promising avenue for slowing further hummingbird population loss. Overall, our model grants critical insight into how anthropogenic modification of habitat affects the population dynamics of species of conservation concern. MethodsThis R data file contains a named list for each species in our study. It has been processed to remove covariates and data that are not public domain but are available for download at the links provided (indicated with * in the readme file). Each species list contains mark-recapture records (y), the known-state records (z), number of years spanned by the analysis (n.years), numbers banded individuals (n.ind), banding station membership (sta), number of banding stations (n.sta), year of first encounter for each individual (first), year of last possible encounter of each individual if it were to be alive (last), first and last years of mark recapture data (first_yr / last_yr), sex (1 = male, 2 = female) and age (1 = juvenile, 2 = adult) membership for each individual, the observed residency information for each individual in each year (r), the partially observed residency state information for each individual (u), the standardized human population density and crop data in the 3 kilometers around each banding station (HPD / crop), the unstandardized HPD and crop data (HPD_raw / crop_raw), the number of days of operational banding activity at each station each year (effort), and indicator for each station and year signifying whether banding occurred on at least two occasions separated by more than 5 days that year (kappa_shrink), the BBS survey year (year), an indicator of whether the BBS surveyor was suveying on their first year or not (firstyr), the number of BBS surveys (ncounts), the species tally on a given survey (count), the number of individual transects surveyed over the study period (nrte), the BBS transect membership for each count (rte), the number of observers contributing data over the study period (nobserver), the anonymized observer ID on a given transect for each count (rte.obser), and the initial abundance estimate given as the mean count across all transects and years, inflated by 100 for precise estimation of demographic rates (lam0). Usage notesData can be opened in R and analyzed using Nimble.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Experimental treatments—Stage 2—Long term evolution.
The transition from socialism to a market economy has transformed the lives of many people. What are people's perceptions and attitudes to transition? What are the current attitudes to market reforms and political institutions?
To analyze these issues, the EBRD and the World Bank have jointly conducted the comprehensive, region-wide "Life in Transition Survey" (LiTS), which combines traditional household survey features with questions about respondents' attitudes and is carried out through two-stage sampling with a random selection of households and respondents.
The LiTS assesses the impact of transition on people through their personal and professional experiences during the first 15 years of transition. LiTS attempts to understand how these personal experiences of transition relate to people’s attitudes toward market and political reforms, as well as their priorities for the future.
The main objective of the LiTS was to build on existing studies to provide a comprehensive assessment of relationships among life satisfaction and living standards, poverty and inequality, trust in state institutions, satisfaction with public services, attitudes to a market economy and democracy and to provide valuable insights into how transition has affected the lives of people across a region comprising 16 countries in Central and Eastern Europe (“CEE”) and 11 in the Commonwealth of Independent State (“CIS”). Turkey and Mongolia were also included in the survey.
The LITS was to be implemented in the following 29 countries: Albania, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Estonia, Former Yugoslav Republic of Macedonia (FYROM), Georgia, Hungary, Kazakhstan, Kyrgyz Republic, Latvia, Lithuania, Moldova, Mongolia, Poland, Romania, Russia, Serbia and Montenegro, Slovak Republic, Slovenia, Tajikistan, Turkey, Turkmenistan, Ukraine and Uzbekistan.
Sample survey data [ssd]
A total of 1,000 face-to-face household interviews per country were to be conducted, with adult (18 years and over) occupants and with no upper limit for age. The sample was to be nationally representative. The EBRD’s preferred procedure was a two stage sampling method, with census enumeration areas (CEA) as primary sampling units and households as secondary sampling units. To the extent possible, the EBRD wished the sampling procedure to apply no more than 2 stages.
The first stage of selection was to use as a sampling frame the list of CEA's generated by the most recent census. Ideally, 50 primary sampling units (PSU's) were to be selected from that sample frame, with probability proportional to size (PPS), using as a measure of size either the population, or the number of households.
The second sampling stage was to select households within each of the primary sampling units, using as a sampling frame a specially developed list of all households in each of the selected PSU's defined above. Households to be interviewed were to be selected from that list by systematic, equal probability sampling. Twenty households were to be selected in each of the 50 PSU's.
The individuals to be interviewed in each household were to be selected at random, within each of the selected households, with no substitution if possible.
