https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
In a time of global change, having an understanding of the nature of biotic and abiotic factors that drive a species’ range may be the sharpest tool in the arsenal of conservation and management of threatened species. However, such information is lacking for most tropical and epiphytic species due to the complexity of life history, the roles of stochastic events, and the diversity of habitat across the span of a distribution. In this study, we conducted repeated censuses across the core and peripheral range of Trichocentrum undulatum, a threatened orchid that is found throughout the island of Cuba (species core range) and southern Florida (the northern peripheral range). We used demographic matrix modeling as well as stochastic simulations to investigate the impacts of herbivory, hurricanes, and logging (in Cuba) on projected population growth rates (? and ?s) among sites. Methods Field methods Censuses took place between 2013 and 2021. The longest census period was that of the Peripheral population with a total of nine years (2013–2021). All four populations in Cuba used in demographic modeling that were censused more than once: Core 1 site (2016–2019, four years), Core 2 site (2018–2019, two years), Core 3 (2016 and 2018 two years), and Core 4 (2018–2019, two years) (Appendix S1: Table S1). In November 2017, Hurricane Irma hit parts of Cuba and southern Florida, impacting the Peripheral population. The Core 5 population (censused on 2016 and 2018) was small (N=17) with low survival on the second census due to logging. Three additional populations in Cuba were visited only once, Core 6, Core 7, and Core 8 (Table 1). Sites with one census or with a small sample size (Core 5) were not included in the life history and matrix model analyses of this paper due to the lack of population transition information, but they were included in the analysis on the correlation between herbivory and fruit rate, as well as the use of mortality observations from logging for modeling. All Cuban sites were located between Western and Central Cuba, spanning four provinces: Mayabeque (Core 1), Pinar del Rio (Core 2 and Core 6), Matanzas (Core 3 and Core 5), and Sancti Spiritus (Core 4, Core 7, Core 8). At each population of T. undulatum presented in this study, individuals were studied within ~1-km strips where T. undulatum occurrence was deemed representative of the site, mostly occurring along informal forest trails. Once an individual of T. undulatum was located, all trees within a 5-m radius were searched for additional individuals. Since tagging was not permitted, we used a combination of information to track individual plants for the repeated censuses. These include the host species, height of the orchid, DBH of the host tree, and hand-drawn maps. Individual plants were also marked by GPS at the Everglades Peripheral site. If a host tree was found bearing more than one T. undulatum, then we systematically recorded the orchids in order from the lowest to highest as well as used the previous years’ observations in future censuses for individualized notes and size records. We recorded plant size and reproductive variables during each census including: the number of leaves, length of the longest leaf (cm), number of inflorescence stalks, number of flowers, and the number of mature fruits. We also noted any presence of herbivory, such as signs of being bored by M. miamensis, and whether an inflorescence was partially or completely affected by the fly, and whether there was other herbivory, such as D. boisduvalii on leaves. We used logistic regression analysis to examine the effects of year (at the Peripheral site) and sites (all sites) on the presence or absence of inflorescence herbivory at all the sites. Cross tabulation and chi-square analysis were done to examine the associations between whether a plant was able to fruit and the presence of floral herbivory by M. miamensis. The herbivory was scored as either complete or partial. During the orchid population scouting expeditions, we came across a small population in the Matanzas province (Core 5, within 10 km of the Core 3 site) and recorded the demographic information. Although the sampled population was small (N = 17), we were able to observe logging impacts at the site and recorded logging-associated mortality on the subsequent return to the site. Matrix modeling Definition of size-stage classes To assess the life stage transitions and population structures for each plant for each population’s census period we first defined the stage classes for the species. The categorization for each plant’s stage class depended on both its size and reproductive capabilities, a method deemed appropriate for plants (Lefkovitch 1965, Cochran and Ellner 1992). A size index score was calculated for each plant by taking the total number of observed leaves and adding the length of the longest leaf, an indication of accumulated biomass (Borrero et al. 2016). The smallest plant size that attempted to produce an inflorescence is considered the minimum size for an adult plant. Plants were classified by stage based on their size index and flowering capacity as the following: (1) seedlings (or new recruits), i.e., new and small plants with a size index score of less than 6, (2) juveniles, i.e., plants with a size index score of less than 15 with no observed history of flowering, (3) adults, plants with size index scores of 15 or greater. Adult plants of this size or larger are capable of flowering but may not produce an inflorescence in a given year. The orchid’s population matrix models were constructed based on these stages. In general, orchid seedlings are notoriously difficult to observe and easily overlooked in the field due to the small size of protocorms. A newly found juvenile on a subsequent site visit (not the first year) may therefore be considered having previously been a seedling in the preceding year. In this study, we use the discovered “seedlings” as indicatory of recruitment for the populations. Adult plants are able to shrink or transition into the smaller juvenile stage class, but a juvenile cannot shrink to the seedling stage. Matrix elements and population vital rates calculations Annual transition probabilities for every stage class were calculated. A total of 16 site- and year-specific matrices were constructed. When seedling or juvenile sample sizes were < 9, the transitions were estimated using the nearest year or site matrix elements as a proxy. Due to the length of the study and variety of vegetation types with a generally large population size at each site, transition substitutions were made with the average stage transition from all years at the site as priors. If the sample size of the averaged stage was still too small, the averaged transition from a different population located at the same vegetation type was used. We avoided using transition values from populations found in different vegetation types to conserve potential environmental differences. A total of 20% (27/135) of the matrix elements were estimated in this fashion, the majority being seedling stage transitions (19/27) and noted in the Appendices alongside population size (Appendix S1: Table S1). The fertility element transitions from reproductive adults to seedlings were calculated as the number of seedlings produced (and that survived to the census) per adult plant. Deterministic modeling analysis We used integral projection models (IPM) to project the long-term population growth rates for each time period and population. The finite population growth rate (?), stochastic long-term growth rate (?s), and the elasticity were projected for each matrices using R Popbio Package 2.4.4 (Stubben and Milligan 2007, Caswell 2001). The elasticity matrices were summarized by placing each element into one of three categories: fecundity (transition from reproductive adults to seedling stage), growth (all transitions to new and more advanced stage, excluding the fecundity), and stasis (plants that transitioned into the same or a less advanced stage on subsequent census) (Liu et al. 2005). Life table response experiments (LTREs) were conducted to identify the stage transitions that had the greatest effects on observed differences in population growth between select sites and years (i.e., pre-post hurricane impact and site comparisons of same vegetation type). Due to the frequent disturbances that epiphytes in general experience as well as our species’ distribution in hurricane-prone areas, we ran transient dynamic models that assume that the populations censused were not at stable stage distributions (Stott et al. 2011). We calculated three indices for short-term transient dynamics to capture the variation during a 15-year transition period: reactivity, maximum amplification, and amplified inertia. Reactivity measures a population’s growth in a single measured timestep relative to the stable-stage growth, during the simulated transition period. Maximum amplification and amplified inertia are the maximum of future population density and the maximum long-term population density, respectively, relative to a stable-stage population that began at the same initial density (Stott et al. 2011). For these analyses, we used a mean matrix for Core 1, Core 2 Core 3, and Core 4 sites and the population structure of their last census. For the Peripheral site, we averaged the last three matrices post-hurricane disturbance and used the most-recent population structure. We standardized the indices across sites with the assumption of initial population density equal to 1 (Stott et al. 2011). Analysis was done using R Popdemo version 1.3-0 (Stott et al. 2012b). Stochastic simulation We created matrices to simulate the effects of episodic recruitment, hurricane impacts, herbivory, and logging (Appendix S1: Table S2). The Peripheral population is the longest-running site with nine years of censuses (eight
There are approximately 8.16 billion people living in the world today, a figure that shows a dramatic increase since the beginning of the Common Era. Since the 1970s, the global population has also more than doubled in size. It is estimated that the world's population will reach and surpass 10 billion people by 2060 and plateau at around 10.3 billion in the 2080s, before it then begins to fall. Asia When it comes to number of inhabitants per continent, Asia is the most populous continent in the world by a significant margin, with roughly 60 percent of the world's population living there. Similar to other global regions, a quarter of inhabitants in Asia are under 15 years of age. The most populous nations in the world are India and China respectively; each inhabit more than three times the amount of people than the third-ranked United States. 10 of the 20 most populous countries in the world are found in Asia. Africa Interestingly, the top 20 countries with highest population growth rate are mainly countries in Africa. This is due to the present stage of Sub-Saharan Africa's demographic transition, where mortality rates are falling significantly, although fertility rates are yet to drop and match this. As much of Asia is nearing the end of its demographic transition, population growth is predicted to be much slower in this century than in the previous; in contrast, Africa's population is expected to reach almost four billion by the year 2100. Unlike demographic transitions in other continents, Africa's population development is being influenced by climate change on a scale unseen by most other global regions. Rising temperatures are exacerbating challenges such as poor sanitation, lack of infrastructure, and political instability, which have historically hindered societal progress. It remains to be seen how Africa and the world at large adapts to this crisis as it continues to cause drought, desertification, natural disasters, and climate migration across the region.
