Includes questions pertaining to: race & ethnicitygenderagetribal affiliationdisabilityincomelanguagelocation
The Gallup Poll Social Series (GPSS) is a set of public opinion surveys designed to monitor U.S. adults' views on numerous social, economic, and political topics. The topics are arranged thematically across 12 surveys. Gallup administers these surveys during the same month every year and includes the survey's core trend questions in the same order each administration. Using this consistent standard allows for unprecedented analysis of changes in trend data that are not susceptible to question order bias and seasonal effects.
Introduced in 2001, the GPSS is the primary method Gallup uses to update several hundred long-term Gallup trend questions, some dating back to the 1930s. The series also includes many newer questions added to address contemporary issues as they emerge.
The dataset currently includes responses from up to and including 2025.
Gallup conducts one GPSS survey per month, with each devoted to a different topic, as follows:
January: Mood of the Nation
February: World Affairs
March: Environment
April: Economy and Finance
May: Values and Beliefs
June: Minority Rights and Relations (discontinued after 2016)
July: Consumption Habits
August: Work and Education
September: Governance
October: Crime
November: Health
December: Lifestyle (conducted 2001-2008)
The core questions of the surveys differ each month, but several questions assessing the state of the nation are standard on all 12: presidential job approval, congressional job approval, satisfaction with the direction of the U.S., assessment of the U.S. job market, and an open-ended measurement of the nation's "most important problem." Additionally, Gallup includes extensive demographic questions on each survey, allowing for in-depth analysis of trends.
Interviews are conducted with U.S. adults aged 18 and older living in all 50 states and the District of Columbia using a dual-frame design, which includes both landline and cellphone numbers. Gallup samples landline and cellphone numbers using random-digit-dial methods. Gallup purchases samples for this study from Survey Sampling International (SSI). Gallup chooses landline respondents at random within each household based on which member had the next birthday. Each sample of national adults includes a minimum quota of 70% cellphone respondents and 30% landline respondents, with additional minimum quotas by time zone within region. Gallup conducts interviews in Spanish for respondents who are primarily Spanish-speaking.
Gallup interviews a minimum of 1,000 U.S. adults aged 18 and older for each GPSS survey. Samples for the June Minority Rights and Relations survey are significantly larger because Gallup includes oversamples of Blacks and Hispanics to allow for reliable estimates among these key subgroups.
Gallup weights samples to correct for unequal selection probability, nonresponse, and double coverage of landline and cellphone users in the two sampling frames. Gallup also weights its final samples to match the U.S. population according to gender, age, race, Hispanic ethnicity, education, region, population density, and phone status (cellphone only, landline only, both, and cellphone mostly).
Demographic weighting targets are based on the most recent Current Population Survey figures for the aged 18 and older U.S. population. Phone status targets are based on the most recent National Health Interview Survey. Population density targets are based on the most recent U.S. Census.
The year appended to each table name represents when the data was last updated. For example, January: Mood of the Nation - 2025** **has survey data collected up to and including 2025.
For more information about what survey questions were asked over time, see the Supporting Files.
Data access is required to view this section.
The 2015-16 Armenia Demographic and Health Survey (2015-16 ADHS) is the fourth in a series of nationally representative sample surveys designed to provide information on population and health issues. It is conducted in Armenia under the worldwide Demographic and Health Surveys program. Specifically, the objective of the 2015-16 ADHS is to provide current and reliable information on fertility and abortion levels, marriage, sexual activity, fertility preferences, awareness and use of family planning methods, breastfeeding practices, nutritional status of young children, childhood mortality, maternal and child health, domestic violence against women, child discipline, awareness and behavior regarding AIDS and other sexually transmitted infections (STIs), and other health-related issues such as smoking, tuberculosis, and anemia. The survey obtained detailed information on these issues from women of reproductive age and, for certain topics, from men as well.
The 2015-16 ADHS results are intended to provide information needed to evaluate existing social programs and to design new strategies to improve the health of and health services for the people of Armenia. Data are presented by region (marz) wherever sample size permits. The information collected in the 2015-16 ADHS will provide updated estimates of basic demographic and health indicators covered in the 2000, 2005, and 2010 surveys.
The long-term objective of the survey includes strengthening the technical capacity of major government institutions, including the NSS. The 2015-16 ADHS also provides comparable data for longterm trend analysis because the 2000, 2005, 2010, and 2015-16 surveys were implemented by the same organization and used similar data collection procedures. It also adds to the international database of demographic and health–related information for research purposes.
National coverage
The survey covered all de jure household members (usual residents), children age 0-4 years, women age 15-49 years and men age 15-49 years resident in the household.
Sample survey data [ssd]
The sample was designed to produce representative estimates of key indicators at the national level, for Yerevan, and for total urban and total rural areas separately. Many indicators can also be estimated at the regional (marz) level.
The sampling frame used for the 2015-16 ADHS is the Armenia Population and Housing Census, which was conducted in Armenia in 2011 (APHC 2011). The sampling frame is a complete list of enumeration areas (EAs) covering the whole country, a total number of 11,571 EAs, provided by the National Statistical Service (NSS) of Armenia, the implementing agency for the 2015-16 ADHS. This EA frame was created from the census data base by summarizing the households down to EA level. A representative probability sample of 8,749 households was selected for the 2015-16 ADHS sample. The sample was selected in two stages. In the first stage, 313 clusters (192 in urban areas and 121 in rural areas) were selected from a list of EAs in the sampling frame. In the second stage, a complete listing of households was carried out in each selected cluster. Households were then systematically selected for participation in the survey. Appendix A provides additional information on the sample design of the 2015-16 Armenia DHS. Because of the approximately equal sample size in each marz, the sample is not self-weighting at the national level, and weighting factors have been calculated, added to the data file, and applied so that results are representative at the national level.
For further details on sample design, see Appendix A of the final report.
Face-to-face [f2f]
Five questionnaires were used for the 2015-16 ADHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, the Biomarker Questionnaire, and the Fieldworker Questionnaire. These questionnaires, based on The DHS Program’s standard Demographic and Health Survey questionnaires, were adapted to reflect the population and health issues relevant to Armenia. Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organizations, and international donors. After all questionnaires were finalized in English, they were translated into Armenian. They were pretested in September-October 2015.
The processing of the 2015-16 ADHS data began shortly after fieldwork commenced. All completed questionnaires were edited immediately by field editors while still in the field and checked by the supervisors before being dispatched to the data processing center at the NSS central office in Yerevan. These completed questionnaires were edited and entered by 15 data processing personnel specially trained for this task. All data were entered twice for 100 percent verification. Data were entered using the CSPro computer package. The concurrent processing of the data was an advantage because the senior ADHS technical staff were able to advise field teams of problems detected during the data entry. In particular, tables were generated to check various data quality parameters. Moreover, the double entry of data enabled easy comparison and identification of errors and inconsistencies. As a result, specific feedback was given to the teams to improve performance. The data entry and editing phase of the survey was completed in June 2016.
A total of 8,749 households were selected in the sample, of which 8,205 were occupied at the time of the fieldwork. The main reason for the difference is that some of the dwelling units that were occupied during the household listing operation were either vacant or the household was away for an extended period at the time of interviewing. The number of occupied households successfully interviewed was 7,893, yielding a household response rate of 96 percent. The household response rate in urban areas (96 percent) was nearly the same as in rural areas (97 percent).
In these households, a total of 6,251 eligible women were identified; interviews were completed with 6,116 of these women, yielding a response rate of 98 percent. In one-half of the households, a total of 2,856 eligible men were identified, and interviews were completed with 2,755 of these men, yielding a response rate of 97 percent. Among men, response rates are slightly lower in urban areas (96 percent) than in rural areas (97 percent), whereas rates for women are the same in urban and in rural areas (98 percent).
The 2015-16 ADHS achieved a slightly higher response rate for households than the 2010 ADHS (NSS 2012). The increase is only notable for urban households (96 percent in 2015-16 compared with 94 percent in 2010). Response rates in all other categories are very close to what they were in 2010.