ESTABLISHMENT OF THE SAMPLE FRAME OF PSU’s
In each country we established the most recent sample frame of PSU’s which would best serve the purposes of the LITS sampling methodology. Details of the PSU sample frames in each country are shown in table 1 (page 10) of the survey report.
In the cases of Armenia, Azerbaijan, Kazakhstan, Serbia and Uzbekistan, CEA’s were used. In Croatia we also used CEA’s but in this case, because the CEA’s were very small and we would not have been able to complete the targeted number of interviews within each PSU, we merged together adjoining CEA’s and constructed a sample of 1,732 Merged Enumeration Areas. The same was the case in Montenegro.
In Estonia, Hungary, Lithuania, Poland and the Slovak Republic we used Eurostat’s NUTS area classification system.
[NOTE: The NUTS (from the French "Nomenclature des territoriales statistiques" or in English ("Nomenclature of territorial units for statistics"), is a uniform and consistent system that runs on five different NUTS levels and is widely used for EU surveys including the Eurobarometer (a comparable survey to the Life in Transition). As a hierarchical system, NUTS subdivides the territory of the country into a defined number of regions on NUTS 1 level (population 3-7 million), NUTS 2 level (800,000-3 million) and NUTS 3 level (150,000-800,000). At a more detailed level NUTS 3 is subdivided into smaller units (districts and municipalities). These are called "Local Administrative Units" (LAU). The LAU is further divided into upper LAU (LAU1 - formerly NUTS 4) and LAU 2 (formerly NUTS 5).]
Albania, Bulgaria, the Czech Republic, Georgia, Moldova and Romania used the electoral register as the basis for the PSU sample frame. In the other cases, the PSU sample frame was chosen using either local geographical or administrative and territorial classification systems. The total number of PSU sample frames per country varied from 182 in the case of Mongolia to over 48,000 in the case of Turkey. To ensure the safety of our fieldworkers, we excluded from the sample frame PSU’s territories (in countries such as Georgia, Azerbaijan, Moldova, Russia, etc) in which there was conflict and political instability. We have also excluded areas which were not easily accessible due to their terrain or were sparsely populated.
In the majority of cases, the source for this information was the national statistical body for the country in question, or the relevant central electoral committee. In establishing the sample frames and to the extent possible, we tried to maintain a uniform measure of size namely, the population aged 18 years and over which was of more pertinence to the LITS methodology. Where the PSU was based on CEA’s, the measure was usually the total population, whereas the electoral register provided data on the population aged 18 years old and above, the normal voting age in all sampled countries. Although the NUTS classification provided data on the total population, we filtered, where possible, the information and used as a measure of size the population aged 18 and above. The other classification systems used usually measure the total population of a country. However, in the case of Azerbaijan, which used CEA’s, and Slovenia, where a classification system based on administrative and territorial areas was employed, the measure of size was the number of households in each PSU.
The accuracy of the PSU information was dependent, to a large extent, on how recently the data has been collected. Where the data were collected recently then the information could be considered as relatively accurate. However, in some countries we believed that more recent information was available, but because the relevant authorities were not prepared to share this with us citing secrecy reasons, we had no alternative than to use less up to date data. In some countries the age of the data available makes the figures less certain. An obvious case in point is Bosnia and Herzegovina, where the latest available figures date back to 1991, before the Balkan wars. The population figures available take no account of the casualties suffered among the civilian population, resulting displacement and subsequent migration of people.
Equally there have been cases where countries have experienced economic migration in recent years, as in the case of those countries that acceded to the European Union in May, 2004, such as Hungary, Poland and the Baltic states, or to other countries within the region e.g. Armenians to Russia, Albanians to Greece and Italy; the available figures may not accurately reflect this. And, as most economic migrants tend to be men, the actual proportion of females in a population was, in many cases, higher than the available statistics would suggest. People migration in recent years has also occurred from rural to urban areas in Albania and the majority of the Asian Republics, as well as in Mongolia on a continuous basis but in this case, because of the nomadic population of the country.
SAMPLING METHODOLOGY
Brief Overview
In broad terms the following sampling methodology was employed: · From the sample frame of PSU’s we selected 50 units · Within each selected PSU, we sampled 20 households, resulting in 1,000 interviews per country · Within each household we sampled 1 and sometimes 2 respondents The sampling procedures were designed to leave no free choice to the interviewers. Details on each of the above steps as well as country specific procedures adapted to suit the availability, depth and quality of the PSU information and local operational issues are described in the following sections.