dataDroso - census dataDemographic transitions of Drosophyllum lusitanicum populations recorded in annual censuses (from 2011 to 2015) in five populations. These data are used to quantify vital rates of above-ground individuals.dataDroso.csvdataDrosoSB - seed bankSeed fates (in a binary format) inferred from two experiments. These data are used to quantify the transitions related to the seed bank and associated parameter uncertainties.dataDrosoSB.csvBayModel - Bayesian vital rate GLMMsExecutes and saves the results of a Bayesian model quantifying all vital rates; illustrates basic diagnostics that can be run on the results of an MCMC run (i.e., the posterior parameter distribution) to check for model convergence and autocorrelation of the posterior samples.BayModel.RmcmcOUT - parameter samplesIn case the reader wishes to forego the step of fitting the Bayesian models, we provided a mcmcOUT.csv file with 1000 posterior parameter values for each of the parameters estimated with Bayesian models using uninformative priorsmcmcOUT.csvmakeIPMDemonstrates how to construct IPMs including continuous and discrete (seed bank) transitions for (A) mean parameter values and (B) from the parameter distributions of the Bayesian models; saves IPMs for all parameters related to seed-bank ingression, stasis, and ingression. The code is based on the supporting material in Ellner and Rees (2006), Am. Nat., 167, 410-428perturbVR - vital rate perturbationsDemonstrates how to construct IPMs from perturbed vital rates. Each IPM is obtained by (a) perturbing a vital rate by its mean or standard deviation (see makeVRmu.R on constructing mean vital-rate kernels) and (b) constructing a new IPM kernel incorporating the perturbed vital rateperturbVR.RmakeIPMmufunction to constructs IPMs for average environmentsmakeVRmufunctions to constructs vital-rate kernels for average environments.sLambdaSimul - stochastic lambda simulationsRuns simulations, based on different fire return intervals, of the stochastic population growth rate using IPMs constructed (A) from mean parameter values, (B) from perturbed vital rates, and (C) for each posterior sample of the parameters describing seed-bank ingression (goSB), stasis (staySB) and egression (outSB); calculates the stochastic population growth rate, its elasticities, and the probability of quasi-extinction at time t. The structure of the code is based on Tuljapurkar et al. (2003), Am. Nat., 162, 489-502 and Trotter et al. (2013), Methods Ecol. Evol., 4, 290-298.sLambdaSimul.RsLambdaRmpi - stochastic simulations on parallel processorsImplements the simulations of the stochastic population growth rate using parallel processing, where simulations are split into different processors of a supercomputer to greatly speed up computational time.sLambdaRmpi.R Dormant life stages are often critical for population viability in stochastic environments, but accurate field data characterizing them are difficult to collect. Such limitations may translate into uncertainties in demographic parameters describing these stages, which then may propagate errors in the examination of population-level responses to environmental variation. Expanding on current methods, we 1) apply data-driven approaches to estimate parameter uncertainty in vital rates of dormant life stages and 2) test whether such estimates provide more robust inferences about population dynamics. We built integral projection models (IPMs) for a fire-adapted, carnivorous plant species using a Bayesian framework to estimate uncertainty in parameters of three vital rates of dormant seeds – seed-bank ingression, stasis and egression. We used stochastic population projections and elasticity analyses to quantify the relative sensitivity of the stochastic population growth rate (log λs) to changes in these vital rates at different fire return intervals. We then ran stochastic projections of log λs for 1000 posterior samples of the three seed-bank vital rates and assessed how strongly their parameter uncertainty propagated into uncertainty in estimates of log λs and the probability of quasi-extinction, Pq(t). Elasticity analyses indicated that changes in seed-bank stasis and egression had large effects on log λs across fire return intervals. In turn, uncertainty in the estimates of these two vital rates explained > 50% of the variation in log λs estimates at several fire-return intervals. Inferences about population viability became less certain as the time between fires widened, with estimates of Pq(t) potentially > 20% higher when considering parameter uncertainty. Our results suggest that, for species with dormant stages, where data is often limited, failing to account for parameter uncertainty in population models may result in incorrect interpretations of population viability.
In 2025, there are six countries, all in Sub-Saharan Africa, where the average woman of childbearing age can expect to have between 5-6 children throughout their lifetime. In fact, of the 20 countries in the world with the highest fertility rates, Afghanistan and Yemen are the only countries not found in Sub-Saharan Africa. High fertility rates in Africa With a fertility rate of almost six children per woman, Chad is the country with the highest fertility rate in the world. Population growth in Chad is among the highest in the world. Lack of healthcare access, as well as food instability, political instability, and climate change, are all exacerbating conditions that keep Chad's infant mortality rates high, which is generally the driver behind high fertility rates. This situation is common across much of the continent, and, although there has been considerable progress in recent decades, development in Sub-Saharan Africa is not moving as quickly as it did in other regions. Demographic transition While these countries have the highest fertility rates in the world, their rates are all on a generally downward trajectory due to a phenomenon known as the demographic transition. The third stage (of five) of this transition sees birth rates drop in response to decreased infant and child mortality, as families no longer feel the need to compensate for lost children. Eventually, fertility rates fall below replacement level (approximately 2.1 children per woman), which eventually leads to natural population decline once life expectancy plateaus. In some of the most developed countries today, low fertility rates are creating severe econoic and societal challenges as workforces are shrinking while aging populations are placin a greater burden on both public and personal resources.
The Sahel Women Empowerment and Demographic Dividend (P150080) project in Burkina Faso focuses on advancing women's empowerment to spur demographic transition and mitigate gender disparities. This project seeks to empower young women by promoting entrepreneurship through business skills training and grants, and by enhancing access to reproductive health information and contraception, thereby aiming to lower fertility rates.
The World Bank Africa Gender Innovation Lab, along with its partners, is conducting detailed impact evaluations of the SWEDD program’s key initiatives to gauge their effects on child marriage, fertility, and the empowerment of adolescent girls and young women.
This data represents the first round of data collection (baseline) for the impact evaluation and include a household and community level surveys. The household level sample comprises 9857 households, 70,169 individuals and 9382 adolescent girls and young wives aged 24 living in the Boucle du Mouhoun and the East regions of Burkina Faso. The community level sample includes 175 villages.
The insights derived from this survey could help policymakers develop strategies to: - Reduce fertility and child marriage by enhancing access to contraceptives and broadening reproductive health education. - Promote women’s empowerment by increasing their participation in economic activities
This data is valuable for planners who focus on improving living standards, particularly for women. The Ministry of Women, National Solidarity, Family, and Humanitarian Action of Burkina Faso, along with District Authorities, Research Institutions, NGOs, and the general public, stand to benefit from this survey data.
Burkina Faso, Regions of Boucle du Mouhoun and East
The unit of analysis is adolescent girls for the adolescent survey and households for the household survey.
Sample survey data [ssd]
We randomly selected 200 villages from the 11 provinces in the two regions of the Boucle du Mouhoun and the East. The 200 villages were selected proportionally, based on the formula (Np/N)*200, where Np represents the number of eligible villages in the province and N the total number of eligible villages. 25 villages were later dropped because of lack of safety.
A census was first administered in each village to identify eligible girls and young wives, as well as households with these eligible individuals. All households with at least one eligible person then constituted the universe from which the survey sample was drawn. In total 9857 households and 9382 girls and young wives were sampled. A village-level questionnaire was also administered.
The objective of the baseline survey was to build a comprehensive dataset, which would serve as a reference point for the entire sample, before treatment and control assignment and program implementation.
Computer Assisted Personal Interview [capi]
The data consists of responses from households to questions pertaining to: 1. List of household members 2. Education of household members 3. Occupations of household members 4. Characteristics of housing and durable goods 5. Food security 6. Household head's aspirations, as well as those of a boy aged 12 to 24 7. Opinions on women's empowerment and gender equality
The questionnaire administrated to girls contains the following sections: 1. Education 2. Marriage and children 3. Aspirations 4. Health and family planning 5. Knowledge of HIV/AIDS 6. Women's empowerment 7. Gender-based violence 8. Income-generating activities 9. Savings and credit 10. Personal relationships and social networks 11. Committee members and community participation
The questionnaire administered at the village-level contains the following sections: 1. Social norms (marriage norms) 2. Ethnic and religious compositions 3. Economic infrastructures (markets and roads) 4. Social services a. Health b. Education
The household questionnaire was administered to the head of the household or to an authorized person capable of answering questions about all individuals in the household. The adolescent questionnaire was administered to each eligible pre-selected individual within the household. Considering the modules of the adolescent questionnaire, it was only administered by female enumerators. The village-level questionnaire was administered to a group of three to five village leaders with enough knowledge of the village. The enumerators were instructed to include women in this group whenever possible. The questionnaires were written in French, translated into the local languages, and programmed on tablets in French using the CAPI program.
