32 datasets found
  1. d

    Data from: Identifying Critical Life Stage Transitions for Biological...

    • catalog.data.gov
    • cloud.csiss.gmu.edu
    • +3more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Data from: Identifying Critical Life Stage Transitions for Biological Control of Long-lived Perennial Vincetoxicum Species [Dataset]. https://catalog.data.gov/dataset/data-from-identifying-critical-life-stage-transitions-for-biological-control-of-long-lived-41b5d
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Service
    Description

    This dataset includes data on 25 transitions of a matrix demographic model of the invasive species Vincetoxicum nigrum (L.) Moench (black swallow-wort or black dog-strangling vine) and Vincetoxicum rossicum (Kleopow) Barb. (pale swallow-wort or dog-strangling vine) (Apocynaceae, subfamily Asclepiadoideae), two invasive perennial vines in the northeastern U.S.A. and southeastern Canada. The matrix model was developed for projecting population growth rates as a result of changes to lower-level vital rates from biological control although the model is generalizable to any control tactic. Transitions occurred among the five life stages of seeds, seedlings, vegetative juveniles (defined as being in at least their second season of growth), small flowering plants (having 1–2 stems), and large flowering plants (having 3 or more stems). Transition values were calculated using deterministic equations and data from 20 lower-level vital rates collected from 2009-2012 from two open field and two forest understory populations of V. rossicum (43°51’N, 76°17’W; 42°48'N, 76°40'W) and two open field populations of V. nigrum (41°46’N, 73°44’W; 41°18’N, 73°58’W) in New York State. Sites varied in plant densities, soil depth, and light levels (forest populations). Detailed descriptions of vital rate data collection may be found in: Milbrath et al. 2017. Northeastern Naturalist 24(1):37-53. Five replicate sets of transition data obtained from five separate spatial regions of a particular infestation were produced for each of the six populations. Note: Added new excel file of vital rate data on 12/7/2018. Resources in this dataset:Resource Title: Matrix model transition data for Vincetoxicum species. File Name: Matrix_model_transition_data.csvResource Description: This data set includes data on 25 transitions of a matrix demographic model of two invasive Vincetoxicum species from six field and forest populations in New York State.Resource Title: Variable definitions. File Name: Matrix_model_metadata.csvResource Description: Definitions of variables including equations for each transition and definitions of the lower-level vital rates in the equationsResource Title: Vital Rate definitions. File Name: Vital_Rate.csvResource Description: Vital Rate definitions of lower-level vital rates used in transition equations - to be substituted into the Data Dictionary for full definition of each transition equation.Resource Title: Data Dictionary. File Name: Matrix_Model_transition_data_DD.csvResource Description: See Vital Rate resource for definitions of lower-level vital rates used in transition equations where noted.Resource Title: Matrix model vital rate data for Vincetoxicum species. File Name: Matrix_model_vital rate_data.csvResource Description: This data set includes data on 20 lower-level vital rates used in the calculation of transitions of a matrix demographic model of two invasive Vincetoxicum species in New York State as well as definitions of the vital rates. (File added on 12/7/2018)Resource Software Recommended: Microsoft Excel,url: https://office.microsoft.com/excel/

  2. n

    Demographic study of a tropical epiphytic orchid with stochastic simulations...

    • data.niaid.nih.gov
    • datadryad.org
    • +1more
    zip
    Updated Nov 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Haydee Borrero; Ramona Oviedo-Prieto; Julio C. Alvarez; Tamara Ticktin; Mario Cisneros; Hong Liu (2022). Demographic study of a tropical epiphytic orchid with stochastic simulations of hurricanes, herbivory, episodic recruitment, and logging [Dataset]. http://doi.org/10.5061/dryad.vhhmgqnxd
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 14, 2022
    Dataset provided by
    The Institute of Ecology and Systematics, National Herbarium of Cuba "Onaney Muñiz"
    University of Hawaiʻi at Mānoa
    Florida International University
    Authors
    Haydee Borrero; Ramona Oviedo-Prieto; Julio C. Alvarez; Tamara Ticktin; Mario Cisneros; Hong Liu
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    In a time of global change, having an understanding of the nature of biotic and abiotic factors that drive a species’ range may be the sharpest tool in the arsenal of conservation and management of threatened species. However, such information is lacking for most tropical and epiphytic species due to the complexity of life history, the roles of stochastic events, and the diversity of habitat across the span of a distribution. In this study, we conducted repeated censuses across the core and peripheral range of Trichocentrum undulatum, a threatened orchid that is found throughout the island of Cuba (species core range) and southern Florida (the northern peripheral range). We used demographic matrix modeling as well as stochastic simulations to investigate the impacts of herbivory, hurricanes, and logging (in Cuba) on projected population growth rates (? and ?s) among sites. Methods Field methods Censuses took place between 2013 and 2021. The longest census period was that of the Peripheral population with a total of nine years (2013–2021). All four populations in Cuba used in demographic modeling that were censused more than once: Core 1 site (2016–2019, four years), Core 2 site (2018–2019, two years), Core 3 (2016 and 2018 two years), and Core 4 (2018–2019, two years) (Appendix S1: Table S1). In November 2017, Hurricane Irma hit parts of Cuba and southern Florida, impacting the Peripheral population. The Core 5 population (censused on 2016 and 2018) was small (N=17) with low survival on the second census due to logging. Three additional populations in Cuba were visited only once, Core 6, Core 7, and Core 8 (Table 1). Sites with one census or with a small sample size (Core 5) were not included in the life history and matrix model analyses of this paper due to the lack of population transition information, but they were included in the analysis on the correlation between herbivory and fruit rate, as well as the use of mortality observations from logging for modeling. All Cuban sites were located between Western and Central Cuba, spanning four provinces: Mayabeque (Core 1), Pinar del Rio (Core 2 and Core 6), Matanzas (Core 3 and Core 5), and Sancti Spiritus (Core 4, Core 7, Core 8). At each population of T. undulatum presented in this study, individuals were studied within ~1-km strips where T. undulatum occurrence was deemed representative of the site, mostly occurring along informal forest trails. Once an individual of T. undulatum was located, all trees within a 5-m radius were searched for additional individuals. Since tagging was not permitted, we used a combination of information to track individual plants for the repeated censuses. These include the host species, height of the orchid, DBH of the host tree, and hand-drawn maps. Individual plants were also marked by GPS at the Everglades Peripheral site. If a host tree was found bearing more than one T. undulatum, then we systematically recorded the orchids in order from the lowest to highest as well as used the previous years’ observations in future censuses for individualized notes and size records. We recorded plant size and reproductive variables during each census including: the number of leaves, length of the longest leaf (cm), number of inflorescence stalks, number of flowers, and the number of mature fruits. We also noted any presence of herbivory, such as signs of being bored by M. miamensis, and whether an inflorescence was partially or completely affected by the fly, and whether there was other herbivory, such as D. boisduvalii on leaves. We used logistic regression analysis to examine the effects of year (at the Peripheral site) and sites (all sites) on the presence or absence of inflorescence herbivory at all the sites. Cross tabulation and chi-square analysis were done to examine the associations between whether a plant was able to fruit and the presence of floral herbivory by M. miamensis. The herbivory was scored as either complete or partial. During the orchid population scouting expeditions, we came across a small population in the Matanzas province (Core 5, within 10 km of the Core 3 site) and recorded the demographic information. Although the sampled population was small (N = 17), we were able to observe logging impacts at the site and recorded logging-associated mortality on the subsequent return to the site. Matrix modeling Definition of size-stage classes To assess the life stage transitions and population structures for each plant for each population’s census period we first defined the stage classes for the species. The categorization for each plant’s stage class depended on both its size and reproductive capabilities, a method deemed appropriate for plants (Lefkovitch 1965, Cochran and Ellner 1992). A size index score was calculated for each plant by taking the total number of observed leaves and adding the length of the longest leaf, an indication of accumulated biomass (Borrero et al. 2016). The smallest plant size that attempted to produce an inflorescence is considered the minimum size for an adult plant. Plants were classified by stage based on their size index and flowering capacity as the following: (1) seedlings (or new recruits), i.e., new and small plants with a size index score of less than 6, (2) juveniles, i.e., plants with a size index score of less than 15 with no observed history of flowering, (3) adults, plants with size index scores of 15 or greater. Adult plants of this size or larger are capable of flowering but may not produce an inflorescence in a given year. The orchid’s population matrix models were constructed based on these stages. In general, orchid seedlings are notoriously difficult to observe and easily overlooked in the field due to the small size of protocorms. A newly found juvenile on a subsequent site visit (not the first year) may therefore be considered having previously been a seedling in the preceding year. In this study, we use the discovered “seedlings” as indicatory of recruitment for the populations. Adult plants are able to shrink or transition into the smaller juvenile stage class, but a juvenile cannot shrink to the seedling stage. Matrix elements and population vital rates calculations Annual transition probabilities for every stage class were calculated. A total of 16 site- and year-specific matrices were constructed. When seedling or juvenile sample sizes were < 9, the transitions were estimated using the nearest year or site matrix elements as a proxy. Due to the length of the study and variety of vegetation types with a generally large population size at each site, transition substitutions were made with the average stage transition from all years at the site as priors. If the sample size of the averaged stage was still too small, the averaged transition from a different population located at the same vegetation type was used. We avoided using transition values from populations found in different vegetation types to conserve potential environmental differences. A total of 20% (27/135) of the matrix elements were estimated in this fashion, the majority being seedling stage transitions (19/27) and noted in the Appendices alongside population size (Appendix S1: Table S1). The fertility element transitions from reproductive adults to seedlings were calculated as the number of seedlings produced (and that survived to the census) per adult plant. Deterministic modeling analysis We used integral projection models (IPM) to project the long-term population growth rates for each time period and population. The finite population growth rate (?), stochastic long-term growth rate (?s), and the elasticity were projected for each matrices using R Popbio Package 2.4.4 (Stubben and Milligan 2007, Caswell 2001). The elasticity matrices were summarized by placing each element into one of three categories: fecundity (transition from reproductive adults to seedling stage), growth (all transitions to new and more advanced stage, excluding the fecundity), and stasis (plants that transitioned into the same or a less advanced stage on subsequent census) (Liu et al. 2005). Life table response experiments (LTREs) were conducted to identify the stage transitions that had the greatest effects on observed differences in population growth between select sites and years (i.e., pre-post hurricane impact and site comparisons of same vegetation type). Due to the frequent disturbances that epiphytes in general experience as well as our species’ distribution in hurricane-prone areas, we ran transient dynamic models that assume that the populations censused were not at stable stage distributions (Stott et al. 2011). We calculated three indices for short-term transient dynamics to capture the variation during a 15-year transition period: reactivity, maximum amplification, and amplified inertia. Reactivity measures a population’s growth in a single measured timestep relative to the stable-stage growth, during the simulated transition period. Maximum amplification and amplified inertia are the maximum of future population density and the maximum long-term population density, respectively, relative to a stable-stage population that began at the same initial density (Stott et al. 2011). For these analyses, we used a mean matrix for Core 1, Core 2 Core 3, and Core 4 sites and the population structure of their last census. For the Peripheral site, we averaged the last three matrices post-hurricane disturbance and used the most-recent population structure. We standardized the indices across sites with the assumption of initial population density equal to 1 (Stott et al. 2011). Analysis was done using R Popdemo version 1.3-0 (Stott et al. 2012b). Stochastic simulation We created matrices to simulate the effects of episodic recruitment, hurricane impacts, herbivory, and logging (Appendix S1: Table S2). The Peripheral population is the longest-running site with nine years of censuses (eight