Selection of PSU’s
The PSU’s of each country (all in electronic format) were sorted first into metropolitan, urban and rural areas (in that order), and within each of these categories by region/oblast/province in alphabetical order. This ensured a consistent sorting methodology across all countries and also that the randomness of the selection process could be supervised.
To select the 50 PSU’s from the sample frame of PSU’s, we employed implicit stratification and sampling was done with PPS. Implicit stratification ensured that the sample of PSU’s was spread across the primary categories of explicit variables and a better representation of the population, without actually stratifying the PSU’s thus, avoiding difficulties in calculating the sampling errors at a later stage. In brief, the PPS involved the
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density metrics for 2011 Statistical Area Level 2 (SA2) within 2011 Greater Capital City Statistical Areas (GCCSA), including SA2 Population-weighted density (PWD) for 2011 and 2014, PWD change 2011-2014, and ERP population counts by density classes. Selected Density Classes were based on the Australian Population Density Grid published by the ABS, December 2014 (cat. no. 1270.0.55.007). Corresponding population metrics for 2011 GCCSAs. PWD using standardised 1km grid cells provides a more comparable measure of the density in larger regions. It does this by weighting the density using the proportion of population living at that density. In this way the density measure reflects the density at which people actually live. This removes the effect of large unpopulated areas that may be within the regions being compared. In this way comparisons between regions are more valid.
The map service can be viewed at http://soe.terria.io/#share=s-AgXEN0N0Q95icRW7M9JIC9IYBdE
Downloadable spatial data also available below.
Map prepared by the ABS and presented as Figure BLT3 in Built environment theme of the 2016 State of the Environment Report, available at http://www.soe.environment.gov.au.
The Genomic and environmental risk factors for cardiometabolic disease in Africans (AWI-Gen) project was a collaborative study between the University of the Witwatersrand (Wits) and the INDEPTH Network funded under the Human Heredity and Health in Africa (H3Africa) initiative. The H3Africa was a ground-breaking initiative to build institutional and individual capacity to undertake genetic and genomic studies in the African region. This collaboration, involved five INDEPTH sites i.e. 1) Navrongo - Ghana; 2) Nanoro - Burkina Faso; 3&4) Agincourt and Digkale - South Africa; and 5) Nairobi - Kenya) plus the Soweto-based birth-to-twenty cohort. AWI-Gen phase I was a population based cross-sectional study with a research platform of over 12,045 participants aged 40-60 years from Burkina Faso, Ghana, Kenya and South Africa. It aimed to understand the interplay between genetic, epigenetic and environmental risk factors for obesity and related cardiometabolic diseases (CMD) in sub-Saharan Africa and it generated epi-demographic, environmental, health history, behavioral, anthropometric, physiological and genetic data across a range of rapidly transitioning African settings. This provided a unique resource to examine genetic associations and gene-environment interactions that will contribute to Afrocentric risk prediction models and African-appropriate Mendelian Randomization instruments, and exploit their potential to improve personal and population health - while strengthening regional research capacity. We plan to continue this work in AWIGEN-phase II among the same participants recruited in AWIGen-I offering an opportunity to examine data in a longitudinal manner. The AWI-Gen phase II project aims to establish the genomic contribution to CMD and risk at a time when multiple interacting transitions, in the presence of high background HIV or malaria prevalence, are driving a rapid escalation in CMD across the African continent. The project capitalizes on the unique strengths of existing longitudinal cohorts and well-established health and demographic surveillance systems(HDSS) run by the partner institutions. The six study sites represent geographic and social variability of African populations which are also at different stages of the demographic and epidemiological transitions. The work in Kenya will be undertaken in the Nairobi Urban Health and Demographic Surveillance System (NUHDSS) run by African Population and Health Research Center (APHRC) following participants who were recruited in AWIGEN-Phase I. AWI-Gen II consisted of five main aims: i) AIM-1 (Sub-study 1): Genetic associations studies to elucidate functional pathways involved in determining body composition and risk for CMD by detecting pivotal genomic and environmental contributors; ii) AIM 2 (Sub-study 2): Genomics and bioinformatics-impact of genomic diversity on disease risk and precision public health; iii) AIM 3 (Sub-study 3): Examine changes over the menopausal transition in body composition and CMD risk; iv) AIM 4 (Sub-study 4): Examine gut microbiome in older adults and its relationship to obesity, diabetes and glucose tolerance and ageing; and v) AIM 5 (Sub-study 5): Explore respiratory disease in context of multi-morbidity. In this application, we sought ethical approval for the Kenya study only. The other partners sought approval from their appropriate ethics review authorities in their countries. The study budget was $248,613 and was funded by National Institute of Health (NIH)-USA under H3Africa. Data collection was undertaken for approximately 12 months but sample processing, data analysis, manuscript writing, capacity building and policy engagement was continued up to three years after field work (up to 2022).