SAS computer software were used to calculate sampling errors for the 2015-16 ADHS. The programs used the Taylor linearization method of variance estimation for means or proportions and the Jackknife repeated replication method for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months - Nutritional status of children based on the NCHS/CDC/WHO International Reference Population - Vaccinations by background characteristics for children age 18-29 months
See details of the data quality tables in Appendix C of the survey final report.
https://www.gesis.org/en/institute/data-usage-termshttps://www.gesis.org/en/institute/data-usage-terms
ALLBUS (GGSS - the German General Social Survey) is a biennial trend survey based on random samples of the German population. Established in 1980, its mission is to monitor attitudes, behavior, and social change in Germany. Each ALLBUS cross-sectional survey consists of one or two main question modules covering changing topics, a range of supplementary questions and a core module providing detailed demographic information. Additionally, data on the interview and the interviewers are provided as well. Key topics generally follow a 10-year replication cycle, many individual indicators and item batteries are replicated at shorter intervals. The present data set contains socio-demographic variables from the ALLBUS 2021, which were harmonized to the standards developed as part of the KonsortSWD sub-project “Harmonized Variables” (Schneider et al., 2023). While there are already established recommendations for the formulation of socio-demographic questionnaire items (e.g. the “Demographic Standards” by Hoffmeyer-Zlotnik et al., 2016), there were no such standards at the variable level. The KonsortSWD project closes this gap and establishes 32 standard variables for 19 socio-demographic characteristics contained in this dataset.
The primary objective of the 2017 Indonesia Dmographic and Health Survey (IDHS) is to provide up-to-date estimates of basic demographic and health indicators. The IDHS provides a comprehensive overview of population and maternal and child health issues in Indonesia. More specifically, the IDHS was designed to: - provide data on fertility, family planning, maternal and child health, and awareness of HIV/AIDS and sexually transmitted infections (STIs) to help program managers, policy makers, and researchers to evaluate and improve existing programs; - measure trends in fertility and contraceptive prevalence rates, and analyze factors that affect such changes, such as residence, education, breastfeeding practices, and knowledge, use, and availability of contraceptive methods; - evaluate the achievement of goals previously set by national health programs, with special focus on maternal and child health; - assess married men’s knowledge of utilization of health services for their family’s health and participation in the health care of their families; - participate in creating an international database to allow cross-country comparisons in the areas of fertility, family planning, and health.
National coverage
The survey covered all de jure household members (usual residents), all women age 15-49 years resident in the household, and all men age 15-54 years resident in the household.
Sample survey data [ssd]
The 2017 IDHS sample covered 1,970 census blocks in urban and rural areas and was expected to obtain responses from 49,250 households. The sampled households were expected to identify about 59,100 women age 15-49 and 24,625 never-married men age 15-24 eligible for individual interview. Eight households were selected in each selected census block to yield 14,193 married men age 15-54 to be interviewed with the Married Man's Questionnaire. The sample frame of the 2017 IDHS is the Master Sample of Census Blocks from the 2010 Population Census. The frame for the household sample selection is the updated list of ordinary households in the selected census blocks. This list does not include institutional households, such as orphanages, police/military barracks, and prisons, or special households (boarding houses with a minimum of 10 people).
The sampling design of the 2017 IDHS used two-stage stratified sampling: Stage 1: Several census blocks were selected with systematic sampling proportional to size, where size is the number of households listed in the 2010 Population Census. In the implicit stratification, the census blocks were stratified by urban and rural areas and ordered by wealth index category.
Stage 2: In each selected census block, 25 ordinary households were selected with systematic sampling from the updated household listing. Eight households were selected systematically to obtain a sample of married men.
For further details on sample design, see Appendix B of the final report.
Face-to-face [f2f]
The 2017 IDHS used four questionnaires: the Household Questionnaire, Woman’s Questionnaire, Married Man’s Questionnaire, and Never Married Man’s Questionnaire. Because of the change in survey coverage from ever-married women age 15-49 in the 2007 IDHS to all women age 15-49, the Woman’s Questionnaire had questions added for never married women age 15-24. These questions were part of the 2007 Indonesia Young Adult Reproductive Survey Questionnaire. The Household Questionnaire and the Woman’s Questionnaire are largely based on standard DHS phase 7 questionnaires (2015 version). The model questionnaires were adapted for use in Indonesia. Not all questions in the DHS model were included in the IDHS. Response categories were modified to reflect the local situation.
All completed questionnaires, along with the control forms, were returned to the BPS central office in Jakarta for data processing. The questionnaires were logged and edited, and all open-ended questions were coded. Responses were entered in the computer twice for verification, and they were corrected for computer-identified errors. Data processing activities were carried out by a team of 34 editors, 112 data entry operators, 33 compare officers, 19 secondary data editors, and 2 data entry supervisors. The questionnaires were entered twice and the entries were compared to detect and correct keying errors. A computer package program called Census and Survey Processing System (CSPro), which was specifically designed to process DHS-type survey data, was used in the processing of the 2017 IDHS.
Of the 49,261 eligible households, 48,216 households were found by the interviewer teams. Among these households, 47,963 households were successfully interviewed, a response rate of almost 100%.
In the interviewed households, 50,730 women were identified as eligible for individual interview and, from these, completed interviews were conducted with 49,627 women, yielding a response rate of 98%. From the selected household sample of married men, 10,440 married men were identified as eligible for interview, of which 10,009 were successfully interviewed, yielding a response rate of 96%. The lower response rate for men was due to the more frequent and longer absence of men from the household. In general, response rates in rural areas were higher than those in urban areas.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors result from mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017 Indonesia Demographic and Health Survey (2017 IDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017 IDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2017 IDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the 2017 IDHS is a STATA program. This program used the Taylor linearization method for variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in Appendix C of the survey final report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar year - Reporting of age at death in days - Reporting of age at death in months
See details of the data quality tables in Appendix D of the survey final report.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data is from responses to demographic questions in the questionnaire on randomization.Older participants (66 years, ±16 vs. 61 years ±16, p = 0.02) and Maori (66% vs. 29%, p<0.001) were less likely to complete the questionnaire, however there were no differences between randomized groups. The total completion rate was higher for the simplified ICF + booklet (75%) compared to the standard ICF’s (64%, p = 0.05) and the short ICF + booklet (62%, p = 0.04).
The STEP (Skills Toward Employment and Productivity) Measurement program is the first ever initiative to generate internationally comparable data on skills available in developing countries. The program implements standardized surveys to gather information on the supply and distribution of skills and the demand for skills in labor market of low-income countries.
The uniquely-designed Household Survey includes modules that measure the cognitive skills (reading, writing and numeracy), socio-emotional skills (personality, behavior and preferences) and job-specific skills (subset of transversal skills with direct job relevance) of a representative sample of adults aged 15 to 64 living in urban areas, whether they work or not. The cognitive skills module also incorporates a direct assessment of reading literacy based on the Survey of Adults Skills instruments. Modules also gather information about family, health and language.
13 major metropolitan areas: Bogota, Medellin, Cali, Baranquilla, Bucaramanga, Cucuta, Cartagena, Pasto, Ibague, Pereira, Manizales, Monteira, and Villavicencio.
The units of analysis are the individual respondents and households. A household roster is undertaken at the start of the survey and the individual respondent is randomly selected among all household members aged 15 to 64 included. The random selection process was designed by the STEP team and compliance with the procedure is carefully monitored during fieldwork.
The target population for the Colombia STEP survey is all non-institutionalized persons 15 to 64 years old (inclusive) living in private dwellings in urban areas of the country at the time of data collection. This includes all residents except foreign diplomats and non-nationals working for international organizations.
The following groups are excluded from the sample: - residents of institutions (prisons, hospitals, etc.) - residents of senior homes and hospices - residents of other group dwellings such as college dormitories, halfway homes, workers' quarters, etc. - persons living outside the country at the time of data collection.
Sample survey data [ssd]
Stratified 7-stage sample design was used in Colombia. The stratification variable is city-size category.
First Stage Sample The primary sample unit (PSU) is a metropolitan area. A sample of 9 metropolitan areas was selected from the 13 metropolitan areas on the sample frame. The metropolitan areas were grouped according to city-size; the five largest metropolitan areas are included in Stratum 1 and the remaining 8 metropolitan areas are included in Stratum 2. The five metropolitan areas in Stratum 1 were selected with certainty; in Stratum 2, four metropolitan areas were selected with probability proportional to size (PPS), where the measure of size was the number of persons aged 15 to 64 in a metropolitan area.
Second Stage Sample The second stage sample unit is a Section. At the second stage of sample selection, a PPS sample of 267 Sections was selected from the sampled metropolitan areas; the measure of size was the number of persons aged 15 to 64 in a Section. The sample of 267 Sections consisted of 243 initial Sections and 24 reserve Sections to be used in the event of complete non-response at the Section level.
Third Stage Sample The third stage sample unit is a Block. Within each selected Section, a PPS sample of 4 blocks was selected; the measure of size was the number of persons aged 15 to 64 in a Block. Two sample Blocks were initially activated while the remaining two sample Blocks were reserved for use in cases where there was a refusal to cooperate at the Block level or cases where the block did not belong to the target population (e.g., parks, and commercial and industrial areas).