  3. Population change - Demographic balance and crude rates at regional level...

    • data.europa.eu
    csv, html, tsv, xml
    Updated Jun 14, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2016). Population change - Demographic balance and crude rates at regional level (NUTS 3) [Dataset]. https://data.europa.eu/data/datasets/2rdmqgh9gyi5gkrl7zccg?locale=en
    Explore at:
    tsv(982299), csv(2413343), html, xml(1785192), xmlAvailable download formats
    Dataset updated
    Jun 14, 2016
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Population change - Demographic balance and crude rates at regional level (NUTS 3)

  4. World: annual birth rate, death rate, and rate of natural population change...

    • statista.com
    • ai-chatbox.pro
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). World: annual birth rate, death rate, and rate of natural population change 1950-2100 [Dataset]. https://www.statista.com/statistics/805069/death-rate-worldwide/
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The COVID-19 pandemic increased the global death rate, reaching *** in 2021, but had little to no significant impact on birth rates, causing population growth to dip slightly. On a global level, population growth is determined by the difference between the birth and death rates, known as the rate of natural change. On a national or regional level, migration also affects population change. Ongoing trends Since the middle of the 20th century, the global birth rate has been well above the global death rate; however, the gap between these figures has grown closer in recent years. The death rate is projected to overtake the birth rate in the 2080s, which means that the world's population will then go into decline. In the future, death rates will increase due to ageing populations across the world and a plateau in life expectancy. Why does this change? There are many reasons for the decline in death and birth rates in recent decades. Falling death rates have been driven by a reduction in infant and child mortality, as well as increased life expectancy. Falling birth rates were also driven by the reduction in child mortality, whereby mothers would have fewer children as survival rates rose - other factors include the drop in child marriage, improved contraception access and efficacy, and women choosing to have children later in life.

  5. t

    Population change - Demographic balance and crude rates at regional level...

    • service.tib.eu
    Updated Jan 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Population change - Demographic balance and crude rates at regional level (NUTS 3) - Vdataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/eurostat_2rdmqgh9gyi5gkrl7zccg
    Explore at:
    Dataset updated
    Jan 8, 2025
    Description

    Population change - Demographic balance and crude rates at regional level (NUTS 3)

  6. g

    Population change - Demographic balance and crude rates at regional level...

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Population change - Demographic balance and crude rates at regional level (NUTS 3) | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_2rdmqgh9gyi5gkrl7zccg
    Explore at:
    Description

    🇪🇺 European Union

  7. f

    Prevalence and patterns of multi-morbidity among 30-69 years old population...

    • figshare.com
    xls
    Updated Sep 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rohini; Panniyammakal Jeemon (2020). Prevalence and patterns of multi-morbidity among 30-69 years old population of rural Pathanamthitta, a district of Kerala, India: A cross-sectional study [Dataset]. http://doi.org/10.6084/m9.figshare.12494681.v4
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Sep 29, 2020
    Dataset provided by
    figshare
    Authors
    Rohini; Panniyammakal Jeemon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pathanamthitta, Kerala
    Description

    Data set of a community based cross-sectional survey done to find the prevalence , its correlates and patterns in a population of a district in southern Kerala, IndiaBackground: Multi-morbidity is the coexistence of multiple chronic conditions in the same individual. With advancing epidemiological and demographic transitions, the burden of multi-morbidity is expected to increase India. The state of Kerala in India is also in an advanced phase of epidemiological transition. However, very limited data on prevalence of multi-morbidity are available in the Kerala population.

    Methods: A cross sectional survey was conducted among 410 participants in the age group of 30-69 years. A multi-stage cluster sampling method was employed to identify the study participants. Every eligible participant in the household were interviewed to assess the household prevalence. A structured interview schedule was used to assess socio-demographic variables, behavioral risk factors and prevailing clinical conditions, PHQ-9 questionnaire for screening of depression and active measurement of blood sugar and blood pressure. Co-existence of two or more conditions out of 11 was used as multi-morbidity case definition. Bivariate analyses were done to understand the association between socio-demographic factors and multi-morbidity. Logistic regression analyses were performed to estimate the effect size of these variables on multi-morbidity.

    Results: Overall, the prevalence of multi-morbidity was 45.4% (95% CI: 40.5-50.3%). Nearly a quarter of study participants (25.4%) reported only one chronic condition (21.3-29.9%). Further, 30.7% (26.3-35.5), 10.7% (7.9-14.2), 3.7% (2.1-6.0) and 0.2% reported two, three, four and five chronic conditions, respectively. Nearly seven out of ten households (72%, 95%CI: 65-78%) had at least one person in the household with multi-morbidity and one in five households (22%, 95%CI: 16.7-28.9%) had more than one person with multi-morbidity. With every year increase in age, the propensity for multi-morbidity increased by 10 percent (OR=1.1; 95% CI: 1.1-1.2). Males and participants with low levels of education were less likely to suffer from multi-morbidity while unemployed and who do recommended level of physical activity were significantly more likely to suffer from multi-morbidity. Diabetes and hypertension was the most frequent dyad.

    Conclusion: One of two participants in the productive age group of 30-69 years report multi-morbidity. Further, seven of ten households have at least one person with multi-morbidity. Preventive and management guidelines for chronic non-communicable conditions should focus on multi-morbidity especially in the older age group. Health-care systems that function within the limits of vertical disease management and episodic care (e.g., maternal health, tuberculosis, malaria, cardiovascular disease, mental health etc.) require optimal re-organization and horizontal integration of care across disease domains in managing people with multiple chronic conditions.