Data was anonymized through decoding and local suppression.
The total fertility rate of the world has dropped from around 5 children per woman in 1950, to 2.2 children per woman in 2025, which means that women today are having fewer than half the number of children that women did 75 years ago. Replacement level fertility This change has come as a result of the global demographic transition, and is influenced by factors such as the significant reduction in infant and child mortality, reduced number of child marriages, increased educational and vocational opportunities for women, and the increased efficacy and availability of contraception. While this change has become synonymous with societal progress, it does have wide-reaching demographic impact - if the global average falls below replacement level (roughly 2.1 children per woman), as is expected to happen in the 2050s, then this will lead to long-term population decline on a global scale. Regional variations When broken down by continent, Africa is the only region with a fertility rate above the global average, and, alongside Oceania, it is the only region with a fertility rate above replacement level. Until the 1980s, the average woman in Africa could expect to have 6-7 children over the course of their lifetime, and there are still several countries in Africa where women can still expect to have 5 or more children in 2025. Historically, Europe has had the lowest fertility rates in the world over the past century, falling below replacement level in 1975. Europe's population has grown through a combination of migration and increasing life expectancy, however even high immigration rates could not prevent its population from going into decline in 2021.
The American black bear (Ursus americanus) has one of the broadest geographic distributions of any mammalian carnivore in North America. Populations occur from high to low elevations and from mesic to arid environments, and their demographic traits have been documented in a wide variety of environments. However, the demography of American black bears in semiarid environments, which comprise a significant portion of the geographic range, is poorly documented. To fill this gap in understanding, we used data from a long-term mark-recapture study of black bears in the semiarid environment of eastern Utah, USA. Cub and yearling survival were low and adult survival was high relative to other populations. Adult life stages had the highest reproductive value, comprised the largest proportion of the population, and exhibited the highest elasticity contribution to the population growth rate (i.e., λ). Vital rates of black bears in this semiarid environment are skewed toward higher survival of adu..., Mark-Recapture study We estimated survival rates from long-term mark-recapture data gathered as part of a 27-year study on American black bears of the East Tavaputs Plateau. During the first 12 years of the study (June to August 1991-2003) female bears were captured and radio-collared, and all bears were tagged in the ear, except for cubs and yearlings. For the entire study (1992 – 2019), collared females were visited in their dens annually during their winter hibernation to count newborn cubs and surviving yearlings. Age of individual bears was determined by 2 methods: (1) direct observation of cubs or yearlings (i.e., year of birth was known) or (2) cementum annuli analysis of a cross-section of the root of an extracted premolar (Palochak, 2004; Willey, 1974). The data we used to derive survival and fecundity rates consisted of the ID_number, cohort (cub, yearling, subadult, prime-aged adult, and old adult), age in years, sex (female, male, unknown), number of cubs, number of yearling..., , # Demography of American black bears (Ursus americanus) in a semiarid environment
https://doi.org/10.5061/dryad.98sf7m0t8
Description:Â
This CSV file contains data collected from a mark-recapture study during 1991 - 2019. We calculated the age-specific average survival rate for each cohort. The average survival rate of each cohort was later used in the matrix transition model as matrix elements to retrieve important demographic information about this population of North American black bears (Ursus americanus) found in a semiarid environment.Â
Environmental change continually perturbs populations from a stable state, leading to transient dynamics that can last multiple generations. Several long-term studies have reported changes in trait distributions along with demographic response to environmental change. Here we conducted an experimental study on soil mites and investigated the interaction between demography and an individual trait over a period of nonstationary dynamics. By following individual fates and body sizes at each life-history stage, we investigated how body size and population density influenced demographic rates. By comparing the ability of two alternative approaches, a matrix projection model and an integral projection model, we investigated whether consideration of trait-based demography enhances our ability to predict transient dynamics. By utilizing a prospective perturbation analysis, we addressed which stage-specific demographic or trait-transition rate had the greatest influence on population dynamics. Both body size and population density had important effects on most rates; however, these effects differed substantially among life-history stages. Considering the observed trait-demography relationships resulted in better predictions of a population’s response to perturbations, which highlights the role of phenotypic plasticity in transient dynamics. Although the perturbation analyses provided comparable predictions of stage-specific elasticities between the matrix and integral projection models, the order of importance of the life-history stages differed between the two analyses. In conclusion, we demonstrate how a trait-based demographic approach provides further insight into transient population dynamics. Daily sampling of individual mitesday: day of the study (day t) | no: individual ID for each day | surv: survival to day t+1? | stage: life-history stage at day t | stage1: life-history stage at day t+1 | trns: transition to next stage at day t+1? | tsex: transition to female stage at day t+1? | dens: weighted population density at day t | size: log(body size) at day t | size1: log(body size) at day t+1 | rep: produced eggs at day t+1? | rec: number of eggs produced on day t+1 | day2: number of eggs hatched on day t+2 | day3: number of eggs hatched on day t+3 | day4: number of eggs hatched on day t+4 | day5: number of eggs hatched on day t+5 | day6: number of eggs hatched on day t+6 | day7: number of eggs hatched after day t+6 | eggsurv: proportion of eggs hatched | hrate: daily hatching rate | eggsize: average log(egg size)ind_data.csvAdditional experiment measuring egg-to-larva size transitioneggSize: log(egg size) | larvaSize: log(larva size)egg_data.csvDaily population censusday: day of the study (day t) | e: number of eggs | l: number of larvae | p: number of protonymphs | t: number of tritonymphs | f: number of female adults | m: number of male adults | group: (c)ontrol or (s)ample group? | dens: weighted population densitypop_census.csv
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Correlation between the sensitivities (respectively elasticities) of spread rate and population growth rate λ to changes in the demographic transitions found in matrix B (Eq. 4).
Population dynamics, its types. Population migration (external, internal), factors determining it, main trends. Impact of migration on population health.
Under the guidance of Moldoev M.I. Sir By Riya Patil and Rutuja Sonar
Abstract
Population dynamics influence development and vice versa, at various scale levels: global, continental/world-regional, national, regional, and local. Debates on how population growth affects development and how development affects population growth have already been subject of intensive debate and controversy since the late 18th century, and this debate is still ongoing. While these two debates initially focused mainly on natural population growth, the impact of migration on both population dynamics and development is also increasingly recognized. While world population will continue growing throughout the 21st century, there are substantial and growing contrasts between and within world-regions in the pace and nature of that growth, including some countries where population is stagnating or even shrinking. Because of these growing contrasts, population dynamics and their interrelationships with development have quite different governance implications in different parts of the world.
1. Population Dynamics
Population dynamics refers to the changes in population size, structure, and distribution over time. These changes are influenced by four main processes:
Birth rate (natality)
Death rate (mortality)
Immigration (inflow of people)
Emigration (outflow of people)
Types of Population Dynamics
Natural population change: Based on birth and death rates.
Migration-based change: Caused by people moving in or out of a region.
Demographic transition: A model that explains changes in population growth as societies industrialize.
Population distribution: Changes in where people live (urban vs rural).
2. Population Migration
Migration refers to the movement of people from one location to another, often across political or geographical boundaries.
Types of Migration
External migration (international):
Movement between countries.
Examples: Refugee relocation, labor migration, education.
Internal migration:
Movement within the same country or region.
Examples: Rural-to-urban migration, inter-state migration.
3. Factors Determining Migration
Migration is influenced by push and pull factors:
Push factors (reasons to leave a place):
Unemployment
Conflict or war
Natural disasters
Poverty
Lack of services or opportunities
Pull factors (reasons to move to a place):
Better job prospects
Safety and security
Higher standard of living
Education and healthcare access
Family reunification
4. Main Trends in Migration
Urbanization: Mass movement to cities for work and better services.
Global labor migration: Movement from developing to developed countries.
Refugee and asylum seeker flows: Due to conflict or persecution.
Circular migration: Repeated movement between two or more locations.
Brain drain/gain: Movement of skilled labor away from (or toward) a country.