Fourth Stage Sample The fourth stage sample unit is a Block Segment. Regarding the Block segmentation strategy, the Colombia document 'FINAL SAMPLING PLAN (ARD-397)' states "According to the 2005 population and housing census conducted by DANE, the average number of dwellings per block in the 13 large cities or metropolitan areas was approximately 42 dwellings. Based on this finding, the defined protocol was to report those cases in which 80 or more dwellings were present in a given block in order to partition block using a random selection algorithm." At the fourth stage of sample selection, 1 Block Segment was selected in each selected Block using a simple random sample (SRS) method.
Fifth Stage Sample The fifth stage sample unit is a dwelling. At the fifth stage of sample selection, 5582 dwellings were selected from the sampled Blocks/Block Segments using a simple random sample (SRS) method. According to the Colombia document 'FINAL SAMPLING PLAN (ARD-397)', the selection of dwellings within a participant Block "was performed differentially amongst the different socioeconomic strata that the Colombian government uses for the generation of cross-subsidies for public utilities (in this case, the socioeconomic stratum used for the electricity bill was used). Given that it is known from previous survey implementations that refusal rates are highest amongst households of higher socioeconomic status, the number of dwellings to be selected increased with the socioeconomic stratum (1 being the poorest and 6 being the richest) that was most prevalent in a given block".
Sixth Stage Sample The sixth stage sample unit is a household. At the sixth stage of sample selection, one household was selected in each selected dwelling using an SRS method.
Seventh Stage Sample The seventh stage sample unit was an individual aged 15-64 (inclusive). The sampling objective was to select one individual with equal probability from each selected household.
Sampling methodologies are described for each country in two documents and are provided as external resources: (i) the National Survey Design Planning Report (NSDPR) (ii) the weighting documentation (available for all countries)
Face-to-face [f2f]
The STEP survey instruments include:
All countries adapted and translated both instruments following the STEP technical standards: two independent translators adapted and translated the STEP background questionnaire and Reading Literacy Assessment, while reconciliation was carried out by a third translator.
The survey instruments were piloted as part of the survey pre-test.
The background questionnaire covers such topics as respondents' demographic characteristics, dwelling characteristics, education and training, health, employment, job skill requirements, personality, behavior and preferences, language and family background.
The background questionnaire, the structure of the Reading Literacy Assessment and Reading Literacy Data Codebook are provided in the document "Colombia STEP Skills Measurement Survey Instruments", available in external resources.
STEP data management process:
1) Raw data is sent by the survey firm 2) The World Bank (WB) STEP team runs data checks on the background questionnaire data. Educational Testing Services (ETS) runs data checks on the Reading Literacy Assessment data. Comments and questions are sent back to the survey firm. 3) The survey firm reviews comments and questions. When a data entry error is identified, the survey firm corrects the data. 4) The WB STEP team and ETS check if the data files are clean. This might require additional iterations with the survey firm. 5) Once the data has been checked and cleaned, the WB STEP team computes the weights. Weights are computed by the STEP team to ensure consistency across sampling methodologies. 6) ETS scales the Reading Literacy Assessment data. 7) The WB STEP team merges the background questionnaire data with the Reading Literacy Assessment data and computes derived variables.
Detailed information on data processing in STEP surveys is provided in "STEP Guidelines for Data Processing", available in external resources. The template do-file used by the STEP team to check raw background questionnaire data is provided as an external resource, too.`
An overall response rate of 48% was achieved in the Colombia STEP Survey.
A weighting documentation was prepared for each participating country and provides some information on sampling errors. Please refer to the 'STEP Survey Weighting Procedures Summary' provided as an external resource.
The 2017-18 Albania Demographic and Health Survey (2017-18 ADHS) is a nationwide survey with a nationally representative sample of approximately 17,160 households. All women age 15-49 who are usual residents of the selected households or who slept in the households the night before the survey were eligible for the survey. Women 50-59 years old were interviewed with an abbreviated questionnaire that only covered background characteristics and questions related to noncommunicable diseases.
The primary objective of the 2017-2018 ADHS was to provide estimates of basic sociodemographic and health indicators for the country as a whole and the twelve prefectures. Specifically, the survey collected information on basic characteristics of the respondents, fertility, family planning, nutrition, maternal and child health, knowledge of HIV behaviors, health-related lifestyle, and noncommunicable diseases (NCDs). The information collected in the ADHS will assist policymakers and program managers in evaluating and designing programs and in developing strategies for improving the health of the country’s population.
The sample for the 2017-18 ADHS was designed to produce representative results for the country as a whole, for urban and rural areas separately, and for each of the twelve prefectures known as Berat, Diber, Durres, Elbasan, Fier, Gjirokaster, Korce, Kukes, Lezhe, Shkoder, Tirana, and Vlore.
National coverage
The survey covered all de jure household members (usual residents), children age 0-4 years, women age 15-49 years and men age 15-59 years resident in the household.
Sample survey data [ssd]
The ADHS surveys were done on a nationally representative sample that was representative at the prefecture level as well by rural and urban areas. A total of 715 enumeration areas (EAs) were selected as sample clusters, with probability proportional to each prefecture's population size. The sample design called for 24 households to be randomly selected in every sampling cluster, regardless of its size, but some of the EAs contained fewer than 24 households. In these EAs, all households were included in the survey. The EAs are considered the sample's primary sampling unit (PSU). The team of interviewers updated and listed the households in the selected EAs. Upon arriving in the selected clusters, interviewers spent the first day of fieldwork carrying out an exhaustive enumeration of households, recording the name of each head of household and the location of the dwelling. The listing was done with tablet PCs, using a digital listing application. When interviewers completed their respective sections of the EA, they transferred their files into the supervisor's tablet PC, where the information was automatically compiled into a single file in which all households in the EA were entered. The software and field procedures were designed to ensure there were no duplications or omissions during the household listing process. The supervisor used the software in his tablet to randomly select 24 households for the survey from the complete list of households.
All women age 15-49 who were usual residents of the selected households or who slept in the households the night before the survey were eligible for individual interviews with the full Woman's Questionnaire. Women age 50-59 were also interviewed, but with an abbreviated questionnaire that left out all questions related to reproductive health and mother and child health. A 50% subsample was selected for the survey of men. Every man age 15-59 who was a usual resident of or had slept in the household the night before the survey was eligible for an individual interview in these households.
For further details on sample design, see Appendix A of the final report.
Face-to-face [f2f]
Four questionnaires were used in the ADHS, one for the household and others for women age 15-49, for women age 50-59, and for men age 15-59. In addition to these four questionnaires, a form was used to record the vaccination information for children born in the 5 years preceding the survey whose mothers had been successfully interviewed.
Supervisors sent the accumulated fieldwork data to INSTAT’s central office via internet every day, unless for some reason the teams did not have access to the internet at the time. The data received from the various teams were combined into a single file, which was used to produce quality control tables, known as field check tables. These tables reveal systematic errors in the data such as omission of potential respondents, age displacement, inaccurate recording of date of birth and age at death, inaccurate measurement of height and weight, and other key indicators of data quality. These tables were reviewed and evaluated by ADHS senior staff, which in turn provided feedback and advice to the teams in the field.
A total of 16,955 households were selected for the sample, of which 16,634 were occupied. Of the occupied households, 15,823 were successfully interviewed, which represents a response rate of 95%. In the interviewed households, 11,680 women age 15-49 were identified for individual interviews. Interviews were completed for 10,860 of these women, yielding a response rate of 93%. In the same households, 4,289 women age 50-59 were identified, of which 4,140 were successfully interviewed, yielding a 97% response rate. In the 50% subsample of households selected for the male survey, 7,103 eligible men age 15-59 were identified, of which 6,142 were successfully interviewed, yielding a response rate of 87%.
Response rates were higher in rural than in urban areas, which is a pattern commonly found in household surveys because in urban areas more people work and carry out activities outside the home.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017-18 Albania Demographic and Health Survey (ADHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017-18 ADHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2017-18 ADHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months
See details of the data quality tables in Appendix C of the survey final report.
Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
The Levada Center has been conducting surveys of the Russian population on a regular basis (random-sample questionnaire-based nationally representative polls conducted as omnibus surveys). This data collection includes five questions (plus standard demographic data) from all surveys conducted from January 1995 to February 2021. The questions concern the perception of most urgent problems of the country, the own material situation and social inequality in the country as well as the inclination to protest against worsening living standards.