    Key words: Multi-morbidity, cross-sectional, household, active measurement, rural, India, pattern

  8. Fertility rate of the BRICS countries 2022

    • ai-chatbox.pro
    • statista.com
    Updated Feb 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Fertility rate of the BRICS countries 2022 [Dataset]. https://www.ai-chatbox.pro/?_=%2Fstatistics%2F741645%2Ffertility-rate-of-the-bric-countries%2F%23XgboD02vawLYpGJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Feb 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India, Russia, Brazil, South Africa
    Description

    While the BRICS countries are grouped together in terms of economic development, demographic progress varies across these five countries. In 2019, India and South Africa were the only BRICS countries with a fertility rate above replacement level (2.1 births per woman). Fertility rates since 2000 show that fertility in China and Russia has either fluctuated or remained fairly steady, as these two countries are at a later stage of the demographic transition than the other three, while Brazil has reached this stage more recently. Fertility rates in India are following a similar trend to Brazil, while South Africa's rate is progressing at a much slower pace. Demographic development is inextricably linked with economic growth; for example, as fertility rates drop, female participation in the workforce increases, as does the average age, which then leads to higher productivity and a more profitable domestic market.

  9. Data from: Demographic stimulation of the obligate understorey herb, Panax...

    • zenodo.org
    • data.niaid.nih.gov
    • +2more
    bin
    Updated May 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jennifer L. Chandler; James B. McGraw; Jennifer L. Chandler; James B. McGraw (2022). Data from: Demographic stimulation of the obligate understorey herb, Panax quinquefolius L., in response to natural forest canopy disturbances [Dataset]. http://doi.org/10.5061/dryad.562bg
    Explore at:
    binAvailable download formats
    Dataset updated
    May 30, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jennifer L. Chandler; James B. McGraw; Jennifer L. Chandler; James B. McGraw
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    1.Natural and anthropogenic forest canopy disturbances significantly alter forest dynamics and lead to multi-dimensional shifts in the forest understorey. An understorey plant's ability to exploit alterations to the light environment caused by canopy disturbance leads to changes in population dynamics. The purpose of this work was to determine if population growth of a species adapted to low light increases in response to additional light inputs caused by canopy disturbance, or alternatively, declines due to long-term selection under low light conditions. 2.To address this question, we quantified the demographic response of an understorey herb to three contrasting forest canopy disturbances (ice storms, tent caterpillar defoliation and lightning strikes) that encompass a broad range of disturbance severity. We used a model shade-adapted understorey species, Panax quinquefolius, to parameterize stage-based matrix models. Asymptotic growth rates, stochastic growth rates and simulations of transient dynamics were used to quantify the population-level response to canopy disturbance. Life table response experiments were used to partition the underlying controls over differences in population growth rates. 3.Population growth rates at all three disturbed sites increased in the transition period immediately after the canopy disturbance relative to the transition period prior to disturbance. Stochastic population models revealed that growth rates increased significantly in simulations that included disturbance matrices relative to those simulations that excluded disturbance. Additionally, transient models indicated that population size (n) was larger for all three populations when the respective disturbance matrix was included in the model. 4.Synthesis Obligate shade species are most likely to be pre-adapted to take advantage of canopy gaps and light influx to a degree, and this pre-adaptation may be due to long-term selection under dynamic old growth forest canopies. We propose a model whereby population performance is represented by a parabolic curve where performance is maximized under intermediate levels of canopy disturbance. This study provides new evidence to aid our understanding of the population-level response of understorey herbs to disturbances whose frequency and intensity are predicted to increase as global climates continue to shift.

  10. Demography of American black bears (Ursus americanus) in a semiarid...

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Jan 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brenden M. Orocu; Cambria Armstrong; Janene Auger; Hal L. Black; Randy T. Larsen; Brock R. McMillan; Mark C. Belk (2025). Demography of American black bears (Ursus americanus) in a semiarid environment [Dataset]. http://doi.org/10.5061/dryad.98sf7m0t8
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 2, 2025
    Dataset provided by
    Brigham Young University
    Authors
    Brenden M. Orocu; Cambria Armstrong; Janene Auger; Hal L. Black; Randy T. Larsen; Brock R. McMillan; Mark C. Belk
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    United States
    Description

    The American black bear (Ursus americanus) has one of the broadest geographic distributions of any mammalian carnivore in North America. Populations occur from high to low elevations and from mesic to arid environments, and their demographic traits have been documented in a wide variety of environments. However, the demography of American black bears in semiarid environments, which comprise a significant portion of the geographic range, is poorly documented. To fill this gap in understanding, we used data from a long-term mark-recapture study of black bears in the semiarid environment of eastern Utah, USA. Cub and yearling survival were low and adult survival was high relative to other populations. Adult life stages had the highest reproductive value, comprised the largest proportion of the population, and exhibited the highest elasticity contribution to the population growth rate (i.e., λ). Vital rates of black bears in this semiarid environment are skewed toward higher survival of adults, and lower survival of cubs compared to other populations. Methods Mark-Recapture study We estimated survival rates from long-term mark-recapture data gathered as part of a 27-year study on American black bears of the East Tavaputs Plateau. During the first 12 years of the study (June to August 1991-2003) female bears were captured and radio-collared, and all bears were tagged in the ear, except for cubs and yearlings. For the entire study (1992 – 2019), collared females were visited in their dens annually during their winter hibernation to count newborn cubs and surviving yearlings. Age of individual bears was determined by 2 methods: (1) direct observation of cubs or yearlings (i.e., year of birth was known) or (2) cementum annuli analysis of a cross-section of the root of an extracted premolar (Palochak, 2004; Willey, 1974). The data we used to derive survival and fecundity rates consisted of the ID_number, cohort (cub, yearling, subadult, prime-aged adult, and old adult), age in years, sex (female, male, unknown), number of cubs, number of yearlings, first observation of individual, last observation of individual, days from last observation, and survival status. We did not include subadult and adult male bears in the analysis. Survival rates To determine the average survival rates for each life stage, we used a Cox proportional hazards model in program R (Team, 2022). This model accommodates staggered entries, where individuals enter the study at different times, and censoring, where the event of interest (e.g., mortality) is not observed for all individuals due to the inability to follow-up or the study ending before the event occurs. These features allow for a more accurate representation of survival over time, even with incomplete data (Cox, 1972). The Cox model is a semi-parametric approach that examines how covariates, such as age and environmental factors, influence the risk of death at any given point in time. Unlike fully parametric models, which require defining the baseline hazard function (the risk of death when all covariates are at baseline levels), the Cox model does not require this step, making it highly flexible and suitable for diverse data and applications (Zhang, 2016). The hazard function in this context refers to the rate or likelihood of an event (e.g., death) occurring at a specific moment, given that the individual has survived up to that time. The Cox model is expressed as follows: h(t|X) = h0(t) exp(β1X1 + β2X2 +...+ βpXp) where h(t|X) is the hazard function at time t given covariates X, h0(t) is the baseline hazard function β1, β2, …, βp are the coefficients for the predictor variables X1, X2, …, Xp. The model assumes proportional hazards, meaning the relative risk of death (the hazard ratio) between two groups remains constant over time (Zhang, 2016). The advantage of the Cox model is its ability to handle censored data, common in survival analysis. Censoring occurs when some individuals have not experienced mortality by the end of the study, so we only know that they survived up to that point. Moreover, the Cox model can incorporate time-dependent covariates, enabling a dynamic analysis of how risk factors influence survival over time (Therneau & Grambsch, 2000). For our analysis, we formulated four Cox proportional hazards models as follows: 1) constant survival, 2) a model with the effect of maternal age, 3) a model with the effect of cohort, and 4) a model with the combined effect of age and cohort. We compared these models using Akaike’s Information Criterion (AIC) to identify the best fit and then evaluate the effect sizes of covariates based on the β coefficients from the top-performing model (Burnham et al., 2011; Symonds & Moussalli, 2011). When there was uncertainty in model selection, we used model averaging to estimate effect sizes and β coefficients. Each model was also checked for uninformative parameters (Arnold, 2010). We reviewed the model summaries to assess the estimated effects of covariates (constant survival, maternal age, cohort, and the combination of age and cohort) on survival outcomes. Fecundity rates To determine fecundity rates, we used females monitored through the use of radio-collars. All females that were ≥ four years old were counted in the breeding pool. We removed any female ≥ 25 years of age from the breeding pool (Noyce, 2010). We classified old adults as ≥ 15 years old and prime-aged adults as 4-14 years of age. We visited dens of females to observe whether they were alone or accompanied by cubs or yearlings as well as the sexes of their offspring. At the height of the study, we had 15 prime-aged adult females, along with a few old-adult females. There was variation in the number of adult females and old-adult females throughout the study period and we had at least two old-adult females in each year for 12 years during the study. Matrix Transition Model and Analysis We developed a transition matrix model based on adult females and their offspring to estimate population growth and additional demographic parameters. In the model, we assumed every cub was born on January 1st and survived through the full year if they were alive through the 15th of October. We assumed density of males does not affect breeding success (Lewis et al., 2014). We divided the population into five age-based stages: cub (0–1 year-old); yearling (1–2 years old), subadult (2–4 years old), prime-aged adult (4–14 years old), and old adult (15+). We used the term sm to indicate the probability of surviving and transitioning to a new stage (matrix sub diagonal), and the term ss indicated the probability of surviving and staying in the same stage (matrix diagonal). We used f to indicate fecundity or reproduction (matrix upper right corner; Fig. 1A, 1B). We used the software Unified Life Models (ULM; (Legendre & Clobert, 1995) to evaluate the matrix model and to calculate population growth rate, stable age distribution, reproductive value, and sensitivity and elasticity matrices. We summed elasticity values across all stages for the three demographic processes: fecundity (f), growth (sm, transition from one age stage to another), and stasis (ss, survival without transitioning). Our matrix transition model differed from the matrix transition model generated by Beston (2011), which used nine life stages. To ensure an accurate comparison between the two models, we combined the nine life stages from the matrix transition model in the meta-analysis (Beston, 2011) into five broader stages: cub, yearling, subadult, adult, and old adult. We selected five life stages due to the assumption that age might influence reproductive output, a pattern supported by research on other mammals (Hilderbrand et al., 2019; Nussey et al., 2008; Promislow & Harvey, 1990).