5. Impact of Migration on Population Health
Positive Impacts:
Access to better healthcare (for migrants moving to better systems).
Skills and knowledge exchange among health professionals.
Remittances improving healthcare affordability in home countries.
Negative Impacts:
Migrants’ health risks: Increased exposure to stress, poor living conditions, and occupational hazards.
Spread of infectious diseases: Especially when health screening is lacking.
Strain on health services: In receiving areas, especially with sudden or large influxes.
Mental health challenges: Due to cultural dislocation, discrimination, or trauma.
Population dynamics is one of the fundamental areas of ecology, forming both the basis for the study of more complex communities and of many applied questions. Understanding population dynamics is the key to understanding the relative importance of competition for resources and predation in structuring ecological communities, which is a central question in ecology.
Population dynamics plays a central role in many approaches to preserving biodiversity, which until now have been primarily focused on a single species approach. The calculation of the intrinsic growth rate of a species from a life table is often the central piece of conservation plans. Similarly, management of natural resources, such as fisheries, depends on population dynamics as a way to determine appropriate management actions.
Population dynamics can be characterized by a nonlinear system of difference or differential equations between the birth sizes of consecutive periods. In such a nonlinear system, when the feedback elasticity of previous events on current birth size is larger, the more likely the dynamics will be volatile. Depending on the classification criteria of the population, the revealed cyclical behavior has various interpretations. Under different contextual scenarios, Malthusian cycles, Easterlin cycles, predator–prey cycles, dynastic cycles, and capitalist–laborer cycles have been introduced and analyzed
Generally, population dynamics is a nonlinear stochastic process. Nonlinearities tend to be complicated to deal with, both when we want to do analytic stochastic modelling and when analysing data. The way around the problem is to approximate the nonlinear model with a linear one, for which the mathematical and statistical theories are more developed and tractable. Let us assume that the population process is described as:
(1)Nt=f(Nt−1,εt)
where Nt is population density at time t and εt is a series of random variables with identical distributions (mean and variance). Function f specifies how the population density one time step back, plus the stochastic environment εt, is mapped into the current time step. Let us assume that the (deterministic) stationary (equilibrium) value of the population is N* and that ε has mean ε*. The linear approximation of Eq. (1) close to N* is then:
(2)xt=axt−1+bϕt
where xt=Nt−N*, a=f
f(N*,ε*)/f
N, b=ff(N*,ε*)/fε, and ϕt=εt−ε*
The term population refers to the members of a single species that can interact with each other. Thus, the fish in a lake, or the moose on an island, are clear examples of a population. In other cases, such as trees in a forest, it may not be nearly so clear what a population is, but the concept of population is still very useful.
Population dynamics is essentially the study of the changes in the numbers through time of a single species. This is clearly a case where a quantitative description is essential, since the numbers of individuals in the population will be counted. One could begin by looking at a series of measurements of the numbers of particular species through time. However, it would still be necessary to decide which changes in numbers through time are significant, and how to determine what causes the changes in numbers. Thus, it is more sensible to begin with models that relate changes in population numbers through time to underlying assumptions. The models will provide indications of what features of changes in numbers are important and what measurements are critical to make, and they will help determine what the cause of changes in population levels might be.
To understand the dynamics of biological populations, the study starts with the simplest possibility and determines what the dynamics of the population would be in that case. Then, deviations in observed populations from the predictions of that simplest case would provide information about the kinds of forces shaping the dynamics of populations. Therefore, in describing the dynamics in this simplest case it is essential to be explicit and clear about the assumptions made. It would not be argued that the idealized population described here would ever be found, but that focusing on the idealized population would provide insight into real populations, just as the study of Newtonian mechanics provides understanding of more realistic situations in physics.
Population migration
The vast majority of people continue to live in the countries where they were born —only one in 30 are migrants.
In most discussions on migration, the starting point is usually numbers. Understanding changes in scale, emerging trends, and shifting demographics related to global social and economic transformations, such as migration, help us make sense of the changing world we live in and plan for the future. The current global estimate is that there were around 281 million international migrants in the world in 2020, which equates to 3.6 percent of the global population.
Overall, the estimated number of international migrants has increased over the past five decades. The total estimated 281 million people living in a country other than their countries of birth in 2020 was 128 million more than in 1990 and over three times the estimated number in 1970.
There is currently a larger number of male than female international migrants worldwide and the growing gender gap has increased over the past 20 years. In 2000, the male to female split was 50.6 to 49.4 per cent (or 88 million male migrants and 86 million female migrants). In 2020 the split was 51.9 to 48.1 per cent, with 146 million male migrants and 135 million female migrants. The share of
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
1.Natural and anthropogenic forest canopy disturbances significantly alter forest dynamics and lead to multi-dimensional shifts in the forest understorey. An understorey plant's ability to exploit alterations to the light environment caused by canopy disturbance leads to changes in population dynamics. The purpose of this work was to determine if population growth of a species adapted to low light increases in response to additional light inputs caused by canopy disturbance, or alternatively, declines due to long-term selection under low light conditions. 2.To address this question, we quantified the demographic response of an understorey herb to three contrasting forest canopy disturbances (ice storms, tent caterpillar defoliation and lightning strikes) that encompass a broad range of disturbance severity. We used a model shade-adapted understorey species, Panax quinquefolius, to parameterize stage-based matrix models. Asymptotic growth rates, stochastic growth rates and simulations of transient dynamics were used to quantify the population-level response to canopy disturbance. Life table response experiments were used to partition the underlying controls over differences in population growth rates. 3.Population growth rates at all three disturbed sites increased in the transition period immediately after the canopy disturbance relative to the transition period prior to disturbance. Stochastic population models revealed that growth rates increased significantly in simulations that included disturbance matrices relative to those simulations that excluded disturbance. Additionally, transient models indicated that population size (n) was larger for all three populations when the respective disturbance matrix was included in the model. 4.Synthesis Obligate shade species are most likely to be pre-adapted to take advantage of canopy gaps and light influx to a degree, and this pre-adaptation may be due to long-term selection under dynamic old growth forest canopies. We propose a model whereby population performance is represented by a parabolic curve where performance is maximized under intermediate levels of canopy disturbance. This study provides new evidence to aid our understanding of the population-level response of understorey herbs to disturbances whose frequency and intensity are predicted to increase as global climates continue to shift.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Insecticide Netting In this study, we focused on two types of long-lasting insecticide netting (LLIN) that have been found to be effective for managing various stored product insect pests. One is an LLIN consisting of a polyethylene netting (2 × 2 mm mesh, D-Terrence, Vestergaard, Inc., Lausanne, Switzerland) with 0.4% deltamethrin active ingredient (a.i.), while the second one is Carifend® net (40 deniers with mesh size 97 knots/cm2; BASF AG, Ludwigshafen, Germany) containing 0.34% α-cypermethrin (a.i.). Foundational Model We used a standard Lefkovitch matrix model to project population growth for Tribolium castaneum, with four life stages (e.g., egg, larva, pupa, and adult;(Lefkovitch,1965). In equation (1), the Leftkovitch matrix L matrix (4 × 4) represents the life-stage structure of T. castaneum which has an egg, larvae, pupae, and an adult, where only the adults contribute to the fecundity, F. By multiplying L with the population vector ni(t), where t is time step (e.g., generation) and i is a life stage, we obtain the resultant vector ni(t + 1), which reveals the distribution of individuals across different life stages in the subsequent time period. In equation (1), P1 represents the probability of staying in the egg stage and G1 is the probability of moving from the egg to the larval stage, P2 is the probability of staying in the larval stage, G2 is probability of moving from the larval stage to pupal stage, P3 is the probability of staying in the pupal stage, G3 is probability of moving from the pupal stage to adult, while P4 is the probability of staying in the adult stage (Figure 1). Model Parameterization and Scenarios We simulated population outcomes for up to 15 generations by using the life table data for T. castaneum using the R package popbio. Survivorship, fecundity, and transition information for each stage were derived from the literature (summarized in Table 1). The developmental duration of eggs, larvae, and pupae were 3.82 ± 0.005, 22.81 ± 0.67, and 6.24 ± 0.071 days (Kollros,1944). The average life duration of the adult used in this study was 221.16 days (Park et al., 1961). We used 94 offspring for fertility from the study Park et al.,(1965) and 99% rate of eclosion from