Note on version 1.1: The only change to the preceding version is that an English translation of the questions and answer options has been added in two xlsx files and a reference to these two files has been added in the "Documentation of Data Collection".
The Congregations and Disaster (CAD) data set was designed to better understand how houses of worship and congregations prepare for disaster. The survey questionnaire contained 50 questions. The survey was completed by 346 respondents in the summer of 2019. The study is unique in its timing just before the COVID-19 pandemic and that the questionnaire contains both disaster and environmentalism questions along with two levels of analysis.
First, at the organizational level, questions explore past disaster response, current disaster planning, networking with other houses of worship and government agencies, along with common organizational characteristics. Second, at the individual level, the data set contains a variation of "https://climatecommunication.yale.edu/visualizations-data/sassy/" Target="_blank">the Six Americas Super Short Survey (SASSY) by the Yale Program on Climate Change Communication and standard demographic questions for the clergy who participated in the study.
The survey instrument ends with notes on additional variables added to the dataset for ease of use. This includes the state or territory where the congregation is located, the FEMA region of the congregation, and a simplified denominational variable.
The survey also includes "https://climatecommunication.yale.edu/visualizations-data/sassy/" Target="_blank">the Six Americas Super Short Survey (SASSY!) as developed by the Yale Project on Climate Change Communication. Researchers are encouraged to visit their website for more information.
Open-ended responses have been removed from the data set to protect respondent anonymity.
The 2016-16 Malawi Demographic and Health Survey (2015-16 MDHS) was conducted between October 2015 and February 2016 by the National Statistical Office (NSO) of Malawi in joint collaboration with the Ministry of Health (MoH) and the Community Health Services Unit (CHSU). Malawi conducted its first DHS in 1992 and again in 2000, 2004, and 2010. The 2015-16 MDHS is the fifth in the series. The survey is based on a nationally representative sample that provides estimates at the national and regional levels and for urban and rural areas with key indicator estimates at the district level. The survey included 26,361 households, 24,562 female respondents, and 7,478 male respondents.
The primary objective of the 2015-16 MDHS is to provide current estimates of basic demographic and health indicators. The MDHS provides a comprehensive overview of population, maternal, and child health issues in Malawi. More specifically, the 2015-16 MDHS: - collected data that allow the calculation of key demographic indicators, particularly fertility and under 5 and adult mortality rates - provided data to explore the direct and indirect factors that determine the levels and trends of fertility and child mortality - measured the levels of contraceptive knowledge and practice - obtained data on key aspects of family health, such as immunisation coverage among children, prevalence and treatment of diarrhoea and other diseases among children under age 5, and maternity care indicators that include antenatal visits and assistance at delivery - obtained data on child feeding practices including breastfeeding - collected anthropometric measures that assess nutritional status, and conducted anaemia testing for all eligible children under age 5 and women age 15-49 - collected data on knowledge and attitudes of women and men about sexually-transmitted diseases (STDs) and HIV/AIDS, potential exposure to the risk of HIV infection (risk behaviours and condom use) and coverage of HIV Testing and Counselling (HTC) and other key HIV programmes - collected dried blood spot (DBS) specimens for HIV testing from women age 15-49 and men age 15-54 to provide information on the prevalence of HIV among the adult population in the prime reproductive ages.
The micronutrient component of the 2015-16 MDHS was designed to: (1) determine the prevalence of micronutrient deficiencies (vitamin A, B, iron, iodine, zinc) and anaemia among pre-school and school-age children, women, and men of child-bearing age; (2) estimate micronutrient supplementation and fortification coverage; and (3) assess the knowledge and practices in maternal and child nutrition.
The information collected in the 2015-16 MDHS will assist policy makers and programme managers in evaluating and designing programmes and strategies that can improve the health of the country’s population.
National coverage
The survey covered all de jure household members (usual residents), women age 15-49 years and men age 15-54 years resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2015-16 MDHS is the frame of the Malawi Population and Housing Census (MPHC), conducted in Malawi in 2008, and provided by the Malawi National Statistical Office (NSO). The census frame is a complete list of all census standard enumeration areas (SEAs) created for the 2008 MPHC. A SEA is a geographic area that covers an average of 235 households. The sampling frame contains information about the SEA location, type of residence (urban or rural), and the estimated number of residential households.
Administratively, Malawi is divided into 28 districts. The sample for the 2015-16 MDHS was designed to provide estimates of key indicators for the country as a whole, for urban and rural areas separately, and for each of the 28 districts.
The 2015-16 MDHS sample was stratified and selected in two stages. Each district was stratified into urban and rural areas; this yielded 56 sampling strata. Samples of SEAs were selected independently in each stratum in two stages. Implicit stratification and proportional allocation were achieved at each of the lower administrative levels by sorting the sampling frame within each sampling stratum before sample selection, according to administrative units in different levels, and by using a probability proportional to size selection at the first stage of sampling.
In the first stage, 850 SEAs, including 173 SEAs in urban areas and 677 in rural areas, were selected with probability proportional to the SEA size and with independent selection in each sampling stratum.
In the second stage of selection, a fixed number of 30 households per urban cluster and 33 per rural cluster were selected with an equal probability systematic selection from the newly created household listing.
For further details on sample selection, see Appendix B of the final report.
Face-to-face [f2f]
Four questionnaires were used in the 2015-16 MDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. These questionnaires, based on The DHS Program’s standard Demographic and Health Survey questionnaires, were adapted to reflect the population and health issues relevant to Malawi. Input was solicited from stakeholders who represented government ministries and agencies, nongovernmental organisations, and international donors. After the preparation of the definitive questionnaires in English, the questionnaires were then translated into Chichewa and Tumbuka languages. All four questionnaires were programmed into tablet computers to facilitate computer-assisted personal interviewing (CAPI) for data collection, and to offer the option to choose either English, Chichewa or Tumbuka for each questionnaire.
All electronic data collected in the 2015-16 MDHS were received via IFSS at the NSO central office in Zomba, where the data were stored on a password-protected computer. The data processing operation included secondary editing, which required resolution of computer-identified inconsistencies and coding of open-ended questions. The data were processed by four individuals who took part in the fieldwork training, and were supervised by two senior staff from NSO. Data editing was accomplished with CSPro software. Secondary editing and data processing were initiated in October 2015 and completed in March 2016.
A total of 27,516 households were selected for the sample, of which 26,564 were occupied. Of the occupied households, 26,361 were successfully interviewed, for a response rate of 99%.
In the interviewed households, 25,146 eligible women were identified for individual interviews. Interviews were completed with 24,562 women, for a response rate of 98%. In the subsample of households selected for the male survey, 7,903 eligible men were identified and 7,478 were successfully interviewed, for a response rate of 95%.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2015-16 Malawi Demographic and Health Survey (2015-16 MDHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the year acronym is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2015-16 MDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed by SAS programs developed by ICF International. These programs use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Note: A more detailed description of
The 1993 Ghana Demographic and Health Survey (GDHS) is a nationally representative survey of 4,562 women age 15-49 and 1,302 men age 15-59. The survey is designed to furnish policymakers, planners and program managers with factual, reliable and up-to-date information on fertility, family planning and the status of maternal and child health care in the country. The survey, which was carried out by the Ghana Statistical Service (GSS), marks Ghana's second participation in the worldwide Demographic and Health Surveys (DHS) program.
The principal objective of the 1993 GDHS is to generate reliable and current information on fertility, mortality, contraception and maternal and child health indicators. Such data are necessary for effective policy formulation as well as program design, monitoring and evaluation. The 1993 GDHS is, in large measure, an update to the 1988 GDHS. Together, the two surveys provide comparable information for two points in time, thus allowing assessment of changes and trends in various demographic and health indicators over time.
Long-term objectives of the survey include (i) strengthening the capacity of the Ghana Statistical Service to plan, conduct, process and analyze data from a complex, large-scale survey such as the Demographic and Health Survey, and (ii) contributing to the ever-expanding international database on demographic and health-related variables.
National
Sample survey data
The 1993 GDHS is a stratified, self-weighting, nationally representative sample of households chosen from 400 Enumeration Areas (EAs). The 1984 Population Census EAs constituted the sampling frame. The frame was first stratified into three ecological zones, namely coastal, forest and savannah, and then into urban and rural EAs. The EAs were selected with probability proportional to the number of households. Households within selected EAs were subsequently listed and a systematic sample of households was selected for the survey. The survey was designed to yield a sample of 5,400 women age 15-49 and a sub-sample of males age 15-59 systematically selected from one-third of the 400 EAs.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face
Survey instruments used to elicit information for the 1993 GDHS are 1) Household Schedule 2) Women's Questionnaire and 3) Men's Questionnaire.