  11. w

    Sahel Women Empowerment and Demographic Dividend Initiative 2018 - Burkina...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Jun 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harounan Kazianga (2024). Sahel Women Empowerment and Demographic Dividend Initiative 2018 - Burkina Faso [Dataset]. https://microdata.worldbank.org/index.php/catalog/6255
    Explore at:
    Dataset updated
    Jun 6, 2024
    Dataset provided by
    Omer Combary
    Harounan Kazianga
    Time period covered
    2018
    Area covered
    Burkina Faso
    Description

    Abstract

    The Sahel Women Empowerment and Demographic Dividend (P150080) project in Burkina Faso focuses on advancing women's empowerment to spur demographic transition and mitigate gender disparities. This project seeks to empower young women by promoting entrepreneurship through business skills training and grants, and by enhancing access to reproductive health information and contraception, thereby aiming to lower fertility rates.

    The World Bank Africa Gender Innovation Lab, along with its partners, is conducting detailed impact evaluations of the SWEDD program’s key initiatives to gauge their effects on child marriage, fertility, and the empowerment of adolescent girls and young women.

    This data represents the first round of data collection (baseline) for the impact evaluation and include a household and community level surveys. The household level sample comprises 9857 households, 70,169 individuals and 9382 adolescent girls and young wives aged 24 living in the Boucle du Mouhoun and the East regions of Burkina Faso. The community level sample includes 175 villages.

    The insights derived from this survey could help policymakers develop strategies to: - Reduce fertility and child marriage by enhancing access to contraceptives and broadening reproductive health education. - Promote women’s empowerment by increasing their participation in economic activities

    This data is valuable for planners who focus on improving living standards, particularly for women. The Ministry of Women, National Solidarity, Family, and Humanitarian Action of Burkina Faso, along with District Authorities, Research Institutions, NGOs, and the general public, stand to benefit from this survey data.

    Geographic coverage

    Burkina Faso, Regions of Boucle du Mouhoun and East

    Analysis unit

    The unit of analysis is adolescent girls for the adolescent survey and households for the household survey.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    We randomly selected 200 villages from the 11 provinces in the two regions of the Boucle du Mouhoun and the East. The 200 villages were selected proportionally, based on the formula (Np/N)*200, where Np represents the number of eligible villages in the province and N the total number of eligible villages. 25 villages were later dropped because of lack of safety.

    A census was first administered in each village to identify eligible girls and young wives, as well as households with these eligible individuals. All households with at least one eligible person then constituted the universe from which the survey sample was drawn. In total 9857 households and 9382 girls and young wives were sampled. A village-level questionnaire was also administered.

    The objective of the baseline survey was to build a comprehensive dataset, which would serve as a reference point for the entire sample, before treatment and control assignment and program implementation.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    The data consists of responses from households to questions pertaining to: 1. List of household members 2. Education of household members 3. Occupations of household members 4. Characteristics of housing and durable goods 5. Food security 6. Household head's aspirations, as well as those of a boy aged 12 to 24 7. Opinions on women's empowerment and gender equality

    The questionnaire administrated to girls contains the following sections: 1. Education 2. Marriage and children 3. Aspirations 4. Health and family planning 5. Knowledge of HIV/AIDS 6. Women's empowerment 7. Gender-based violence 8. Income-generating activities 9. Savings and credit 10. Personal relationships and social networks 11. Committee members and community participation

    The questionnaire administered at the village-level contains the following sections: 1. Social norms (marriage norms) 2. Ethnic and religious compositions 3. Economic infrastructures (markets and roads) 4. Social services a. Health b. Education

    The household questionnaire was administered to the head of the household or to an authorized person capable of answering questions about all individuals in the household. The adolescent questionnaire was administered to each eligible pre-selected individual within the household. Considering the modules of the adolescent questionnaire, it was only administered by female enumerators. The village-level questionnaire was administered to a group of three to five village leaders with enough knowledge of the village. The enumerators were instructed to include women in this group whenever possible. The questionnaires were written in French, translated into the local languages, and programmed on tablets in French using the CAPI program.

    Cleaning operations

    Data was anonymized through decoding and local suppression.

  12. i

    Life in Transition Survey 2006 - ECA Region

    • dev.ihsn.org
    • datacatalog.ihsn.org
    • +2more
    Updated Apr 25, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Synovate (2019). Life in Transition Survey 2006 - ECA Region [Dataset]. https://dev.ihsn.org/nada/catalog/study/ECA_2006_LITS_v01_M
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset authored and provided by
    Synovate
    Time period covered
    2006
    Area covered
    ECA Region
    Description

    Abstract

    The transition from socialism to a market economy has transformed the lives of many people. What are people's perceptions and attitudes to transition? What are the current attitudes to market reforms and political institutions?

    To analyze these issues, the EBRD and the World Bank have jointly conducted the comprehensive, region-wide "Life in Transition Survey" (LiTS), which combines traditional household survey features with questions about respondents' attitudes and is carried out through two-stage sampling with a random selection of households and respondents.

    The LiTS assesses the impact of transition on people through their personal and professional experiences during the first 15 years of transition. LiTS attempts to understand how these personal experiences of transition relate to people’s attitudes toward market and political reforms, as well as their priorities for the future.

    The main objective of the LiTS was to build on existing studies to provide a comprehensive assessment of relationships among life satisfaction and living standards, poverty and inequality, trust in state institutions, satisfaction with public services, attitudes to a market economy and democracy and to provide valuable insights into how transition has affected the lives of people across a region comprising 16 countries in Central and Eastern Europe (“CEE”) and 11 in the Commonwealth of Independent State (“CIS”). Turkey and Mongolia were also included in the survey.

    Geographic coverage

    The LITS was to be implemented in the following 29 countries: Albania, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Estonia, Former Yugoslav Republic of Macedonia (FYROM), Georgia, Hungary, Kazakhstan, Kyrgyz Republic, Latvia, Lithuania, Moldova, Mongolia, Poland, Romania, Russia, Serbia and Montenegro, Slovak Republic, Slovenia, Tajikistan, Turkey, Turkmenistan, Ukraine and Uzbekistan.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A total of 1,000 face-to-face household interviews per country were to be conducted, with adult (18 years and over) occupants and with no upper limit for age. The sample was to be nationally representative. The EBRD’s preferred procedure was a two stage sampling method, with census enumeration areas (CEA) as primary sampling units and households as secondary sampling units. To the extent possible, the EBRD wished the sampling procedure to apply no more than 2 stages.