pupae to adult. In order to explore the sensitivity of the base model to changes in mortality and fecundity, both of these parameters were systematically varied from near zero to their maximum value given in the base model (e.g., F = 94, P4 = 0.871). The parameters were varied alone or in combination and the resulting population growth was plotted. All plots were created using ggplot2 (Wickham, 2016) in R software (R Core Team, 2022). Three empirical scenarios from the literature were modeled containing estimates of fecundity reduction only, survivorship reduction only, or both fecundity and survivorship reduction when using LLIN (R.V. Wilkins et al., 2021; Gerken et al., 2021;Scheff et al., 2021, Scheff et al., 2023; Table 2). An individual projection matrix was constructed for each of the three scenarios and combinations of the reductions in fecundity, survivorship, or both. Population growth and proportion in each life stage was projected for 15 generations for each case, including the base model. Overall variation and oscillation were calculated to compare trends among proportion of life stages in each case. In order to compare differences in population sizes between cases for all generations and for generation 15 only, population sizes for each generation were bootstrapped 1000 times to provide iterative replication. The bootstrapped data were then compared one case to another using proc ttest in SAS (Version 9.4) for all generations and for generation 15 only. In addition, a sensitivity analysis was performed to determine which stage should be targeted to most greatly affect the population growth after exposure to the netting. Moreover, a mortality function based on empirical data with LLIN exposure collected in the laboratory on T. castaneum was implemented. The three scenarios are derived from: Gerken, A. R., J. F. Campbell, S. R. Abts, F. Arthur, W. R. Morrison, and D. S. Scheff. 2021. “Long-Lasting Insecticide-Treated Netting Affects Reproductive Output and Mating Behavior in Tribolium castaneum (Coleoptera: Tenebrionidae) and Trogoderma variabile (Coleoptera: Dermestidae).” Edited by Rizana Mahroof. Journal of Economic Entomology 114 (6): 2598–2609. https://doi.org/10.1093/jee/toab204. Scheff, D. S., A. R. Gerken, W. R. Morrison, J. F. Campbell, F. H. Arthur, and K. Y. Zhu. 2021. “Assessing Repellency, Movement, and Mortality of Three Species of Stored Product Insects after Exposure to Deltamethrin-Incorporated Long-Lasting Polyethylene Netting.” Journal of Pest Science 94 (3): 885–98. https://doi.org/10.1007/s10340-020-01326-3. Wilkins, R.V., J.F. Campbell, K.Y. Zhu, L.A. Starkus, T. McKay, and W.R. Morrison. 2021. “Long-Lasting Insecticide-Incorporated Netting and Interception Traps at Pilot-Scale Warehouses and Commercial Facilities Prevents Infestation by Stored Product Beetles.” Frontiers in Sustainable Food Systems 4: https://doi.org/10.3389/fsufs.2020.561820. Resources in this dataset:
Resource Title: Script for Modeling of LLIN effects on T. castaneum MS File Name: ranabhat_etal_modeling_MS_r_script_final_agdata_commons.R
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Approximately 25% of mammals are currently threatened with extinction, a risk that is amplified under climate change. Species persistence under climate change is determined by the combined effects of climatic factors on multiple demographic rates (survival, development, reproduction), and hence, population dynamics. Thus, to quantify which species and regions on Earth are most vulnerable to climate-driven extinction, a global understanding of how different demographic rates respond to climate is urgently needed. Here, we perform a systematic review of literature on demographic responses to climate, focusing on terrestrial mammals, for which extensive demographic data are available. To assess the full spectrum of responses, we synthesize information from studies that quantitatively link climate to multiple demographic rates. We find only 106 such studies, corresponding to 87 mammal species. These 87 species constitute < 1% of all terrestrial mammals. Our synthesis reveals a strong mismatch between the locations of demographic studies and the regions and taxa currently recognized as most vulnerable to climate change. Surprisingly, for most mammals and regions sensitive to climate change, holistic demographic responses to climate remain unknown. At the same time, we reveal that filling this knowledge gap is critical as the effects of climate change will operate via complex demographic mechanisms: a vast majority of mammal populations display projected increases in some demographic rates but declines in others, often depending on the specific environmental context, complicating simple projections of population fates. Assessments of population viability under climate change are in critical need to gather data that account for multiple demographic responses, and coordinated actions to assess demography holistically should be prioritized for mammals and other taxa.
Methods For each mammal species i with available life-history information, we searched SCOPUS for studies (published before 2018) where the title, abstract, or keywords contained the following search terms:
Scientific species namei AND (demograph* OR population OR life-history OR "life history" OR model) AND (climat* OR precipitation OR rain* OR temperature OR weather) AND (surv* OR reprod* OR recruit* OR brood OR breed* OR mass OR weight OR size OR grow* OR offspring OR litter OR lambda OR birth OR mortality OR body OR hatch* OR fledg* OR productiv* OR age OR inherit* OR sex OR nest* OR fecund* OR progression OR pregnan* OR newborn OR longevity).
We used the R package taxize (Chamberlain and Szöcs 2013) to resolve discrepancies in scientific names or taxonomic identifiers and, where applicable, searched SCOPUS using all scientific names associated with a species in the Integrated Taxonomic Information System (ITIS; http://www.itis.gov).
We did not extract information on demographic-rate-climate relationships if:
A study reported on single age or stage-specific demographic rates (e.g., Albon et al. 2002; Rézoiki et al. 2016)
A study used an experimental design to link demographic rates to climate variation (e.g., Cain et al. 2008)
A study considered the effects of climate only indirectly or qualitatively. In most cases, this occurred when demographic rates differed between seasons (e.g., dry vs. wet season) but were not linked explicitly to climatic factors (e.g., varying precipitation amount between seasons) driving these differences (e.g., de Silva et al. 2013; Gaillard et al. 2013).
We included several studies of the same population as different studies assessed different climatic variables or demographic rates or spanned different years (e.g., for Rangifer tarandus platyrhynchus, Albon et al. 2017; Douhard et al. 2016).
We note that we can miss a potentially relevant study if our search terms were not mentioned in the title, abstract, or keywords. To our knowledge, this occurred only once, for Mastomys natalensis (we included the relevant study [Leirs et al. 1997] into our review after we were made aware that it assesses climate-demography relationships in the main text).
Lastly, we checked for potential database bias by running the search terms for a subset of nine species in Web of Science. The subset included three species with > three climate-demography studies published and available in SCOPUS (Rangifer tarandus, Cervus elaphus, Myocastor coypus); three species with only one climate-demography study obtained from SCOPUS (Oryx gazella, Macropus rufus, Rhabdomys pumilio); and another three species where SCOPUS did not return any published study (Calcochloris obtusirostris, Cynomops greenhalli, Suncus remyi). Species in the three subcategories were randomly chosen. Web of Science did not return additional studies for the three species where SCOPUS also failed to return a potentially suitable study. For the remaining six species, the total number of studies returned by Web of Science differed, but the same studies used for this review were returned, and we could not find any additional studies that adhered to our extraction criteria.
Description of key collected data
From all studies quantitatively assessing climate-demography relationships, we extracted the following information:
Geographic location - The center of the study area was always used. If coordinates were not provided in a study, we assigned coordinates based on the study descriptions of field sites and data collection.
Terrestrial biome - The study population was assigned to one of 14 terrestrial biomes (Olson et al. 2001) corresponding to the center of the study area. As this review is focused on general climatic patterns affecting demographic rates, specific microhabitat conditions described for any study population were not considered.
Climatic driver - Drivers linked to demographic rates were grouped as either local/regional precipitation & temperature values or derived indices (e.g., ENSO, NAO). The temporal extent (e.g., monthly, seasonal, annual, etc.) and aggregation type (e.g., minimum, maximum, mean, etc.) of drivers was also noted.
Demographic rate modeled - To facilitate comparisons, we grouped the demographic rates into either survival, reproductive success (i.e., whether or not reproduction occurre, reproductive output (i.e., number or rate of offspring production), growth (including stage transitions), or condition that determines development (i.e., mass or size).
Stage or sex modeled - We retrieved information on responses of demographic rates to climate for each age class, stage, or sex modeled in a given study.
Driver effect - We grouped effects of drivers as positive (i.e., increased demographic rates), negative (i.e., reduced demographic rate), no effect, or context-dependent (e.g., positive effects at low population densities and now effect at high densities). We initially also considered nonlinear effects (e.g., positive effects at intermediate values and negative at extremes of a driver), but only 4 studies explicitly tested for nonlinear effects, by modelling squared or cubic climatic drivers in combination with driver interactions. We therefore considered nonlinear demographic effects as context dependent.
Driver interactions - We noted any density dependence modeled and any non-climatic covariates included (as additive or interactive effects) in the demographic-rate models assessing climatic effects.
Future projections of climatic driver - In studies that indicated projections of drivers under climate change, we noted whether drivers were projected to increase, decrease, or show context-dependent trends. For studies that provided no information on climatic projections, we quantified projections as described in Detailed description of climate-change projections below (see also climate_change_analyses_mammal_review.R).