The questionnaires were structured based on the Demographic and Health Survey Model B Questionnaire designed for countries with low levels of contraceptive use. The final version of the questionnaires evolved out of a series of meetings with personnel of relevant ministries, institutions and organizations engaged in activities relating to fertility and family planning, health and nutrition and rehabilitation of persons with disabilities.
The questionnaires were first developed in English and later translated and printed in five major local languages, namely: Akan, Dagbani, Ewe, Ga, and Hausa. In the selected households, all usual members and visitors were listed in the household schedule. Background information, such as age, sex, relationship to head of household, marital status and level of education, was collected on each listed person. Questions on economic activity, occupation, industry, employment status, number of days worked in the past week and number of hours worked per day was asked of all persons age seven years and over. Those who did not work during the reference period were asked whether or not they actively looked for work.
Information on the health and disability status of all persons was also collected in the household schedule. Migration history was elicited from all persons age 15 years and over, as well as information on the survival status and residence of natural parents of all children less than 15 years in the household.
Data on source of water supply, type of toilet facility, number of sleeping rooms available to the household, material of floor and ownership of specified durable consumer goods were also elicited.
Finally, the household schedule was the instrument used to identify eligible women and men from whom detailed information was collected during the individual interview.
The women's questionnaire was used to collect information on eligible women identified in the household schedule. Eligible women were defined as those age 15-49 years who are usual members of the household and visitors who spent the night before the interview with the household. Questions asked in the questionnaire were on the following topics:
All female respondents with at least one live birth since January 1990 and their children born since 1st January 1990 had their height and weight taken.
The men's questionnaire was administered to men in sample households in a third of selected EAs. An eligible man was 15-59 years old who is either a usual household member or a visitor who spent the night preceding the day of interview with the household.
Topics enquired about in the men's questionnaire included the following: - Background Characteristics - Reproductive History - Contraceptive Knowledge and Use - Marriage - Fertility Preferences - Knowledge of AIDS and Other STDs.
Questionnaires from the field were sent to the secretariat at the Head Office for checking and office editing. The office editing, which was undertaken by two officers, involved correcting inconsistencies in the questionnaire responses and coding open-ended questions. The questionnaires were then forwarded to the data processing unit for data entry. Data capture and verification were undertaken by four data entry operators. Nearly 20 percent of the questionnaires were verified. This phase of the survey covered four and a half months - that is, from mid-October, 1993 to the end of February, 1994.
After the data entry, three professional staff members performed the secondary editing of questionnaires that were flagged either because entries were inconsistent or values of specific variables were out of range or missing. The secondary editing was completed on 17th March, 1994 and the tables for the preliminary report were generated on 18th March, 1994. The software package used for the data processing was the Integrated System for Survey Analysis (ISSA).
A sample of 6,161 households was selected, from which 5,919 households were contacted for interview. Interviews were successfully completed in 5,822 households, indicating a household response rate of 98 percent. About 3 percent of selected households were absent during the interviewing period, and are excluded from the calculations of the response rate.
Even though the sample was designed to yield interviews with nearly 5,400 women age 15-49 only 4,700 women were identified as eligible for the individual interview. Individual interviews were successfully completed for 4,562 eligible women, giving a response rate of 97 percent. Similarly, instead of the expected 1,700 eligible men being identified in the households only 1,354 eligible men were found and 1,302 of these were successfully interviewed, with a response rate of 96 percent.
The principal reason for non-response among eligible women and men was not finding them at home despite repeated visits to the households. However, refusal rates for both eligible women and men were low, 0.3 percent and 0.2 percent, respectively.
Note: See summarized response rates in Table 1.1 of the survey report.
The results from sample surveys are affected by two types of errors, non-sampling error and sampling error. Non-sampling error is due to mistakes made in carrying out field activities, such as failure to locate and interview the correct household, errors in the way the questions are asked, misunderstanding on the part of either the interviewer or the respondent, data entry errors, etc. Although efforts were made during the design and implementation of the 1993 GDHS to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be measured statistically. The sample of eligible women selected in the 1993 GDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each one would have yielded results that differed somewhat from the actual sample selected. The sampling error is a measure of the variability between all possible samples; although it is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of standard error of a particular statistic (mean, percentage, etc.), which is the square root of the variance of the statistic. The standard error can be used to calculate confidence intervals within which, apart from non-sampling errors, the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that same statistic as measured in 95 percent of all possible samples with the same design (and expected size) will fall within a range
The SHDS is a national sample survey designed to provide information on population, birth spacing, reproductive health, nutrition, maternal and child health, child survival, HIV/AIDS and sexually transmitted infections (STIs), in Somalia.. The main objective of the SHDS was to provide evidence on the health and demographic characteristics of the Somali population that will guide the development of programmes and formulation of effective policies. This information would also help monitor and evaluate national, sub-national and sector development plans, including the Sustainable Development Goals (SDGs), both by the government and development partners. The target population for SHDS was the women between 15 and 49 years of age, and the children less than the age of 5 years
The SHDS 2020 was a nationally representative household survey.
The unit analysis of this survey are households, women aged 15-49 and children aged 0-5
This sample survey covered Women aged 15-49 and Children aged 0-5 years.
Sample survey data [ssd]
Sample Design The sample for the SHDS was designed to provide estimates of key indicators for the country as a whole, for each of the eighteen pre-war geographical regions, which are the country's first-level administrative divisions, as well as separately for urban, rural and nomadic areas. With the exception of Banadir region, which is considered fully urban, each region was stratified into urban, rural and nomadic areas, yielding a total of 55 sampling strata. All three strata of Lower Shabelle and Middle Juba regions, as well as the rural and nomadic strata of Bay region, were completely excluded from the survey due to security reasons. A final total of 47 sampling strata formed the sampling frame. Through the use of up-to-date, high-resolution satellite imagery, as well as on-the-ground knowledge of staff from the respective ministries of planning, all dwelling structures were digitized in urban and rural areas. Enumeration Areas (EAs) were formed onscreen through a spatial count of dwelling structures in a Geographic Information System (GIS) software. Thereafter, a sample ground verification of the digitized structures was carried out for large urban and rural areas and necessary adjustments made to the frame.
Each EA created had a minimum of 50 and a maximum of 149 dwelling structures. A total of 10,525 EAs were digitized: 7,488 in urban areas and 3,037 in rural areas. However, because of security and accessibility constraints, not all digitized areas were included in the final sampling frame-9,136 EAs (7,308 in urban and 1,828 in rural) formed the final frame. The nomadic frame comprised an updated list of temporary nomadic settlements (TNS) obtained from the nomadic link workers who are tied to these settlements. A total of 2,521 TNS formed the SHDS nomadic sampling frame. The SHDS followed a three-stage stratified cluster sample design in urban and rural strata with a probability proportional to size, for the sampling of Primary Sampling Units (PSU) and Secondary Sampling Units (SSU) (respectively at the first and second stage), and systematic sampling of households at the third stage. For the nomadic stratum, a two-stage stratified cluster sample design was applied with a probability proportional to size for sampling of PSUs at the first stage and systematic sampling of households at the second stage. To ensure that the survey precision is comparable across regions, PSUs were allocated equally to all regions with slight adjustments in two regions. Within each stratum, a sample of 35 EAs was selected independently, with probability proportional to the number of digitized dwelling structures. In this first stage, a total of 1,433 EAs were allocated (to urban - 770 EAs, rural - 488 EAs, and nomadic - 175 EAs) representing about 16 percent of the total frame of EAs. In the urban and rural selected EAs, all households were listed and information on births and deaths was recorded through the maternal mortality questionnaire. The data collected in this first phase was cleaned and a summary of households listed per EA formed the sampling frames for the second phase. In the second stage, 10 EAs were sampled out of the possible 35 that were listed, using probability proportional to the number of households. All households in each of these 10 EAs were serialized based on their location in the EA and 30 of these households sampled for the survey. The serialization was done to ensure distribution of the households interviewed for the survey in the EA sampled. A total of 220 EAs and 150 EAs were allocated to urban and rural strata respectively, while in the third stage, an average of 30 households were selected from the listed households in every EA to yield a total of 16,360 households from 538 EAs covered (220 EAs in urban, 147 EAs in rural and 171 EAs in nomadic) out of the sampled 545 EAs. In nomadic areas, a sample of 10 EAs (in this case TNS) were selected from each nomadic stratum, with probability proportional to the number of estimated households. A complete listing of households was carried out in the selected TNS followed by the selection of 30 households for the main survey interview. In those TNS with less than 30 households, all households were interviewed for the main survey. All eligible ever-married women aged 12 to 49 and never-married women aged 15 to 49 were interviewed in the selected households, while the household questionnaire was administered to all households selected. The maternal mortality questionnaire was administered to all households in each sampled TNS.