    The first stage of selection was to use as a sampling frame the list of CEA's generated by the most recent census. Ideally, 50 primary sampling units (PSU's) were to be selected from that sample frame, with probability proportional to size (PPS), using as a measure of size either the population, or the number of households.

    The second sampling stage was to select households within each of the primary sampling units, using as a sampling frame a specially developed list of all households in each of the selected PSU's defined above. Households to be interviewed were to be selected from that list by systematic, equal probability sampling. Twenty households were to be selected in each of the 50 PSU's.

    The individuals to be interviewed in each household were to be selected at random, within each of the selected households, with no substitution if possible.

    ESTABLISHMENT OF THE SAMPLE FRAME OF PSU’s

    In each country we established the most recent sample frame of PSU’s which would best serve the purposes of the LITS sampling methodology. Details of the PSU sample frames in each country are shown in table 1 (page 10) of the survey report.

    In the cases of Armenia, Azerbaijan, Kazakhstan, Serbia and Uzbekistan, CEA’s were used. In Croatia we also used CEA’s but in this case, because the CEA’s were very small and we would not have been able to complete the targeted number of interviews within each PSU, we merged together adjoining CEA’s and constructed a sample of 1,732 Merged Enumeration Areas. The same was the case in Montenegro.

    In Estonia, Hungary, Lithuania, Poland and the Slovak Republic we used Eurostat’s NUTS area classification system.

    [NOTE: The NUTS (from the French "Nomenclature des territoriales statistiques" or in English ("Nomenclature of territorial units for statistics"), is a uniform and consistent system that runs on five different NUTS levels and is widely used for EU surveys including the Eurobarometer (a comparable survey to the Life in Transition). As a hierarchical system, NUTS subdivides the territory of the country into a defined number of regions on NUTS 1 level (population 3-7 million), NUTS 2 level (800,000-3 million) and NUTS 3 level (150,000-800,000). At a more detailed level NUTS 3 is subdivided into smaller units (districts and municipalities). These are called "Local Administrative Units" (LAU). The LAU is further divided into upper LAU (LAU1 - formerly NUTS 4) and LAU 2 (formerly NUTS 5).]

    Albania, Bulgaria, the Czech Republic, Georgia, Moldova and Romania used the electoral register as the basis for the PSU sample frame. In the other cases, the PSU sample frame was chosen using either local geographical or administrative and territorial classification systems. The total number of PSU sample frames per country varied from 182 in the case of Mongolia to over 48,000 in the case of Turkey. To ensure the safety of our fieldworkers, we excluded from the sample frame PSU’s territories (in countries such as Georgia, Azerbaijan, Moldova, Russia, etc) in which there was conflict and political instability. We have also excluded areas which were not easily accessible due to their terrain or were sparsely populated.

    In the majority of cases, the source for this information was the national statistical body for the country in question, or the relevant central electoral committee. In establishing the sample frames and to the extent possible, we tried to maintain a uniform measure of size namely, the population aged 18 years and over which was of more pertinence to the LITS methodology. Where the PSU was based on CEA’s, the measure was usually the total population, whereas the electoral register provided data on the population aged 18 years old and above, the normal voting age in all sampled countries. Although the NUTS classification provided data on the total population, we filtered, where possible, the information and used as a measure of size the population aged 18 and above. The other classification systems used usually measure the total population of a country. However, in the case of Azerbaijan, which used CEA’s, and Slovenia, where a classification system based on administrative and territorial areas was employed, the measure of size was the number of households in each PSU.

    The accuracy of the PSU information was dependent, to a large extent, on how recently the data has been collected. Where the data were collected recently then the information could be considered as relatively accurate. However, in some countries we believed that more recent information was available, but because the relevant authorities were not prepared to share this with us citing secrecy reasons, we had no alternative than to use less up to date data. In some countries the age of the data available makes the figures less certain. An obvious case in point is Bosnia and Herzegovina, where the latest available figures date back to 1991, before the Balkan wars. The population figures available take no account of the casualties suffered among the civilian population, resulting displacement and subsequent migration of people.

    Equally there have been cases where countries have experienced economic migration in recent years, as in the case of those countries that acceded to the European Union in May, 2004, such as Hungary, Poland and the Baltic states, or to other countries within the region e.g. Armenians to Russia, Albanians to Greece and Italy; the available figures may not accurately reflect this. And, as most economic migrants tend to be men, the actual proportion of females in a population was, in many cases, higher than the available statistics would suggest. People migration in recent years has also occurred from rural to urban areas in Albania and the majority of the Asian Republics, as well as in Mongolia on a continuous basis but in this case, because of the nomadic population of the country.

    SAMPLING METHODOLOGY

    Brief Overview

    In broad terms the following sampling methodology was employed: · From the sample frame of PSU’s we selected 50 units · Within each selected PSU, we sampled 20 households, resulting in 1,000 interviews per country · Within each household we sampled 1 and sometimes 2 respondents The sampling procedures were designed to leave no free choice to the interviewers. Details on each of the above steps as well as country specific procedures adapted to suit the availability, depth and quality of the PSU information and local operational issues are described in the following sections.

    Selection of PSU’s

    The PSU’s of each country (all in electronic format) were sorted first into metropolitan, urban and rural areas (in that order), and within each of these categories by region/oblast/province in alphabetical order. This ensured a consistent sorting methodology across all countries and also that the randomness of the selection process could be supervised.

    To select the 50 PSU’s from the sample frame of PSU’s, we employed implicit stratification and sampling was done with PPS. Implicit stratification ensured that the sample of PSU’s was spread across the primary categories of explicit variables and a better representation of the population, without actually stratifying the PSU’s thus, avoiding difficulties in calculating the sampling errors at a later stage. In brief, the PPS involved the

  13. d

    Data from: Demographic consequences of greater clonal than sexual...

    • search.dataone.org
    • data.niaid.nih.gov
    • +2more
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chia-Hua Lin; Maria N. Miriti; Karen Goodell (2025). Demographic consequences of greater clonal than sexual reproduction in Dicentra canadensis [Dataset]. http://doi.org/10.5061/dryad.j21v2
    Explore at:
    Dataset updated
    Apr 1, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Chia-Hua Lin; Maria N. Miriti; Karen Goodell
    Time period covered
    Apr 20, 2017
    Description

    Clonality is a widespread life history trait in flowering plants that may be essential for population persistence, especially in environments where sexual reproduction is unpredictable. Frequent clonal reproduction, however, could hinder sexual reproduction by spatially aggregating ramets that compete with seedlings and reduce inter-genet pollination. Nevertheless, the role of clonality in relation to variable sexual reproduction in population dynamics is often overlooked. We combined population matrix models and pollination experiments to compare the demographic contributions of clonal and sexual reproduction in three Dicentra canadensis populations, one in a well-forested landscape and two in isolated forest remnants. We constructed stage-based transition matrices from 3 years of census data to evaluate annual population growth rates, λ. We used loop analysis to evaluate the relative contribution of different reproductive pathways to λ. Despite strong temporal and spatial variation in...

  14. n

    Date From: The myriad of complex demographic responses of terrestrial...

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Mar 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maria Paniw; Tamora James; C. Ruth Archer; Gesa Römer; Sam Levin; Aldo Compagnoni; Judy Che-Castaldo; Joanne Bennett; Andrew Mooney; Dylan Childs; Arpat Ozgul; Owen Jones; Jean Burns; Andrew Beckerman; Abir Patwari; Nora Sanchez-Gassen; Tiffany Knight; Roberto Salguero-Gómez (2021). Date From: The myriad of complex demographic responses of terrestrial mammals to climate change and gaps of knowledge: A global analysis [Dataset]. http://doi.org/10.5061/dryad.hmgqnk9g7
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 3, 2021
    Dataset provided by
    Centre for Research on Ecology and Forestry Applications
    University of Southern Denmark
    German Centre for Integrative Biodiversity Research
    Universität Ulm
    Lincoln Zoo
    Case Western Reserve University
    University of Oxford
    University of Zurich
    Trinity College Dublin
    University of Canberra
    Nordregio
    University of Sheffield
    Authors
    Maria Paniw; Tamora James; C. Ruth Archer; Gesa Römer; Sam Levin; Aldo Compagnoni; Judy Che-Castaldo; Joanne Bennett; Andrew Mooney; Dylan Childs; Arpat Ozgul; Owen Jones; Jean Burns; Andrew Beckerman; Abir Patwari; Nora Sanchez-Gassen; Tiffany Knight; Roberto Salguero-Gómez
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Approximately 25% of mammals are currently threatened with extinction, a risk that is amplified under climate change. Species persistence under climate change is determined by the combined effects of climatic factors on multiple demographic rates (survival, development, reproduction), and hence, population dynamics. Thus, to quantify which species and regions on Earth are most vulnerable to climate-driven extinction, a global understanding of how different demographic rates respond to climate is urgently needed. Here, we perform a systematic review of literature on demographic responses to climate, focusing on terrestrial mammals, for which extensive demographic data are available. To assess the full spectrum of responses, we synthesize information from studies that quantitatively link climate to multiple demographic rates. We find only 106 such studies, corresponding to 87 mammal species. These 87 species constitute < 1% of all terrestrial mammals. Our synthesis reveals a strong mismatch between the locations of demographic studies and the regions and taxa currently recognized as most vulnerable to climate change. Surprisingly, for most mammals and regions sensitive to climate change, holistic demographic responses to climate remain unknown. At the same time, we reveal that filling this knowledge gap is critical as the effects of climate change will operate via complex demographic mechanisms: a vast majority of mammal populations display projected increases in some demographic rates but declines in others, often depending on the specific environmental context, complicating simple projections of population fates. Assessments of population viability under climate change are in critical need to gather data that account for multiple demographic responses, and coordinated actions to assess demography holistically should be prioritized for mammals and other taxa.