In 2025, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth.
Introduction This report presents projections of population from 2015 to 2025 by age and sex for Illinois, Chicago and Illinois counties produced for the Certificate of Need (CON) Program. As actual future population trends are unknown, the projected numbers should not be considered a precise prediction of the future population; rather, these projections, calculated under a specific set of assumptions, indicate the levels of population that would result if our assumptions about each population component (births, deaths and net migration) hold true. The assumptions used in this report, and the details presented below, generally assume a continuation of current trends. Methodology These projections were produced using a demographic cohort-component projection model. In this model, each component of population change – birth, death and net migration – is projected separately for each five-year birth cohort and sex. The cohort – component method employs the following basic demographic balancing equation: P1 = P0 + B – D + NM Where: P1 = Population at the end of the period; P0 = Population at the beginning of the period; B = Resident births during the period; D = Resident deaths during the period; and NM = Net migration (Inmigration – Outmigration) during the period. The model roughly works as follows: for every five-year projection period, the base population, disaggregated by five-year age groups and sex, is “survived” to the next five-year period by applying the appropriate survival rates for each age and sex group; next, net migrants by age and sex are added to the survived population. The population under 5 years of age is generated by applying age specific birth rates to the survived females in childbearing age (15 to 49 years). Base Population These projections began with the July 1, 2010 population estimates by age and sex produced by the U.S. Census Bureau. The most recent census population of April 1, 2010 was the base for July 1, 2010 population estimates. Special Populations In 19 counties, the college dormitory population or adult inmates in correctional facilities accounted for 5 percent or more of the total population of the county; these counties were considered as special counties. There were six college dorm counties (Champaign, Coles, DeKalb, Jackson, McDonough and McLean) and 13 correctional facilities counties (Bond, Brown, Crawford, Fayette, Fulton, Jefferson, Johnson, Lawrence, Lee, Logan, Montgomery, Perry and Randolph) that qualified as special counties. When projecting the population, these special populations were first subtracted from the base populations for each special county; then they were added back to the projected population to produce the total population projections by age and sex. The base special population by age and sex from the 2010 population census was used for this purpose with the assumption that this population will remain the same throughout each projection period. Mortality Future deaths were projected by applying age and sex specific survival rates to each age and sex specific base population. The assumptions on survival rates were developed on the basis of trends of mortality rates in the individual life tables constructed for each level of geography for 1989-1991, 1999-2001 and 2009-2011. The application of five-year survival rates provides a projection of the number of persons from the initial population expected to be alive in five years. Resident deaths data by age and sex from 1989 to 2011 were provided by the Illinois Center for Health Statistics (ICHS), Illinois Department of Public Health. Fertility Total fertility rates (TFRs) were first computed for each county. For most counties, the projected 2015 TFRs were computed as the average of the 2000 and 2010 TFRs. 2010 or 2015 rates were retained for 2020 projections, depending on the birth trend of each county. The age-specific birth rates (ASBR) were next computed for each county by multiplying the 2010 ASBR by each projected TFR. Total births were then projected for each county by applying age-specific birth rates to the projected female population of reproductive ages (15 to 49 years). The total births were broken down by sex, using an assumed sex-ratio at birth. These births were survived five years applying assumed survival ratios to get the projected population for the age group 0-4. For the special counties, special populations by age and sex were taken out before computing age-specific birth rates. The resident birth data used to compute age-specific birth rates for 1989-1991, 1999-2001 and 2009-2011 came from ICHS. Births to females younger than 15 years of age were added to those of the 15-19 age group and births to women older than 49 years of age were added to the 45-49 age group. Net Migration Migration is the major component of population change in Illinois, Chicago and Illinois counties. The state is experiencing a significant loss of population through internal (domestic migration within the U.S.) net migration. Unlike data on births and deaths, migration data based on administrative records are not available on a regular basis. Most data on migration are collected through surveys or indirectly from administrative records (IRS individual tax returns). For this report, net migration trends have been reviewed using data from different sources and methods (such as residual method) from the University of Wisconsin, Madison, Illinois Department of Public Health, individual exemptions data from the Internal Revenue Service, and survey data from the U.S. Census Bureau. On the basis of knowledge gained through this review and of levels of net migration from different sources, assumptions have been made that Illinois will have annual net migrants of -40, 000, -35,000 and -30,000 during 2010-2015, 2015-2020 and 2020-2025, respectively. These figures have been distributed among the counties, using age and sex distribution of net migrants during 1995-2000. The 2000 population census was the last decennial census, which included the question “Where did you live five years ago?” The age and sex distribution of the net migrants was derived, using answers to this question. The net migration for Chicago has been derived independently, using census survival method for 1990-2000 and 2000-2010 under the assumption that the annual net migration for Chicago will be -40,000, -30,000 and -25,000 for 2010-2015, 2015-2020 and 2020-2025, respectively. The age and sex distribution from the 2000-2010 net migration was used to distribute the net migrants for the projection periods. Conclusion These projections were prepared for use by the Certificate of Need (CON) Program; they are produced using evidence-based techniques, reasonable assumptions and the best available input data. However, as assumptions of future demographic trends may contain errors, the resulting projections are unlikely to be free of errors. In general, projections of small areas are less reliable than those for larger areas, and the farther in the future projections are made, the less reliable they may become. When possible, these projections should be regularly reviewed and updated, using more recent birth, death and migration data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
1) BTN_publish.R: R code for summarizing recent plan data, random forest analysis of trends by predictor variables, and creating figures for publication2) BTN_Bayes_publish.R: R code for Bayesian modeling to estimate change in demographic and genetic metrics over time3) recentprogramsdat_anon.csv: anonymized data from most recent breeding and transfer plans for each Program, used in (1)4) BayesAnalysis_anon: anonymized trend results from Bayesian models and trait data, used in (1)5) initNmat_anon.csv: anonymized Program-level data for modeling slopes, used in (2)6) plotdat_anon.csv: anonymized plan-level data for modeling slopes, used in (2)7) WebTable5_PMCTrack_slopes.html: table with the model estimated slopes for seven demographic and genetic metrics for all Programs, as described in WebPanel1
The Côte d'Ivoire Living Standards Survey (CILSS) was the first LSMS Survey to have field tested the methodology and questionnaire developed by LSMS. It consists of three complementary surveys: the household survey, the community survey and the price survey. The household survey collected detailed information on expenditures, income, employment, assets, basic needs and other socio-economic characteristics of the households. The Community Survey collected information on economic and demographic characteristics of the rural communities to which each cluster of households belonged. This was designed to enable the linkage of community level with household level data. The price survey component of the CILSS collected data on prices at the nearest market to each cluster of households, so that regional price indices could be constructed for the household survey.
The Côte d'Ivoire Living Standards Survey (CILSS) was undertaken over a period of four years, 1985-88, by the Direction de la Statistique in Côte d'Ivoire, with financial and technical support from the World Bank during the first two years of the survey. It was the first year-round household survey to have been undertaken by the Ivorian Direction de la Statistique.
The sample size each year was 1600 households and the sample design was a rotating panel. That is, half of the households were revisited the following year, while the other half were replaced with new households. The survey thus produced four cross-sectional data sets as well as three overlapping panels of 800 households each (1985-86, 1986-87, 1987-88).
National coverage Domains: Urban/rural; Regions (East Forest, West Forest, East Savannah, West Savannah)
Sample survey data [ssd]
The principal objective of the sample selection process for the CILSS Household Survey was to obtain a nationally representative cross-section of African households, some of which could be interviewed in successive years as panel households.
A two-stage sampling procedure was used. In the first stage, 100 Primary Sampling Units (PSUs) were selected across the country from a list of all PSUs available in the sampling frame. At the second stage, a cluster of 16 households was selected within each PSU. This led to a sample size of 1600 households a year, in 100 cluster s of 16 households each. Half of the households were replaced each year while the other half (the panel households in 1986, 1987 and 1988) were interviewed a second time.
It is important to note that there was a change in the sampling procedures (the sampling frame, PSU selection process and listing procedures), used to select half of the clusters/households interviewed in 1987 (the other half were panel households retained from 1986), and all of the clusters/households interviewed in 1988. Households selected on the basis of the first set of sampling procedures will henceforth be referred to as Block 1 data while households based on the second set of sampling procedures will be referred to as Block 2 data.
Sampling Procedures for Block 1 Data
The Sampling Frame. The sampling frame for the 1985, 1986, and half of the 1987 samples (except for Abidjan and Bouaké) was a list of localities constructed on the basis of the 1975 Census, updated to 1983 by the demographers of the Direction de la Statistique and based on a total population estimated at 9.4 million in 1983.