Face-to-face [f2f]
A total of 16,360 households were selected for the sample, of which 15,870 were occupied. Of the occupied households, 15,826 were successfully interviewed, yielding a response rate of 99.7 percent. The SHDS 2020 interviewed 16,486 women-11,876 ever-married women and 4,610 never-married women.
Sampling errors are important data quality parameters which give measure of the precision of the survey estimates. They aid in determining the statistical reliability of survey estimates. The estimates from a sample survey are affected by two types of errors: non-sampling errors and sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the Somaliland Health and Demographic Survey ( SHDS 2020) to minimise this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically. Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the SHDS 2020 is only one of many samples that could have been selected from the same population, using the same design and sample size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results. Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design. If the sample of respondents had been selected by simple random sampling, it would have been possible to use straightforward formulas for calculating sampling errors. However, the SHDS 2020 sample was the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. The variance approximation procedure that account for the complex sample design used R program was estimated sampling errors in SHDS which is Taylor series linearization. The non-linear estimates are approximated by linear ones for estimating variance. The linear approximation is derived by taking the first-order Tylor series approximation. Standard variance estimation methods for linear statistics are then used to estimate the variance of the linearized estimator. The Taylor linearisation method treats any linear statistic such as a percentage or mean as a ratio estimate, r = y/x, where y represents the total sample value for variable y and x represents the total number of cases in the group or subgroup under consideration
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Race and Carceral State Survey was fielded from May 11 to June 9, 2017 via Survey Sampling International to a sample of 8,093 White and 3,073 Black Americans. The survey instrument includes several experiments, detailed questions on experiences with carceral state institutions, racial attitudes, and standard demographic questions.
The 1998 Ghana Demographic and Health Survey (GDHS) is the latest in a series of national-level population and health surveys conducted in Ghana and it is part of the worldwide MEASURE DHS+ Project, designed to collect data on fertility, family planning, and maternal and child health.
The primary objective of the 1998 GDHS is to provide current and reliable data on fertility and family planning behaviour, child mortality, children’s nutritional status, and the utilisation of maternal and child health services in Ghana. Additional data on knowledge of HIV/AIDS are also provided. This information is essential for informed policy decisions, planning and monitoring and evaluation of programmes at both the national and local government levels.
The long-term objectives of the survey include strengthening the technical capacity of the Ghana Statistical Service (GSS) to plan, conduct, process, and analyse the results of complex national sample surveys. Moreover, the 1998 GDHS provides comparable data for long-term trend analyses within Ghana, since it is the third in a series of demographic and health surveys implemented by the same organisation, using similar data collection procedures. The GDHS also contributes to the ever-growing international database on demographic and health-related variables.
National
Sample survey data
The major focus of the 1998 GDHS was to provide updated estimates of important population and health indicators including fertility and mortality rates for the country as a whole and for urban and rural areas separately. In addition, the sample was designed to provide estimates of key variables for the ten regions in the country.
The list of Enumeration Areas (EAs) with population and household information from the 1984 Population Census was used as the sampling frame for the survey. The 1998 GDHS is based on a two-stage stratified nationally representative sample of households. At the first stage of sampling, 400 EAs were selected using systematic sampling with probability proportional to size (PPS-Method). The selected EAs comprised 138 in the urban areas and 262 in the rural areas. A complete household listing operation was then carried out in all the selected EAs to provide a sampling frame for the second stage selection of households. At the second stage of sampling, a systematic sample of 15 households per EA was selected in all regions, except in the Northern, Upper West and Upper East Regions. In order to obtain adequate numbers of households to provide reliable estimates of key demographic and health variables in these three regions, the number of households in each selected EA in the Northern, Upper West and Upper East regions was increased to 20. The sample was weighted to adjust for over sampling in the three northern regions (Northern, Upper East and Upper West), in relation to the other regions. Sample weights were used to compensate for the unequal probability of selection between geographically defined strata.
The survey was designed to obtain completed interviews of 4,500 women age 15-49. In addition, all males age 15-59 in every third selected household were interviewed, to obtain a target of 1,500 men. In order to take cognisance of non-response, a total of 6,375 households nation-wide were selected.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face
Three types of questionnaires were used in the GDHS: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire. These questionnaires were based on model survey instruments developed for the international MEASURE DHS+ programme and were designed to provide information needed by health and family planning programme managers and policy makers. The questionnaires were adapted to the situation in Ghana and a number of questions pertaining to on-going health and family planning programmes were added. These questionnaires were developed in English and translated into five major local languages (Akan, Ga, Ewe, Hausa, and Dagbani).
The Household Questionnaire was used to enumerate all usual members and visitors in a selected household and to collect information on the socio-economic status of the household. The first part of the Household Questionnaire collected information on the relationship to the household head, residence, sex, age, marital status, and education of each usual resident or visitor. This information was used to identify women and men who were eligible for the individual interview. For this purpose, all women age 15-49, and all men age 15-59 in every third household, whether usual residents of a selected household or visitors who slept in a selected household the night before the interview, were deemed eligible and interviewed. The Household Questionnaire also provides basic demographic data for Ghanaian households. The second part of the Household Questionnaire contained questions on the dwelling unit, such as the number of rooms, the flooring material, the source of water and the type of toilet facilities, and on the ownership of a variety of consumer goods.
The Women’s Questionnaire was used to collect information on the following topics: respondent’s background characteristics, reproductive history, contraceptive knowledge and use, antenatal, delivery and postnatal care, infant feeding practices, child immunisation and health, marriage, fertility preferences and attitudes about family planning, husband’s background characteristics, women’s work, knowledge of HIV/AIDS and STDs, as well as anthropometric measurements of children and mothers.
The Men’s Questionnaire collected information on respondent’s background characteristics, reproduction, contraceptive knowledge and use, marriage, fertility preferences and attitudes about family planning, as well as knowledge of HIV/AIDS and STDs.
A total of 6,375 households were selected for the GDHS sample. Of these, 6,055 were occupied. Interviews were completed for 6,003 households, which represent 99 percent of the occupied households. A total of 4,970 eligible women from these households and 1,596 eligible men from every third household were identified for the individual interviews. Interviews were successfully completed for 4,843 women or 97 percent and 1,546 men or 97 percent. The principal reason for nonresponse among individual women and men was the failure of interviewers to find them at home despite repeated callbacks.
Note: See summarized response rates by place of residence in Table 1.1 of the survey report.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of shortfalls made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 1998 GDHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 1998 GDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 1998 GDHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 1998 GDHS is the ISSA Sampling Error Module. This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months
Note: See detailed tables in APPENDIX C of the survey report.
The primary objective of the 2018 NDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the NDHS collected information on fertility, awareness and use of family planning methods, breastfeeding practices, nutritional status of women and children, maternal and child health, adult and childhood mortality, women’s empowerment, domestic violence, female genital cutting, prevalence of malaria, awareness and behaviour regarding HIV/AIDS and other sexually transmitted infections (STIs), disability, and other health-related issues such as smoking.
The information collected through the 2018 NDHS is intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving the health of the country’s population. The 2018 NDHS also provides indicators relevant to the Sustainable Development Goals (SDGs) for Nigeria.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49 years resident in the household, and all children aged 0-5 years resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2018 NDHS is the Population and Housing Census of the Federal Republic of Nigeria (NPHC), which was conducted in 2006 by the National Population Commission. Administratively, Nigeria is divided into states. Each state is subdivided into local government areas (LGAs), and each LGA is divided into wards. In addition to these administrative units, during the 2006 NPHC each locality was subdivided into convenient areas called census enumeration areas (EAs). The primary sampling unit (PSU), referred to as a cluster for the 2018 NDHS, is defined on the basis of EAs from the 2006 EA census frame. Although the 2006 NPHC did not provide the number of households and population for each EA, population estimates were published for 774 LGAs. A combination of information from cartographic material demarcating each EA and the LGA population estimates from the census was used to identify the list of EAs, estimate the number of households, and distinguish EAs as urban or rural for the survey sample frame. Before sample selection, all localities were classified separately into urban and rural areas based on predetermined minimum sizes of urban areas (cut-off points); consistent with the official definition in 2017, any locality with more than a minimum population size of 20,000 was classified as urban.