    Methods For each mammal species i with available life-history information, we searched SCOPUS for studies (published before 2018) where the title, abstract, or keywords contained the following search terms:

    Scientific species namei AND (demograph* OR population OR life-history OR "life history" OR model) AND (climat* OR precipitation OR rain* OR temperature OR weather) AND (surv* OR reprod* OR recruit* OR brood OR breed* OR mass OR weight OR size OR grow* OR offspring OR litter OR lambda OR birth OR mortality OR body OR hatch* OR fledg* OR productiv* OR age OR inherit* OR sex OR nest* OR fecund* OR progression OR pregnan* OR newborn OR longevity).

    We used the R package taxize (Chamberlain and Szöcs 2013) to resolve discrepancies in scientific names or taxonomic identifiers and, where applicable, searched SCOPUS using all scientific names associated with a species in the Integrated Taxonomic Information System (ITIS; http://www.itis.gov).

    We did not extract information on demographic-rate-climate relationships if:

    A study reported on single age or stage-specific demographic rates (e.g., Albon et al. 2002; Rézoiki et al. 2016)
    A study used an experimental design to link demographic rates to climate variation (e.g., Cain et al. 2008)
    A study considered the effects of climate only indirectly or qualitatively. In most cases, this occurred when demographic rates differed between seasons (e.g., dry vs. wet season) but were not linked explicitly to climatic factors (e.g., varying precipitation amount between seasons) driving these differences (e.g., de Silva et al. 2013; Gaillard et al. 2013).
    

    We included several studies of the same population as different studies assessed different climatic variables or demographic rates or spanned different years (e.g., for Rangifer tarandus platyrhynchus, Albon et al. 2017; Douhard et al. 2016).

    We note that we can miss a potentially relevant study if our search terms were not mentioned in the title, abstract, or keywords. To our knowledge, this occurred only once, for Mastomys natalensis (we included the relevant study [Leirs et al. 1997] into our review after we were made aware that it assesses climate-demography relationships in the main text).

    Lastly, we checked for potential database bias by running the search terms for a subset of nine species in Web of Science. The subset included three species with > three climate-demography studies published and available in SCOPUS (Rangifer tarandus, Cervus elaphus, Myocastor coypus); three species with only one climate-demography study obtained from SCOPUS (Oryx gazella, Macropus rufus, Rhabdomys pumilio); and another three species where SCOPUS did not return any published study (Calcochloris obtusirostris, Cynomops greenhalli, Suncus remyi). Species in the three subcategories were randomly chosen. Web of Science did not return additional studies for the three species where SCOPUS also failed to return a potentially suitable study. For the remaining six species, the total number of studies returned by Web of Science differed, but the same studies used for this review were returned, and we could not find any additional studies that adhered to our extraction criteria.

    Description of key collected data

    From all studies quantitatively assessing climate-demography relationships, we extracted the following information:

    Geographic location - The center of the study area was always used. If coordinates were not provided in a study, we assigned coordinates based on the study descriptions of field sites and data collection.
    Terrestrial biome - The study population was assigned to one of 14 terrestrial biomes (Olson et al. 2001) corresponding to the center of the study area. As this review is focused on general climatic patterns affecting demographic rates, specific microhabitat conditions described for any study population were not considered.
    Climatic driver - Drivers linked to demographic rates were grouped as either local/regional precipitation & temperature values or derived indices (e.g., ENSO, NAO). The temporal extent (e.g., monthly, seasonal, annual, etc.) and aggregation type (e.g., minimum, maximum, mean, etc.) of drivers was also noted.
    Demographic rate modeled - To facilitate comparisons, we grouped the demographic rates into either survival, reproductive success (i.e., whether or not reproduction occurre, reproductive output (i.e., number or rate of offspring production), growth (including stage transitions), or condition that determines development (i.e., mass or size). 
    Stage or sex modeled - We retrieved information on responses of demographic rates to climate for each age class, stage, or sex modeled in a given study.
    Driver effect - We grouped effects of drivers as positive (i.e., increased demographic rates), negative (i.e., reduced demographic rate), no effect, or context-dependent (e.g., positive effects at low population densities and now effect at high densities). We initially also considered nonlinear effects (e.g., positive effects at intermediate values and negative at extremes of a driver), but only 4 studies explicitly tested for nonlinear effects, by modelling squared or cubic climatic drivers in combination with driver interactions. We therefore considered nonlinear demographic effects as context dependent.  
    Driver interactions - We noted any density dependence modeled and any non-climatic covariates included (as additive or interactive effects) in the demographic-rate models assessing climatic effects.
    Future projections of climatic driver - In studies that indicated projections of drivers under climate change, we noted whether drivers were projected to increase, decrease, or show context-dependent trends. For studies that provided no information on climatic projections, we quantified projections as described in Detailed description of climate-change projections below (see also climate_change_analyses_mammal_review.R).
    
  15. Global population by continent 2024

    • statista.com
    Updated Oct 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Global population by continent 2024 [Dataset]. https://www.statista.com/statistics/262881/global-population-by-continent/
    Explore at:
    Dataset updated
    Oct 1, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 1, 2024
    Area covered
    World
    Description

    There are approximately 8.16 billion people living in the world today, a figure that shows a dramatic increase since the beginning of the Common Era. Since the 1970s, the global population has also more than doubled in size. It is estimated that the world's population will reach and surpass 10 billion people by 2060 and plateau at around 10.3 billion in the 2080s, before it then begins to fall. Asia When it comes to number of inhabitants per continent, Asia is the most populous continent in the world by a significant margin, with roughly 60 percent of the world's population living there. Similar to other global regions, a quarter of inhabitants in Asia are under 15 years of age. The most populous nations in the world are India and China respectively; each inhabit more than three times the amount of people than the third-ranked United States. 10 of the 20 most populous countries in the world are found in Asia. Africa Interestingly, the top 20 countries with highest population growth rate are mainly countries in Africa. This is due to the present stage of Sub-Saharan Africa's demographic transition, where mortality rates are falling significantly, although fertility rates are yet to drop and match this. As much of Asia is nearing the end of its demographic transition, population growth is predicted to be much slower in this century than in the previous; in contrast, Africa's population is expected to reach almost four billion by the year 2100. Unlike demographic transitions in other continents, Africa's population development is being influenced by climate change on a scale unseen by most other global regions. Rising temperatures are exacerbating challenges such as poor sanitation, lack of infrastructure, and political instability, which have historically hindered societal progress. It remains to be seen how Africa and the world at large adapts to this crisis as it continues to cause drought, desertification, natural disasters, and climate migration across the region.

  16. e

    Data from: Spatial-temporal change of climate in relation to urban fringe...