County coverage (Informal settlements of Korogocho and Viwandani in Nairobi)
Individual Household
The survey covered individual participants aged 45-65 years.
a) Study design: A prospective cohort study to examine genetic associations and gene-environment interactions with measures of change in CMD and risk derived over 5 years (AWI-Gen I survey was in 2014/2015, and survey for phenotypic characteristics (under AWI-Gen II) among the same individuals will was repeated in 2019/2020). This was an extend baseline (AWI-Gen I) to provide longitudinal data (AWI-Gen II). b) Study site (geographical) The study in Kenya was conducted in Nairobi, specifically in Korogocho and Viwandani urban informal settlements which are covered by the NUHDSS. c) Study populations Sub-study 1 & 5: Adult (40-60 years at baseline) residents of Korogocho and Viwandani informal settlements registered in the NUHDSS. Sample size A sample size of 2000 per site (12000 in total) was used in AWIGEN-I based on power calculations and effect sizes. The power calculations show that we have power to detect realistic effect sizes, based on studies in other populations. Figure 2 illustrates the relationship between power and effect size for two different phenotypes, illustrating that the detectable effect size is realistic. Power analysis for a sample size of 12000 individuals based on proposed candidate gene study for BMI (shown on the left) and for DXA (total body fat) (shown on the right). Given a sample size of 12000 in the AWI-Gen study, this graph shows effect size (x) which could be detected at a given power (y) for different minor allele frequencies (ranging from 0.05-045). For example, with a minor allele frequency of 0.25, we will have 80% power to detect an effect size (Beta) of 0.20 per allele change in BMI, and an effect size of 0.25 per allele change in body fat percentage. For AWIGEN 2, we will follow the same participants. We anticipate a retention of 70% from the 2000 participants recruited in phase 1. Thus, our sample size for AWIGEN-11 was approximately 1400 participants for the Kenyan site to for sub-studies 1 and 2. For Sub-studies 3 & 4 we will randomly sample 250 individuals for each sub-study which is a large sample by most microbiome project standards. For Sub-study 5 we will include all participants selected in Sub-study 1
N/A
Other [oth]
The questionnaire for AWIGen 2 was a structured questionnaire developed by the University of Witwatersrand. The questionnaire was translated from English to Swahili. The individual questionnaire was administered to an adult (40-60 years old), which collected various information of the individual including, age, gender, BMI, Visceral fat levels, T2 diabetes status, blood pressure, socio-economic status, lifestyle (diet, tobacco, alcohol, exercise etc.) and HIV infection status. In addition, for participants in microbiome study we will ask information on antibiotics use. We will repeat the anthropometric measurements including height, weight, waist and hip circumference and ultrasound measurements of visceral and subcutaneous fat, and cIMT.
Data was edited on REDCap during data entry and also secondary editing was performed once the files were submitted to the server.
59%
N/A
The MxFLS is the first longitudinal survey in Mexico that follows individuals across rounds, including those who migrate within Mexico or emigrate to the Unites States of America. This allows studying the well-being of the Mexican population, and its transitions over time, as well as the factors that determine those transitions. Given that the MxFLS provides information for individuals who emigrated to the USA, it is possible to study, for the first time, migration dynamics between Mexico and the USA.
A primary goal of the Mexican Family Life Survey (MxFLS) is to create a longitudinal and multi-thematic database. On the one hand, this allows a long term tracking of individuals regardless of change in residence, newly formed homes or home conversions; and on the other hand, these characteristics will be beneficial in their use of a single tool collecting economic, demographic and health population indicators of the Mexican population. The survey’s first round (MxFLS-1) took place during the year 2002 reaching a sample size of 35 thousand individual interviews in 150 urban and rural locations throughout the country. The second round (MxFLS-2) ended during 2006 with 90 per cent a re-contact rate at the household level. During this second operational phase of tracking and interviewing original households between 2002 and 2006, those who migrated to the United States were contacted at a rate of over 91 per cent. Within this content, MxFLS-2 provides statistical evidence on the flow of internal migration into the United States, on population and on the welfare dynamics of the Mexican people that relocate within the country and in the US. This is regardless of whether or not they remain or return to their national territory and/or community of origin.