The Block 1 frame for Abidjan and Bouaké was based on data from a 1979-80 electoral census of these two cities. The electoral census had produced detailed maps of the two cities that divided each sector of the city into smaller sub-sectors (îlots). Sub-sectors with similar types of housing were grouped together by statisticians in the Direction de la Statistique to form PSUs. From a list of all PSUs in each city, along with each PSU's population size, the required number of PSUs were selected using a systematic sampling procedure. The step size was equal to the city's population divided by the number of PSUs required in each city. One problem identified in the selection process for Abidjan arose from the fact that one sector of the city (Yopougon) which had been relatively small in 1980 at the time of the electoral census, had since become the largest agglomeration in Côte d'Ivoire. This problem was presumably unavoidable since accurate population data for Yopougon was not available at the time of the PSU selection process.
Selection of PSUs. Geographic stratification was not explicitly needed because the systematic sampling procedure that was used to select the PSUs ensured that the sample was balanced with respect to region and by site type, within each region. The main geographical regions defined were: East Forest, West Forest, and Savannah. Site types varied as follows: large cities, towns, large and small villages, surrounding towns, village centers, and villages attached to them. The 100 PSUs were selected, with probabilities proportional to the size of their population, from a list of PSUs sorted by region and within each region, by site type.
Selection of households within each PSU. A pre-survey was conducted in June-July of 1984, to establish the second-stage sampling frame, i.e. a list of households for each PSU from which 16 households could be selected. The same listing exercise was to be used for both the 1985 and 1986 surveys, in order to avoid having to conduct another costly pre-survey in the second year. Thus, the 1984 pre-survey had to provide enough households so as to be able to select two clusters of households in each PSU and to allow for replacement households in the event that some in the sample could not be contacted or refused to participate. A listing of 64 households in each PSU met this requirement. In PSUs with 64 households or fewer, every household was listed. In selecting the households, the "step" used was equal to the estimated number of households in the PSU divided by 64. For example, if the PSU had an estimated 640 households, then every tenth household was included in the listing, counted from a random starting point in the PSU. For operational reasons, the maximum step allowable was a step of 30. In practice, it appears that enumerators used doors, instead of housing structures, in counting the step. Al though enumerators were supposed to start the listing process from a random point in the PSU, in rural areas and small towns, reportedly, the lister started from the center of the PSU.
Sampling Procedures for Block 2 Data
The Sampling Frame. The sampling frame for Block 2 data was established from a list of places from the results of the Census of inhabited sites (RSH) performed in preparation for the 1988 Population Census.
Selection of PSUs. The PSUs were selected with probability proportional to size. However, in order to save what might have been exorbitant costs of listing every household in each selected PSU in a pre-survey, the Direction de la Statistique made a decision to enumerate a smaller unit within each PSU. The area within each PSU was divided into smaller blocks called `îlots'. Households were then selected from a randomly chosen îlot within each PSU. The sample îlot was selected with equal probability within each PSU, not on the basis of probability proportional to size. (These îlots are reportedly relatively small compared with the size of PSUs selected for the Block 1 frame, but no further information is available about their geographical position within the PSUs.)
Selection of households within each PSU. All households in each îlot selected for the Block 2 sample were listed. Sixteen households were then randomly chosen from the list of households for each îlot.
Bias in the Selection of Households within PSUs, Block 1 Data
Analysis of the four years of the CILSS data revealed that household size (unweighted), dropped by 24 percent between 1985 and 1988. Three possible explanations were considered: (1) area l demographic change; (2) non-sampling measurement errors were involved; or (3) some sort of sampling bias. Investigation ruled out the first two possibilities. The third possibility clearly was an issue because the sampling frame and listing procedures had indeed changed in midstream and this was likely to have had an effect. In fact, the investigation found that the substantial part of the drop in household size over the years occurred between the first and second panel data sets in 1987, i.e. the tail end of Block 1 data and the start of Block 2 data. From this, it is reasonable to assume that differences in the sampling frame and sampling procedures between the two blocks were indeed responsible.
The listing procedures for Block 1 data indicate d that the selection of households within PSUs was likely to have been biased toward the selection of larger dwellings. Based on a discussion with Christopher Scott, statistical consultant, Demery and Grootaert explain as follows: "In the selected primary sampling units, where the listing of households was to occur, enumerators were instructed to start the listing process at a random location in the primary sampling unit and from this point to select every nth household, that is, with a given fixed "step" until sixty-four households were listed. There are two sources of potential bias in this listing procedure. First, the selection of the starting point might not have been random, but subject to motivated bias on the part of the enumerator (such as the selection of a point where there are numerous dwellings or that is easily accessible). Second, in practice, enumerators counted doors to achieve the "step", rather than counting actual households. This method leads to sample
Not many studies have documented climate and air quality changes of settlements at early stages of development. This is because high quality climate and air quality records are deficient for the periods of the early 18th century to mid 20th century when many U.S. cities were formed and grew. Dramatic landscape change induces substantial local climate change during the incipient stage of development. Rapid growth along the urban fringe in Phoenix, coupled with a fine-grained climate monitoring system, provide a unique opportunity to study the climate impacts of urban development as it unfolds. Generally, heat islands form, particularly at night, in proportion to city population size and morphological characteristics. Drier air is produced by replacement of the countryside's moist landscapes with dry, hot urbanized surfaces. Wind is increased due to turbulence induced by the built-up urban fabric and its morphology; although, depending on spatial densities of buildings on the land, wind may also decrease. Air quality conditions are worsened due to increased city emissions and surface disturbances. Depending on the diversity of microclimates in pre-existing rural landscapes and the land-use mosaic in cities, the introduction of settlements over time and space can increase or decrease the variety of microclimates within and near urban regions. These differences in microclimatic conditions can influence variations in health, ecological, architectural, economic, energy and water resources, and quality-of-life conditions in the city. Therefore, studying microclimatic conditions which change in the urban fringe over time and space is at the core of urban ecological goals as part of LTER aims. In analyzing Phoenix and Baltimore long-term rural/urban weather and climate stations, Brazel et al. (In progress) have discovered that long-term (i.e., 100 years) temperature changes do not correlate with populations changes in a linear manner, but rather in a third-order nonlinear response fashion. This nonlinear temporal change is consistent with the theories in boundary layer climatology that describe and explain the leading edge transition and energy balance theory. This pattern of urban vs. rural temperature response has been demonstrated in relation to spatial range of city sizes (using population data) for 305 rural vs. urban climate stations in the U.S. Our recent work on the two urban LTER sites has shown that a similar climate response pattern also occurs over time for climate stations that were initially located in rural locations have been overrun bu the urban fringe and subsequent urbanization (e.g., stations in Baltimore, Mesa, Phoenix, and Tempe). Lack of substantial numbers of weather and climate stations in cities has previously precluded small-scale analyses of geographic variations of urban climate, and the links to land-use change processes. With the advent of automated weather and climate station networks, remote-sensing technology, land-use history, and the focus on urban ecology, researchers can now analyze local climate responses as a function of the details of land-use change. Therefore, the basic research question of this study is: How does urban climate change over time and space at the place of maximum disturbance on the urban fringe? Hypotheses 1. Based on the leading edge theory of boundary layer climate change, largest changes should occur during the period of peak development of the land when land is being rapidly transformed from open desert and agriculture to residential, commercial, and industrial uses. 2. One would expect to observe, on average and on a temporal basis (several years), nonlinear temperature and humidity alterations across the station network at varying levels of urban development. 3. Based on past research on urban climate, one would expect to see in areas of the urban fringe, rapid changes in temperature (increases at night particularly), humidity (decreases in areas from agriculture to urban; increases from desert to urban), and wind speed (increases due to urban heating). 4. Changes of the surface climate on the urban fringe are expected to be altered as a function of various energy, moisture, and momentum control parameters, such as albedo, surface moisture, aerodynamic surface roughness, and thermal admittance. These parameters relate directly to population and land-use change (Lougeay et al. 1996).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
1. Experimental and observational studies on seedling dynamics posit mechanisms that can influence forest diversity, structure, and function. However, high mortality and slow growth of seedlings make it difficult to evaluate the importance of this life-history filter to total tree life history. Quantifying the duration and transition of the seedling phase would help us understand this 'black box' in tree population biology.
2. We used a 16-year dataset of comprehensive seedling-to-sapling demography from a subtropical rain forest to construct population models that capture temporal demographic fluctuations for eight major tree species. We used data-driven demographic models and simulations to estimate the transition ratios from newly recruited seedlings to saplings of 2 m height and the time taken to attain 2 m height for a newly recruited seedling conditional on its survival.