    • portal.edirepository.org
    • search.dataone.org
    csv
    Updated 2002
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Brazel; Brent Hedquist (2002). Spatial-temporal change of climate in relation to urban fringe development in central Arizona-Phoenix [Dataset]. http://doi.org/10.6073/pasta/95ffcd4c1e726ee62094b157a7550c1b
    Explore at:
    csv(2899968 bytes), csv(2953216 bytes), csv(4096 bytes), csv(4096000 bytes), csv(3026944 bytes)Available download formats
    Dataset updated
    2002
    Dataset provided by
    EDI
    Authors
    Anthony Brazel; Brent Hedquist
    Time period covered
    Aug 18, 2001 - May 1, 2002
    Area covered
    Variables measured
    RH, id, MAX, MIN, STD, SUM, AREA, Date, MEAN, time, and 8 more
    Description

    Not many studies have documented climate and air quality changes of settlements at early stages of development. This is because high quality climate and air quality records are deficient for the periods of the early 18th century to mid 20th century when many U.S. cities were formed and grew. Dramatic landscape change induces substantial local climate change during the incipient stage of development. Rapid growth along the urban fringe in Phoenix, coupled with a fine-grained climate monitoring system, provide a unique opportunity to study the climate impacts of urban development as it unfolds. Generally, heat islands form, particularly at night, in proportion to city population size and morphological characteristics. Drier air is produced by replacement of the countryside's moist landscapes with dry, hot urbanized surfaces. Wind is increased due to turbulence induced by the built-up urban fabric and its morphology; although, depending on spatial densities of buildings on the land, wind may also decrease. Air quality conditions are worsened due to increased city emissions and surface disturbances. Depending on the diversity of microclimates in pre-existing rural landscapes and the land-use mosaic in cities, the introduction of settlements over time and space can increase or decrease the variety of microclimates within and near urban regions. These differences in microclimatic conditions can influence variations in health, ecological, architectural, economic, energy and water resources, and quality-of-life conditions in the city. Therefore, studying microclimatic conditions which change in the urban fringe over time and space is at the core of urban ecological goals as part of LTER aims. In analyzing Phoenix and Baltimore long-term rural/urban weather and climate stations, Brazel et al. (In progress) have discovered that long-term (i.e., 100 years) temperature changes do not correlate with populations changes in a linear manner, but rather in a third-order nonlinear response fashion. This nonlinear temporal change is consistent with the theories in boundary layer climatology that describe and explain the leading edge transition and energy balance theory. This pattern of urban vs. rural temperature response has been demonstrated in relation to spatial range of city sizes (using population data) for 305 rural vs. urban climate stations in the U.S. Our recent work on the two urban LTER sites has shown that a similar climate response pattern also occurs over time for climate stations that were initially located in rural locations have been overrun bu the urban fringe and subsequent urbanization (e.g., stations in Baltimore, Mesa, Phoenix, and Tempe). Lack of substantial numbers of weather and climate stations in cities has previously precluded small-scale analyses of geographic variations of urban climate, and the links to land-use change processes. With the advent of automated weather and climate station networks, remote-sensing technology, land-use history, and the focus on urban ecology, researchers can now analyze local climate responses as a function of the details of land-use change. Therefore, the basic research question of this study is: How does urban climate change over time and space at the place of maximum disturbance on the urban fringe? Hypotheses 1. Based on the leading edge theory of boundary layer climate change, largest changes should occur during the period of peak development of the land when land is being rapidly transformed from open desert and agriculture to residential, commercial, and industrial uses. 2. One would expect to observe, on average and on a temporal basis (several years), nonlinear temperature and humidity alterations across the station network at varying levels of urban development. 3. Based on past research on urban climate, one would expect to see in areas of the urban fringe, rapid changes in temperature (increases at night particularly), humidity (decreases in areas from agriculture to urban; increases from desert to urban), and wind speed (increases due to urban heating). 4. Changes of the surface climate on the urban fringe are expected to be altered as a function of various energy, moisture, and momentum control parameters, such as albedo, surface moisture, aerodynamic surface roughness, and thermal admittance. These parameters relate directly to population and land-use change (Lougeay et al. 1996).

  17. Total population of the BRICS countries 2000-2030

    • statista.com
    • ai-chatbox.pro
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population of the BRICS countries 2000-2030 [Dataset]. https://www.statista.com/statistics/254205/total-population-of-the-bric-countries/
    Explore at:
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    In 2023, it is estimated that the BRICS countries have a combined population of 3.25 billion people, which is over 40 percent of the world population. The majority of these people live in either China or India, which have a population of more than 1.4 billion people each, while the other three countries have a combined population of just under 420 million. Comparisons Although the BRICS countries are considered the five foremost emerging economies, they are all at various stages of the demographic transition and have different levels of population development. For all of modern history, China has had the world's largest population, but rapidly dropping fertility and birth rates in recent decades mean that its population growth has slowed. In contrast, India's population growth remains much higher, and it is expected to overtake China in the next few years to become the world's most populous country. The fastest growing population in the BRICS bloc, however, is that of South Africa, which is at the earliest stage of demographic development. Russia, is the only BRICS country whose population is currently in decline, and it has been experiencing a consistent natural decline for most of the past three decades. Growing populations = growing opportunities Between 2000 and 2026, the populations of the BRICS countries is expected to grow by 625 million people, and the majority of this will be in India and China. As the economies of these two countries grow, so too do living standards and disposable income; this has resulted in the world's two most populous countries emerging as two of the most profitable markets in the world. China, sometimes called the "world's factory" has seen a rapid growth in its middle class, increased potential of its low-tier market, and its manufacturing sector is now transitioning to the production of more technologically advanced and high-end goods to meet its domestic demand.

  18. o

    Data from: Demographic response to patch destruction in a spatially...

    • explore.openaire.eu
    • data.niaid.nih.gov
    • +2more
    Updated Jun 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hugo Cayuela; Aurélien Besnard; Ludivine Quay; Remi Helder; Jean-Paul Léna; Pierre Joly; Julian Pichenot (2019). Data from: Demographic response to patch destruction in a spatially structured amphibian population [Dataset]. http://doi.org/10.5061/dryad.9046k0r
    Explore at:
    Dataset updated
    Jun 1, 2019
    Authors
    Hugo Cayuela; Aurélien Besnard; Ludivine Quay; Remi Helder; Jean-Paul Léna; Pierre Joly; Julian Pichenot
    Description
    1. Economic activities such as logging and mineral extraction can result in the creation of new anthropogenic habitats that host specific biodiversity, including protected species. However, the legislation in many Western European countries requires the rehabilitation of ‘damaged’ areas following logging and mining operations, which can eliminate these early successional habitats. Conservation managers face a dilemma in these situations, but often lack knowledge about the impacts of environmental rehabilitation on the population dynamics of pioneer species and so are unable to take this into account in their actions. 2. We investigated the demography of a spatially structured population of an endangered amphibian (Bombina variegata) that uses waterbodies created by logging activities as breeding sites. Using capture–recapture (CR) data collected during a 9-year study period, we examined how the destruction of breeding patches due to environmental rehabilitation affected adult survival and the long-term population growth rate. For this purpose, we used recently developed capture-recapture multievent models to estimate survival and dispersal rates in the spatially structured population. We then used these estimates to simulate population trajectories and viability depending on differing frequency of breeding patch destruction. 3. The multievent models revealed that dispersal not resulting from patch loss was relatively high and was sex-biased. They also revealed that patch destruction had a negative impact on adult survival. Moreover, simulations showed that the increase of patch destruction frequency had a strong negative influence on the population growth rate, even when the number of patch remained constant over time. This impact was intensified if female fecundity was also affected. 4. Synthesis and applications. Our study quantified for the first time the detrimental effect of habitat rehabilitation on the population dynamics of an endangered, pioneer species. Yet our study also found that this deleterious impact of patch destruction could be reduced by certain management practices, as avoiding the systematic rehabilitation of the breeding patches and compensating for patch destruction by creating substitute breeding patches. Capture-recapture dataData description The capture-recapture data used in Cayuela et al. (2018, J. Appl. Ecol) were collected in a spatially structured population of Bombina variegata in France, over an 9-years period (2000-2008). Several capture sessions were performed per year (detailed in Supplementary material S1 of the paper). The individuals are in raws and the capture occasion on column (labelled “H:”). The column “S:” specifies the end of the capture history. The column labeled “$COV:sex” is the sex coded as a group effect (1 = male, 2 = female). The capture-recapture histories are coded with the following events. For an individual captured at t and t–1, we attributed a code of 1 if it had not dispersed and occupied a patch destroyed at t+1 or a code of 4 if the patch was still available; we attributed a code of 2 if an individual had dispersed and occupied a patch destroyed at t+1 or a code of 5 if the patch was still available. For an individual not captured at t–1 but captured at t, a code of 3 or 6 was attributed respectively if it occurred in a patch destroyed at t+1 or not. An individual was coded 0 if it was not captured at t. The txt file is compatible with E-SURGE program. Code to enter in the GEMACO in E-SURGE program to run the most general model. For Initial State: IS - Step 1 - (1): to For Transition: Survival - Step 1 - (5): from(1:6, 7:12).t(6 10 14 19 20 23 26).g+[t(6 10 14 19 20 23 26)+t(1 2 3 4 5 7 8 9 11 12 13 15 16 17 18 21 22 24 25 27 28)] For Transition: Dispersal - Step 2 - (5): from(1:3, 4:6).t(1 2 3 4 5 7 8 9 11 12 13 15 16 17 18 21 22 24 25 27 28, 6 10 14 19 20 23 26)+g For Transition: Site dynamics - Step 3 - (8): t(1 2 3 4 5 7 8 9 11 12 13 15 16 17 18 21 22 24 25 27 28, 6, 10, 14, 19, 20, 23, 26) For Transition: Recapture - Step 4 - (11): from(1:6, 7:12)+t(1 2 3 4 5 6, 7 8 9 10, 11 12 13 14, 15 16 17 18, 19, 20, 21 22 23, 24 25 26, 27 28 29)+g For Event: Events - Step 1 - (0): firste+nextedata_adult.txt
  19. Population change in flooded zone of Pakistan