The MxFLS provides data to analyze the well-being of the Mexican population, and its transitions over time, as well as the factors that determine those transitions.
National coverage
Sample survey data [ssd]
Sampling design The design of the first round, the baseline survey (MxFLS-1), was undertaken by the National Institute of Statistics and Geography (INEGI, per its name in Spanish). The baseline sample is probabilistic, stratified, multi-staged, and independent at every phase of the study. The population is comprised by Mexican households in 2002. Primary sampling units were selected under criterions of national, urban-rural and regional representation on pre-established demographic and economic variables. Regional definitions are in accordance with the National Development Plan 2000-2006.
Longitudinal design The first round or baseline survey (MXFLS-1), implemented in 2002, and collected information on a sample of 35,000 individuals from 8,400 households in 150 communities throughout the country. The second (MxFLS-2) was conducted during 2005-2006. Given the longitudinal design of the survey, the MxFLS-2 aimed to relocate and re-interview the sample of the MxFLS-1-including those individuals who migrated within Mexico or emigrated to the United States of America-and to interview the individuals or households that grew out from previous samples. The MxFLS-2 relocated and re-interviewed almost 90 percent of the original sampled households.
Face-to-face [f2f]
The 2005 MxFLS-2 follows the content, design and structure of MxFLS-1 questionnaires. Additionally, MxFLS-2 contains innovative modules collecting data on child upbringing, individual expectations, seasonal preferences, altruistic behavior and risk taking.
The 2022 Philippines National Demographic and Health Survey (NDHS) was implemented by the Philippine Statistics Authority (PSA). Data collection took place from May 2 to June 22, 2022.
The primary objective of the 2022 NDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the NDHS collected information on fertility, fertility preferences, family planning practices, childhood mortality, maternal and child health, nutrition, knowledge and attitudes regarding HIV/AIDS, violence against women, child discipline, early childhood development, and other health issues.
The information collected through the NDHS is intended to assist policymakers and program managers in designing and evaluating programs and strategies for improving the health of the country’s population. The 2022 NDHS also provides indicators anchored to the attainment of the Sustainable Development Goals (SDGs) and the new Philippine Development Plan for 2023 to 2028.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, and all children aged 0-4 resident in the household.
Sample survey data [ssd]
The sampling scheme provides data representative of the country as a whole, for urban and rural areas separately, and for each of the country’s administrative regions. The sample selection methodology for the 2022 NDHS was based on a two-stage stratified sample design using the Master Sample Frame (MSF) designed and compiled by the PSA. The MSF was constructed based on the listing of households from the 2010 Census of Population and Housing and updated based on the listing of households from the 2015 Census of Population. The first stage involved a systematic selection of 1,247 primary sampling units (PSUs) distributed by province or HUC. A PSU can be a barangay, a portion of a large barangay, or two or more adjacent small barangays.
In the second stage, an equal take of either 22 or 29 sample housing units were selected from each sampled PSU using systematic random sampling. In situations where a housing unit contained one to three households, all households were interviewed. In the rare situation where a housing unit contained more than three households, no more than three households were interviewed. The survey interviewers were instructed to interview only the preselected housing units. No replacements and no changes of the preselected housing units were allowed in the implementing stage in order to prevent bias. Survey weights were calculated, added to the data file, and applied so that weighted results are representative estimates of indicators at the regional and national levels.
All women age 15–49 who were either usual residents of the selected households or visitors who stayed in the households the night before the survey were eligible to be interviewed. Among women eligible for an individual interview, one woman per household was selected for a module on women’s safety.
For further details on sample design, see APPENDIX A of the final report.
Computer Assisted Personal Interview [capi]
Two questionnaires were used for the 2022 NDHS: the Household Questionnaire and the Woman’s Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to the Philippines. Input was solicited from various stakeholders representing government agencies, academe, and international agencies. The survey protocol was reviewed by the ICF Institutional Review Board.
After all questionnaires were finalized in English, they were translated into six major languages: Tagalog, Cebuano, Ilocano, Bikol, Hiligaynon, and Waray. The Household and Woman’s Questionnaires were programmed into tablet computers to allow for computer-assisted personal interviewing (CAPI) for data collection purposes, with the capability to choose any of the languages for each questionnaire.