The sample for the 2018 NDHS was a stratified sample selected in two stages. Stratification was achieved by separating each of the 36 states and the Federal Capital Territory into urban and rural areas. In total, 74 sampling strata were identified. Samples were selected independently in every stratum via a two-stage selection. Implicit stratifications were achieved at each of the lower administrative levels by sorting the sampling frame before sample selection according to administrative order and by using a probability proportional to size selection during the first sampling stage.
For further details on sample selection, see Appendix A of the final report.
Computer Assisted Personal Interview [capi]
Four questionnaires were used for the 2018 NDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s standard Demographic and Health Survey (DHS-7) questionnaires, were adapted to reflect the population and health issues relevant to Nigeria. Comments were solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. In addition, information about the fieldworkers for the survey was collected through a self-administered Fieldworker Questionnaire.
The processing of the 2018 NDHS data began almost immediately after the fieldwork started. As data collection was completed in each cluster, all electronic data files were transferred via the IFSS to the NPC central office in Abuja. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted to any inconsistencies and errors. Secondary editing, carried out in the central office, involved resolving inconsistencies and coding the open-ended questions. The NPC data processor coordinated the exercise at the central office. The biomarker paper questionnaires were compared with electronic data files to check for any inconsistencies in data entry. Data entry and editing were carried out using the CSPro software package. The concurrent processing of the data offered a distinct advantage because it maximised the likelihood of the data being error-free and accurate. Timely generation of field check tables allowed for effective monitoring. The secondary editing of the data was completed in the second week of April 2019.
A total of 41,668 households were selected for the sample, of which 40,666 were occupied. Of the occupied households, 40,427 were successfully interviewed, yielding a response rate of 99%. In the households interviewed, 42,121 women age 15-49 were identified for individual interviews; interviews were completed with 41,821 women, yielding a response rate of 99%. In the subsample of households selected for the male survey, 13,422 men age 15-59 were identified and 13,311 were successfully interviewed, yielding a response rate of 99%.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2018 Nigeria Demographic and Health Survey (NDHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2018 NDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2018 NDHS sample is the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Note: A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months - Standardisation exercise results from anthropometry training - Height and weight data completeness and quality for children - Height measurements from random subsample of measured children - Sibship size and sex ratio of siblings - Pregnancy-related mortality trends - Data collection period - Malaria prevalence according to rapid diagnostic test (RDT)
Note: See detailed data quality tables in APPENDIX C of the report.
The Jordan Population and Family Health Survey (JPFHS) is part of the worldwide Demographic and Health Surveys Program, which is designed to collect data on fertility, family planning, and maternal and child health.
The primary objective of the 2012 Jordan Population and Family Health Survey (JPFHS) is to provide reliable estimates of demographic parameters, such as fertility, mortality, family planning, and fertility preferences, as well as maternal and child health and nutrition, that can be used by program managers and policymakers to evaluate and improve existing programs. The JPFHS data will be useful to researchers and scholars interested in analyzing demographic trends in Jordan, as well as those conducting comparative, regional, or cross-national studies.
National coverage
Sample survey data [ssd]
Sample Design The 2012 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, urban and rural areas, each of the 12 governorates, and for the two special domains: the Badia areas and people living in refugee camps. To facilitate comparisons with previous surveys, the sample was also designed to produce estimates for the three regions (North, Central, and South). The grouping of the governorates into regions is as follows: the North consists of Irbid, Jarash, Ajloun, and Mafraq governorates; the Central region consists of Amman, Madaba, Balqa, and Zarqa governorates; and the South region consists of Karak, Tafiela, Ma'an, and Aqaba governorates.
The 2012 JPFHS sample was selected from the 2004 Jordan Population and Housing Census sampling frame. The frame excludes the population living in remote areas (most of whom are nomads), as well as those living in collective housing units such as hotels, hospitals, work camps, prisons, and the like. For the 2004 census, the country was subdivided into convenient area units called census blocks. For the purposes of the household surveys, the census blocks were regrouped to form a general statistical unit of moderate size (30 households or more), called a "cluster", which is widely used in surveys as a primary sampling unit (PSU).
Stratification was achieved by first separating each governorate into urban and rural areas and then, within each urban and rural area, by Badia areas, refugee camps, and other. A two-stage sampling procedure was employed. In the first stage, 806 clusters were selected with probability proportional to the cluster size, that is, the number of residential households counted in the 2004 census. A household listing operation was then carried out in all of the selected clusters, and the resulting lists of households served as the sampling frame for the selection of households in the second stage. In the second stage of selection, a fixed number of 20 households was selected in each cluster with an equal probability systematic selection. A subsample of two-thirds of the selected households was identified for anthropometry measurements.
Refer to Appendix A in the final report (Jordan Population and Family Health Survey 2012) for details of sampling weights calculation.
Face-to-face [f2f]
The 2012 JPFHS used two questionnaires, namely the Household Questionnaire and the Woman’s Questionnaire (see Appendix D). The Household Questionnaire was used to list all usual members of the sampled households, and visitors who slept in the household the night before the interview, and to obtain information on each household member’s age, sex, educational attainment, relationship to the head of the household, and marital status. In addition, questions were included on the socioeconomic characteristics of the household, such as source of water, sanitation facilities, and the availability of durable goods. Moreover, the questionnaire included questions about child discipline. The Household Questionnaire was also used to identify women who were eligible for the individual interview (ever-married women age 15-49 years). In addition, all women age 15-49 and children under age 5 living in the subsample of households were eligible for height and weight measurement and anemia testing.
The Woman’s Questionnaire was administered to ever-married women age 15-49 and collected information on the following topics: • Respondent’s background characteristics • Birth history • Knowledge, attitudes, and practice of family planning and exposure to family planning messages • Maternal health (antenatal, delivery, and postnatal care) • Immunization and health of children under age 5 • Breastfeeding and infant feeding practices • Marriage and husband’s background characteristics • Fertility preferences • Respondent’s employment • Knowledge of AIDS and sexually transmitted infections (STIs) • Other health issues specific to women • Early childhood development • Domestic violence
In addition, information on births, pregnancies, and contraceptive use and discontinuation during the five years prior to the survey was collected using a monthly calendar.
The Household and Woman’s Questionnaires were based on the model questionnaires developed by the MEASURE DHS program. Additions and modifications to the model questionnaires were made in order to provide detailed information specific to Jordan. The questionnaires were then translated into Arabic.
Anthropometric data were collected during the 2012 JPFHS in a subsample of two-thirds of the selected households in each cluster. All women age 15-49 and children age 0-4 in these households were measured for height using Shorr height boards and for weight using electronic Seca scales. In addition, a drop of capillary blood was taken from these women and children in the field to measure their hemoglobin level using the HemoCue system. Hemoglobin testing was used to estimate the prevalence of anemia.
Fieldwork and data processing activities overlapped. Data processing began two weeks after the start of the fieldwork. After field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman, where they were registered and stored. Special teams were formed to carry out office editing and coding of the openended questions.
Data entry and verification started after two weeks of office data processing. The process of data entry, including 100 percent reentry, editing, and cleaning, was done by using PCs and the CSPro (Census and Survey Processing) computer package, developed specially for such surveys. The CSPro program allows data to be edited while being entered. Data processing operations were completed by early January 2013. A data processing specialist from ICF International made a trip to Jordan in February 2013 to follow up on data editing and cleaning and to work on the tabulation of results for the survey preliminary report, which was published in March 2013. The tabulations for this report were completed in April 2013.
In all, 16,120 households were selected for the survey and, of these, 15,722 were found to be occupied households. Of these households, 15,190 (97 percent) were successfully interviewed.
In the households interviewed, 11,673 ever-married women age 15-49 were identified and interviews were completed with 11,352 women, or 97 percent of all eligible women.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2012 Jordan Population and Family Health Survey (JPFHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2012 JPFHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2012 JPFHS sample is the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulae. The computer
This dataset includes the following files:
A pdf file containing the method naming standards survey questions we used in Qualtrics for surveying professional developers. The file contains the Likert scale questions and source code examples used in the survey.
A CSV file containing professional developers responses to the Likert scale questions and their feedback about each method naming standard, as well as their answers to the demographic questions.
A pdf copy of the survey paper (Preprint).