    • crisisready-open-data-portal-directrelief.hub.arcgis.com
    Updated Sep 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Direct Relief (2022). Population change in flooded zone of Pakistan [Dataset]. https://crisisready-open-data-portal-directrelief.hub.arcgis.com/items/bfc5008c2b124990ba5674525d0f81fd
    Explore at:
    Dataset updated
    Sep 1, 2022
    Dataset authored and provided by
    Direct Reliefhttp://directrelief.org/
    Area covered
    Description

    OverviewThis feature layer shows population change compared to pre-crisis baseline in Pakistan on a daily basis for all level 3 administrative units of Pakistan. The layer has time enabled to show the change from 2022-08-14 to the latest date when population change data harvested by Data for Good at Meta is available.Population maps provided by Data for Good at Meta are generated based on users of Facebook. For more information about the disaster population maps provided by Data for Good at Meta, please refer to this link.Default data visualizationA divergent color ramp was employed to create a choropleth map for % population change compared to the pre-crisis baseline. The size of pre-crisis baseline is visualized using circles in different sizes. Each circle represents one Level 3 administrative unit in Pakistan.This feature layer contains the following metrics for mapping and analysis:Baseline population - an estimated number of Facebook users during the pre-crisis period. It is calculated as an average of 90 days before the crisis (in this case, 2022-08-14 was used as the onset of crisis).Crisis population - an estimated number of Facebook users during the crisis. Original data are provided every 8 hours.Difference in population - the difference between crisis population and the baseline populationPercent change in population - the percentage of population change from baseline to a given date during the crisisZ-score - a unitless normalized measurement to quantify the population change from baselineDate - Date of data acquisition. Original data are provided three times a day (8-hour interval). We calculated a daily average using all three timestamps available for each day. Users can filter by Date to create a subset showing the population change on a selected dateMethod of data preparationRemove data points without a valid baseline population or percent change in populationCalculate daily average using the three timestamps available for each dayAggregate the original point data to Level 3 administrative units of PakistanAppend all daily average level 3 administrative units data to a single file to enable time option of the layer

  20. a

    Population change in flooded zone of Pakistan admin level 2

    • crisisready-open-data-portal-directrelief.hub.arcgis.com
    Updated Sep 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Direct Relief (2022). Population change in flooded zone of Pakistan admin level 2 [Dataset]. https://crisisready-open-data-portal-directrelief.hub.arcgis.com/items/0cda5470cd3b4bfcbd1f5d165945ec95
    Explore at:
    Dataset updated
    Sep 12, 2022
    Dataset authored and provided by
    Direct Relief
    Area covered
    Description

    OverviewThis feature layer shows population change compared to pre-crisis baseline in Pakistan on a daily basis for all level 2 administrative units of Pakistan. The layer has time enabled to show the change from 2022-08-13 to the latest date when population change data harvested by Data for Good at Meta is available.Population maps provided by Data for Good at Meta are generated based on users of Facebook. For more information about the disaster population maps provided by Data for Good at Meta, please refer to this link.Default data visualizationA divergent color ramp was employed to create a choropleth map for % population change compared to the pre-crisis baseline. The size of pre-crisis baseline is visualized using circles in different sizes. Each circle represents one Level 3 administrative unit in Pakistan.This feature layer contains the following metrics for mapping and analysis:Baseline population - an estimated number of Facebook users during the pre-crisis period. It is calculated as an average of 90 days before the crisis (in this case, 2022-08-14 was used as the onset of crisis).Crisis population - an estimated number of Facebook users during the crisis. Original data are provided every 8 hours.Difference in population - the difference between crisis population and the baseline populationPercent change in population - the percentage of population change from baseline to a given date during the crisisZ-score - a unitless normalized measurement to quantify the population change from baselineDate - Date of data acquisition. Original data are provided three times a day (8-hour interval). We calculated a daily average using all three timestamps available for each day. Users can filter by Date to create a subset showing the population change on a selected dateMethod of data preparationRemove data points without a valid baseline population or percent change in populationCalculate daily average using the three timestamps available for each dayAggregate the original point data to Level 3 administrative units of PakistanAppend all daily average level 3 administrative units data to a single file to enable time option of the layer

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Agricultural Research Service (2025). Data from: Identifying Critical Life Stage Transitions for Biological Control of Long-lived Perennial Vincetoxicum Species [Dataset]. https://catalog.data.gov/dataset/data-from-identifying-critical-life-stage-transitions-for-biological-control-of-long-lived-41b5d

Data from: Identifying Critical Life Stage Transitions for Biological Control of Long-lived Perennial Vincetoxicum Species

Related Article
Explore at:
Dataset updated
Apr 21, 2025
Dataset provided by
Agricultural Research Service
Description

This dataset includes data on 25 transitions of a matrix demographic model of the invasive species Vincetoxicum nigrum (L.) Moench (black swallow-wort or black dog-strangling vine) and Vincetoxicum rossicum (Kleopow) Barb. (pale swallow-wort or dog-strangling vine) (Apocynaceae, subfamily Asclepiadoideae), two invasive perennial vines in the northeastern U.S.A. and southeastern Canada. The matrix model was developed for projecting population growth rates as a result of changes to lower-level vital rates from biological control although the model is generalizable to any control tactic. Transitions occurred among the five life stages of seeds, seedlings, vegetative juveniles (defined as being in at least their second season of growth), small flowering plants (having 1–2 stems), and large flowering plants (having 3 or more stems). Transition values were calculated using deterministic equations and data from 20 lower-level vital rates collected from 2009-2012 from two open field and two forest understory populations of V. rossicum (43°51’N, 76°17’W; 42°48'N, 76°40'W) and two open field populations of V. nigrum (41°46’N, 73°44’W; 41°18’N, 73°58’W) in New York State. Sites varied in plant densities, soil depth, and light levels (forest populations). Detailed descriptions of vital rate data collection may be found in: Milbrath et al. 2017. Northeastern Naturalist 24(1):37-53. Five replicate sets of transition data obtained from five separate spatial regions of a particular infestation were produced for each of the six populations. Note: Added new excel file of vital rate data on 12/7/2018. Resources in this dataset:Resource Title: Matrix model transition data for Vincetoxicum species. File Name: Matrix_model_transition_data.csvResource Description: This data set includes data on 25 transitions of a matrix demographic model of two invasive Vincetoxicum species from six field and forest populations in New York State.Resource Title: Variable definitions. File Name: Matrix_model_metadata.csvResource Description: Definitions of variables including equations for each transition and definitions of the lower-level vital rates in the equationsResource Title: Vital Rate definitions. File Name: Vital_Rate.csvResource Description: Vital Rate definitions of lower-level vital rates used in transition equations - to be substituted into the Data Dictionary for full definition of each transition equation.Resource Title: Data Dictionary. File Name: Matrix_Model_transition_data_DD.csvResource Description: See Vital Rate resource for definitions of lower-level vital rates used in transition equations where noted.Resource Title: Matrix model vital rate data for Vincetoxicum species. File Name: Matrix_model_vital rate_data.csvResource Description: This data set includes data on 20 lower-level vital rates used in the calculation of transitions of a matrix demographic model of two invasive Vincetoxicum species in New York State as well as definitions of the vital rates. (File added on 12/7/2018)Resource Software Recommended: Microsoft Excel,url: https://office.microsoft.com/excel/

Search
Clear search
Close search
Google apps
Main menu