3. Projections among species estimated that as few as 57 to more than 40,000 seedlings (with a median of 2,087) were required to make a single 2 m high sapling. Furthermore, it would take 22 to 200 years (with a median of 47) for a newly recruited seedling to become a 2 m high sapling. We found that temporal variation in demographic rates could greatly reduce the number of seedlings per established sapling, but not passage times. We also identified the importance of consistently fast growth rates for seedlings to escape the high mortality of early stages.
4. Synthesis. Our findings demonstrate that high mortality in the very early seedling stage severely limits the probability that a newly recruited seedling will transition to the sapling stage. Although the passage times vary, we found this to be true across species with a range of life-history strategies. Only seedlings with consistently fast growth rates are expected to pass through this life-history filter. Findings from seedling studies should consider how short term studies of seedling demography might capture the rare exceptional individuals and exceptional conditions that might define the dynamics of this seedling bottleneck.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
In a time of global change, having an understanding of the nature of biotic and abiotic factors that drive a species’ range may be the sharpest tool in the arsenal of conservation and management of threatened species. However, such information is lacking for most tropical and epiphytic species due to the complexity of life history, the roles of stochastic events, and the diversity of habitat across the span of a distribution. In this study, we conducted repeated censuses across the core and peripheral range of Trichocentrum undulatum, a threatened orchid that is found throughout the island of Cuba (species core range) and southern Florida (the northern peripheral range). We used demographic matrix modeling as well as stochastic simulations to investigate the impacts of herbivory, hurricanes, and logging (in Cuba) on projected population growth rates (? and ?s) among sites. Methods Field methods Censuses took place between 2013 and 2021. The longest census period was that of the Peripheral population with a total of nine years (2013–2021). All four populations in Cuba used in demographic modeling that were censused more than once: Core 1 site (2016–2019, four years), Core 2 site (2018–2019, two years), Core 3 (2016 and 2018 two years), and Core 4 (2018–2019, two years) (Appendix S1: Table S1). In November 2017, Hurricane Irma hit parts of Cuba and southern Florida, impacting the Peripheral population. The Core 5 population (censused on 2016 and 2018) was small (N=17) with low survival on the second census due to logging. Three additional populations in Cuba were visited only once, Core 6, Core 7, and Core 8 (Table 1). Sites with one census or with a small sample size (Core 5) were not included in the life history and matrix model analyses of this paper due to the lack of population transition information, but they were included in the analysis on the correlation between herbivory and fruit rate, as well as the use of mortality observations from logging for modeling. All Cuban sites were located between Western and Central Cuba, spanning four provinces: Mayabeque (Core 1), Pinar del Rio (Core 2 and Core 6), Matanzas (Core 3 and Core 5), and Sancti Spiritus (Core 4, Core 7, Core 8). At each population of T. undulatum presented in this study, individuals were studied within ~1-km strips where T. undulatum occurrence was deemed representative of the site, mostly occurring along informal forest trails. Once an individual of T. undulatum was located, all trees within a 5-m radius were searched for additional individuals. Since tagging was not permitted, we used a combination of information to track individual plants for the repeated censuses. These include the host species, height of the orchid, DBH of the host tree, and hand-drawn maps. Individual plants were also marked by GPS at the Everglades Peripheral site. If a host tree was found bearing more than one T. undulatum, then we systematically recorded the orchids in order from the lowest to highest as well as used the previous years’ observations in future censuses for individualized notes and size records. We recorded plant size and reproductive variables during each census including: the number of leaves, length of the longest leaf (cm), number of inflorescence stalks, number of flowers, and the number of mature fruits. We also noted any presence of herbivory, such as signs of being bored by M. miamensis, and whether an inflorescence was partially or completely affected by the fly, and whether there was other herbivory, such as D. boisduvalii on leaves. We used logistic regression analysis to examine the effects of year (at the Peripheral site) and sites (all sites) on the presence or absence of inflorescence herbivory at all the sites. Cross tabulation and chi-square analysis were done to examine the associations between whether a plant was able to fruit and the presence of floral herbivory by M. miamensis. The herbivory was scored as either complete or partial. During the orchid population scouting expeditions, we came across a small population in the Matanzas province (Core 5, within 10 km of the Core 3 site) and recorded the demographic information. Although the sampled population was small (N = 17), we were able to observe logging impacts at the site and recorded logging-associated mortality on the subsequent return to the site. Matrix modeling Definition of size-stage classes To assess the life stage transitions and population structures for each plant for each population’s census period we first defined the stage classes for the species. The categorization for each plant’s stage class depended on both its size and reproductive capabilities, a method deemed appropriate for plants (Lefkovitch 1965, Cochran and Ellner 1992). A size index score was calculated for each plant by taking the total number of observed leaves and adding the length of the longest leaf, an indication of accumulated biomass (Borrero et al. 2016). The smallest plant size that attempted to produce an inflorescence is considered the minimum size for an adult plant. Plants were classified by stage based on their size index and flowering capacity as the following: (1) seedlings (or new recruits), i.e., new and small plants with a size index score of less than 6, (2) juveniles, i.e., plants with a size index score of less than 15 with no observed history of flowering, (3) adults, plants with size index scores of 15 or greater. Adult plants of this size or larger are capable of flowering but may not produce an inflorescence in a given year. The orchid’s population matrix models were constructed based on these stages. In general, orchid seedlings are notoriously difficult to observe and easily overlooked in the field due to the small size of protocorms. A newly found juvenile on a subsequent site visit (not the first year) may therefore be considered having previously been a seedling in the preceding year. In this study, we use the discovered “seedlings” as indicatory of recruitment for the populations. Adult plants are able to shrink or transition into the smaller juvenile stage class, but a juvenile cannot shrink to the seedling stage. Matrix elements and population vital rates calculations Annual transition probabilities for every stage class were calculated. A total of 16 site- and year-specific matrices were constructed. When seedling or juvenile sample sizes were < 9, the transitions were estimated using the nearest year or site matrix elements as a proxy. Due to the length of the study and variety of vegetation types with a generally large population size at each site, transition substitutions were made with the average stage transition from all years at the site as priors. If the sample size of the averaged stage was still too small, the averaged transition from a different population located at the same vegetation type was used. We avoided using transition values from populations found in different vegetation types to conserve potential environmental differences. A total of 20% (27/135) of the matrix elements were estimated in this fashion, the majority being seedling stage transitions (19/27) and noted in the Appendices alongside population size (Appendix S1: Table S1). The fertility element transitions from reproductive adults to seedlings were calculated as the number of seedlings produced (and that survived to the census) per adult plant. Deterministic modeling analysis We used integral projection models (IPM) to project the long-term population growth rates for each time period and population. The finite population growth rate (?), stochastic long-term growth rate (?s), and the elasticity were projected for each matrices using R Popbio Package 2.4.4 (Stubben and Milligan 2007, Caswell 2001). The elasticity matrices were summarized by placing each element into one of three categories: fecundity (transition from reproductive adults to seedling stage), growth (all transitions to new and more advanced stage, excluding the fecundity), and stasis (plants that transitioned into the same or a less advanced stage on subsequent census) (Liu et al. 2005). Life table response experiments (LTREs) were conducted to identify the stage transitions that had the greatest effects on observed differences in population growth between select sites and years (i.e., pre-post hurricane impact and site comparisons of same vegetation type). Due to the frequent disturbances that epiphytes in general experience as well as our species’ distribution in hurricane-prone areas, we ran transient dynamic models that assume that the populations censused were not at stable stage distributions (Stott et al. 2011). We calculated three indices for short-term transient dynamics to capture the variation during a 15-year transition period: reactivity, maximum amplification, and amplified inertia. Reactivity measures a population’s growth in a single measured timestep relative to the stable-stage growth, during the simulated transition period. Maximum amplification and amplified inertia are the maximum of future population density and the maximum long-term population density, respectively, relative to a stable-stage population that began at the same initial density (Stott et al. 2011). For these analyses, we used a mean matrix for Core 1, Core 2 Core 3, and Core 4 sites and the population structure of their last census. For the Peripheral site, we averaged the last three matrices post-hurricane disturbance and used the most-recent population structure. We standardized the indices across sites with the assumption of initial population density equal to 1 (Stott et al. 2011). Analysis was done using R Popdemo version 1.3-0 (Stott et al. 2012b). Stochastic simulation We created matrices to simulate the effects of episodic recruitment, hurricane impacts, herbivory, and logging (Appendix S1: Table S2). The Peripheral population is the longest-running site with nine years of censuses (eight