Survey Paper Citation: Alsuhaibani, R., Newman, C., Decker, M., Collard, M.L., Maletic, J.I., "On the Naming of Methods: A Survey of Professional Developers", in the Proceedings of the 43rd International Conference on Software Engineering (ICSE), Madrid Spain, May 25 - 28, 2021, 12 pages
The Pakistan Demographic and Health Survey PDHS 2017-18 was the fourth of its kind in Pakistan, following the 1990-91, 2006-07, and 2012-13 PDHS surveys.
The primary objective of the 2017-18 PDHS is to provide up-to-date estimates of basic demographic and health indicators. The PDHS provides a comprehensive overview of population, maternal, and child health issues in Pakistan. Specifically, the 2017-18 PDHS collected information on:
The information collected through the 2017-18 PDHS is intended to assist policymakers and program managers at the federal and provincial government levels, in the private sector, and at international organisations in evaluating and designing programs and strategies for improving the health of the country’s population. The data also provides information on indicators relevant to the Sustainable Development Goals.
National coverage
The survey covered all de jure household members (usual residents), children age 0-5 years, women age 15-49 years and men age 15-49 years resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2017-18 PDHS is a complete list of enumeration blocks (EBs) created for the Pakistan Population and Housing Census 2017, which was conducted from March to May 2017. The Pakistan Bureau of Statistics (PBS) supported the sample design of the survey and worked in close coordination with NIPS. The 2017-18 PDHS represents the population of Pakistan including Azad Jammu and Kashmir (AJK) and the former Federally Administrated Tribal Areas (FATA), which were not included in the 2012-13 PDHS. The results of the 2017-18 PDHS are representative at the national level and for the urban and rural areas separately. The survey estimates are also representative for the four provinces of Punjab, Sindh, Khyber Pakhtunkhwa, and Balochistan; for two regions including AJK and Gilgit Baltistan (GB); for Islamabad Capital Territory (ICT); and for FATA. In total, there are 13 secondlevel survey domains.
The 2017-18 PDHS followed a stratified two-stage sample design. The stratification was achieved by separating each of the eight regions into urban and rural areas. In total, 16 sampling strata were created. Samples were selected independently in every stratum through a two-stage selection process. Implicit stratification and proportional allocation were achieved at each of the lower administrative levels by sorting the sampling frame within each sampling stratum before sample selection, according to administrative units at different levels, and by using a probability-proportional-to-size selection at the first stage of sampling.
The first stage involved selecting sample points (clusters) consisting of EBs. EBs were drawn with a probability proportional to their size, which is the number of households residing in the EB at the time of the census. A total of 580 clusters were selected.
The second stage involved systematic sampling of households. A household listing operation was undertaken in all of the selected clusters, and a fixed number of 28 households per cluster was selected with an equal probability systematic selection process, for a total sample size of approximately 16,240 households. The household selection was carried out centrally at the NIPS data processing office. The survey teams only interviewed the pre-selected households. To prevent bias, no replacements and no changes to the pre-selected households were allowed at the implementing stages.
For further details on sample design, see Appendix A of the final report.
Face-to-face [f2f]
Six questionnaires were used in the 2017-18 PDHS: Household Questionnaire, Woman’s Questionnaire, Man’s Questionnaire, Biomarker Questionnaire, Fieldworker Questionnaire, and the Community Questionnaire. The first five questionnaires, based on The DHS Program’s standard Demographic and Health Survey (DHS-7) questionnaires, were adapted to reflect the population and health issues relevant to Pakistan. The Community Questionnaire was based on the instrument used in the previous rounds of the Pakistan DHS. Comments were solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. The survey protocol was reviewed and approved by the National Bioethics Committee, Pakistan Health Research Council, and ICF Institutional Review Board. After the questionnaires were finalised in English, they were translated into Urdu and Sindhi. The 2017-18 PDHS used paper-based questionnaires for data collection, while computerassisted field editing (CAFE) was used to edit the questionnaires in the field.
The processing of the 2017-18 PDHS data began simultaneously with the fieldwork. As soon as data collection was completed in each cluster, all electronic data files were transferred via IFSS to the NIPS central office in Islamabad. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted to any inconsistencies and errors. Secondary editing was carried out in the central office, which involved resolving inconsistencies and coding the openended questions. The NIPS data processing manager coordinated the exercise at the central office. The PDHS core team members assisted with the secondary editing. Data entry and editing were carried out using the CSPro software package. The concurrent processing of the data offered a distinct advantage as it maximised the likelihood of the data being error-free and accurate. The secondary editing of the data was completed in the first week of May 2018. The final cleaning of the data set was carried out by The DHS Program data processing specialist and completed on 25 May 2018.
A total of 15,671 households were selected for the survey, of which 15,051 were occupied. The response rates are presented separately for Pakistan, Azad Jammu and Kashmir, and Gilgit Baltistan. Of the 12,338 occupied households in Pakistan, 11,869 households were successfully interviewed, yielding a response rate of 96%. Similarly, the household response rates were 98% in Azad Jammu and Kashmir and 99% in Gilgit Baltistan.
In the interviewed households, 94% of ever-married women age 15-49 in Pakistan, 97% in Azad Jammu and Kashmir, and 94% in Gilgit Baltistan were interviewed. In the subsample of households selected for the male survey, 87% of ever-married men age 15-49 in Pakistan, 94% in Azad Jammu and Kashmir, and 84% in Gilgit Baltistan were successfully interviewed.
Overall, the response rates were lower in urban than in rural areas. The difference is slightly less pronounced for Azad Jammu and Kashmir and Gilgit Baltistan. The response rates for men are lower than those for women, as men are often away from their households for work.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017-18 Pakistan Demographic and Health Survey (2017-18 PDHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017-18 PDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that
Description: The questions contained in the core modules of the two SASAS questionnaires for 2005 (demographics and core thematic issues) were asked of 7000 respondents, while the remaining rotating modules were asked of a half sample of approximately 3500 respondents each. The data set contains 2850 records and 311 variables. Topics included in the questionnaires are: democracy, national identity, public services-education, moral issues, crime, voting, demographics and other classificatory variables. Rotating modules are: International Social Surveys Programme (ISSP) module – Work orientation, intergroup relations, Soccer World Cup, democracy part 2, water services and poverty. Abstract: The primary objective of the South African Social Attitudes Survey (SASAS) is to design, develop and implement a conceptually and methodologically robust study of changing social attitudes and values in South Africa. In meeting this objective, the HSRC is carefully and consistently monitoring and providing insight into changes in attitudes among various socio-demographic groupings. SASAS is intended to provide a unique long-term account of the social fabric of modern South Africa, and of how its changing political and institutional structures interact over time with changing social attitudes and values. The survey has been designed to yield a national representative sample of adults aged 16 and older, using the Human Sciences Research Council's (HSRC) Master Sample, which was designed in 2002 and consists of 1000 primary sampling units (PSUs). These PSUs were drawn, with probability proportional to size from a pre-census 2001 list of 80780 enumerator areas (EAs). As the basis of the 2005 SASAS round of interviewing, a sub-sample of 500 EAs (PSUs) was drawn from the master sample. Three explicit stratification variables were used, namely province, geographic type and majority population group. The survey is conducted annually and the 2005 survey is the third wave in the series. To accommodate the wide variety of topics included in the survey, two questionnaires are administered simultaneously. Apart from the standard set of demographic and background variables, each version of the questionnaire contained a harmonised core module. The questions contained in the core modules of the two SASAS questionnaires (demographics and core thematic issues) were asked of 7000 respondents, while the remaining rotating modules were asked of a half sample of approximately 3500 respondents each. The core module remains constant for with the aim of monitoring change and continuity in a variety of socio-economic and socio-political variables. In addition, a number of themes are accommodated in rotation. The rotating element of the survey consists of two or more topic-specific modules in each round of interviewing and is directed at measuring a range of policy and academic concerns and issues that require more detailed examination at a specific point in time than the multi-topic core module would permit. Topics included in the questionnaires are: democracy, national identity, public services, moral issues, crime, voting, demographics and other classificatory variables. Rotating modules are: intergroup relations, Soccer World Cup, democracy part 2, water services and poverty. International Social Survey Programme. (ISSP web page:www.issp.org/) The International Social Survey Programme (ISSP) is run by a group of research organisations, each of which undertakes to field annually an agreed module of questions on a chosen topic area. SASAS 2003 represents the formalisation of South Africa's inclusion in the ISSP, the intention being to include the module in one of the SASAS questionnaires in each round of interviewing. Each module is chosen for repetition at intervals to allow comparisons both between countries (membership currently stands at 48) and over time. Face-to-face interview National population: Adults (aged 16 and older)
Includes questions pertaining to: race & ethnicitygenderagetribal affiliationdisabilityincomelanguagelocation