Processing the 2022 NDHS data began almost as soon as fieldwork started, and data security procedures were in place in accordance with confidentiality of information as provided by Philippine laws. As data collection was completed in each PSU or cluster, all electronic data files were transferred securely via SyncCloud to a server maintained by the PSA Central Office in Quezon City. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted to any inconsistencies and errors while still in the area of assignment. Timely generation of field check tables allowed for effective monitoring of fieldwork, including tracking questionnaire completion rates. Only the field teams, project managers, and NDHS supervisors in the provincial, regional, and central offices were given access to the CAPI system and the SyncCloud server.
A team of secondary editors in the PSA Central Office carried out secondary editing, which involved resolving inconsistencies and recoding “other” responses; the former was conducted during data collection, and the latter was conducted following the completion of the fieldwork. Data editing was performed using the CSPro software package. The secondary editing of the data was completed in August 2022. The final cleaning of the data set was carried out by data processing specialists from The DHS Program in September 2022.
A total of 35,470 households were selected for the 2022 NDHS sample, of which 30,621 were found to be occupied. Of the occupied households, 30,372 were successfully interviewed, yielding a response rate of 99%. In the interviewed households, 28,379 women age 15–49 were identified as eligible for individual interviews. Interviews were completed with 27,821 women, yielding a response rate of 98%.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and in data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2022 Philippines National Demographic and Health Survey (2022 NDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 NDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2022 NDHS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS using programs developed by ICF. These programs use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data Quality Tables
See details of the data quality tables in Appendix C of the final report.
This dataset includes data on 25 transitions of a matrix demographic model of the invasive species Vincetoxicum nigrum (L.) Moench (black swallow-wort or black dog-strangling vine) and Vincetoxicum rossicum (Kleopow) Barb. (pale swallow-wort or dog-strangling vine) (Apocynaceae, subfamily Asclepiadoideae), two invasive perennial vines in the northeastern U.S.A. and southeastern Canada. The matrix model was developed for projecting population growth rates as a result of changes to lower-level vital rates from biological control although the model is generalizable to any control tactic. Transitions occurred among the five life stages of seeds, seedlings, vegetative juveniles (defined as being in at least their second season of growth), small flowering plants (having 1–2 stems), and large flowering plants (having 3 or more stems). Transition values were calculated using deterministic equations and data from 20 lower-level vital rates collected from 2009-2012 from two open field and two forest understory populations of V. rossicum (43°51’N, 76°17’W; 42°48'N, 76°40'W) and two open field populations of V. nigrum (41°46’N, 73°44’W; 41°18’N, 73°58’W) in New York State. Sites varied in plant densities, soil depth, and light levels (forest populations). Detailed descriptions of vital rate data collection may be found in: Milbrath et al. 2017. Northeastern Naturalist 24(1):37-53. Five replicate sets of transition data obtained from five separate spatial regions of a particular infestation were produced for each of the six populations. Note: Added new excel file of vital rate data on 12/7/2018. Resources in this dataset:Resource Title: Matrix model transition data for Vincetoxicum species. File Name: Matrix_model_transition_data.csvResource Description: This data set includes data on 25 transitions of a matrix demographic model of two invasive Vincetoxicum species from six field and forest populations in New York State.Resource Title: Variable definitions. File Name: Matrix_model_metadata.csvResource Description: Definitions of variables including equations for each transition and definitions of the lower-level vital rates in the equationsResource Title: Vital Rate definitions. File Name: Vital_Rate.csvResource Description: Vital Rate definitions of lower-level vital rates used in transition equations - to be substituted into the Data Dictionary for full definition of each transition equation.Resource Title: Data Dictionary. File Name: Matrix_Model_transition_data_DD.csvResource Description: See Vital Rate resource for definitions of lower-level vital rates used in transition equations where noted.Resource Title: Matrix model vital rate data for Vincetoxicum species. File Name: Matrix_model_vital rate_data.csvResource Description: This data set includes data on 20 lower-level vital rates used in the calculation of transitions of a matrix demographic model of two invasive Vincetoxicum species in New York State as well as definitions of the vital rates. (File added on 12/7/2018)Resource Software Recommended: Microsoft Excel,url: https://office.microsoft.com/excel/