100+ datasets found
  1. t

    Spanish TEDS Standard Demographic Questions

    • teds.tucsonaz.gov
    Updated Mar 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tucson (2024). Spanish TEDS Standard Demographic Questions [Dataset]. https://teds.tucsonaz.gov/documents/6c12141f86494172b393c3de90348fcc
    Explore at:
    Dataset updated
    Mar 14, 2024
    Dataset authored and provided by
    City of Tucson
    Area covered
    Description

    Includes questions written in Spanish pertaining to: race & ethnicitygenderagetribal affiliationdisabilityincomelanguagelocation

  2. a

    Demographic and Health Survey 2015-2016 - Armenia

    • microdata.armstat.am
    • catalog.ihsn.org
    • +1more
    Updated Oct 11, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Statistical Service (NSSS) (2019). Demographic and Health Survey 2015-2016 - Armenia [Dataset]. https://microdata.armstat.am/index.php/catalog/8
    Explore at:
    Dataset updated
    Oct 11, 2019
    Dataset provided by
    National Statistical Service (NSSS)
    Ministry of Health (MOH)
    Time period covered
    2015 - 2016
    Area covered
    Armenia
    Description

    Abstract

    The 2015-16 Armenia Demographic and Health Survey (2015-16 ADHS) is the fourth in a series of nationally representative sample surveys designed to provide information on population and health issues. It is conducted in Armenia under the worldwide Demographic and Health Surveys program. Specifically, the objective of the 2015-16 ADHS is to provide current and reliable information on fertility and abortion levels, marriage, sexual activity, fertility preferences, awareness and use of family planning methods, breastfeeding practices, nutritional status of young children, childhood mortality, maternal and child health, domestic violence against women, child discipline, awareness and behavior regarding AIDS and other sexually transmitted infections (STIs), and other health-related issues such as smoking, tuberculosis, and anemia. The survey obtained detailed information on these issues from women of reproductive age and, for certain topics, from men as well.

    The 2015-16 ADHS results are intended to provide information needed to evaluate existing social programs and to design new strategies to improve the health of and health services for the people of Armenia. Data are presented by region (marz) wherever sample size permits. The information collected in the 2015-16 ADHS will provide updated estimates of basic demographic and health indicators covered in the 2000, 2005, and 2010 surveys.

    The long-term objective of the survey includes strengthening the technical capacity of major government institutions, including the NSS. The 2015-16 ADHS also provides comparable data for longterm trend analysis because the 2000, 2005, 2010, and 2015-16 surveys were implemented by the same organization and used similar data collection procedures. It also adds to the international database of demographic and health–related information for research purposes.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-49

    Universe

    The survey covered all de jure household members (usual residents), children age 0-4 years, women age 15-49 years and men age 15-49 years resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample was designed to produce representative estimates of key indicators at the national level, for Yerevan, and for total urban and total rural areas separately. Many indicators can also be estimated at the regional (marz) level.

    The sampling frame used for the 2015-16 ADHS is the Armenia Population and Housing Census, which was conducted in Armenia in 2011 (APHC 2011). The sampling frame is a complete list of enumeration areas (EAs) covering the whole country, a total number of 11,571 EAs, provided by the National Statistical Service (NSS) of Armenia, the implementing agency for the 2015-16 ADHS. This EA frame was created from the census data base by summarizing the households down to EA level. A representative probability sample of 8,749 households was selected for the 2015-16 ADHS sample. The sample was selected in two stages. In the first stage, 313 clusters (192 in urban areas and 121 in rural areas) were selected from a list of EAs in the sampling frame. In the second stage, a complete listing of households was carried out in each selected cluster. Households were then systematically selected for participation in the survey. Appendix A provides additional information on the sample design of the 2015-16 Armenia DHS. Because of the approximately equal sample size in each marz, the sample is not self-weighting at the national level, and weighting factors have been calculated, added to the data file, and applied so that results are representative at the national level.

    For further details on sample design, see Appendix A of the final report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Five questionnaires were used for the 2015-16 ADHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, the Biomarker Questionnaire, and the Fieldworker Questionnaire. These questionnaires, based on The DHS Program’s standard Demographic and Health Survey questionnaires, were adapted to reflect the population and health issues relevant to Armenia. Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organizations, and international donors. After all questionnaires were finalized in English, they were translated into Armenian. They were pretested in September-October 2015.

    Cleaning operations

    The processing of the 2015-16 ADHS data began shortly after fieldwork commenced. All completed questionnaires were edited immediately by field editors while still in the field and checked by the supervisors before being dispatched to the data processing center at the NSS central office in Yerevan. These completed questionnaires were edited and entered by 15 data processing personnel specially trained for this task. All data were entered twice for 100 percent verification. Data were entered using the CSPro computer package. The concurrent processing of the data was an advantage because the senior ADHS technical staff were able to advise field teams of problems detected during the data entry. In particular, tables were generated to check various data quality parameters. Moreover, the double entry of data enabled easy comparison and identification of errors and inconsistencies. As a result, specific feedback was given to the teams to improve performance. The data entry and editing phase of the survey was completed in June 2016.

    Response rate

    A total of 8,749 households were selected in the sample, of which 8,205 were occupied at the time of the fieldwork. The main reason for the difference is that some of the dwelling units that were occupied during the household listing operation were either vacant or the household was away for an extended period at the time of interviewing. The number of occupied households successfully interviewed was 7,893, yielding a household response rate of 96 percent. The household response rate in urban areas (96 percent) was nearly the same as in rural areas (97 percent).

    In these households, a total of 6,251 eligible women were identified; interviews were completed with 6,116 of these women, yielding a response rate of 98 percent. In one-half of the households, a total of 2,856 eligible men were identified, and interviews were completed with 2,755 of these men, yielding a response rate of 97 percent. Among men, response rates are slightly lower in urban areas (96 percent) than in rural areas (97 percent), whereas rates for women are the same in urban and in rural areas (98 percent).

    The 2015-16 ADHS achieved a slightly higher response rate for households than the 2010 ADHS (NSS 2012). The increase is only notable for urban households (96 percent in 2015-16 compared with 94 percent in 2010). Response rates in all other categories are very close to what they were in 2010.

    Sampling error estimates

    SAS computer software were used to calculate sampling errors for the 2015-16 ADHS. The programs used the Taylor linearization method of variance estimation for means or proportions and the Jackknife repeated replication method for variance estimation of more complex statistics such as fertility and mortality rates.

    A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months - Nutritional status of children based on the NCHS/CDC/WHO International Reference Population - Vaccinations by background characteristics for children age 18-29 months

    See details of the data quality tables in Appendix C of the survey final report.

  3. i

    Demographic and Health Survey 1998 - Ghana

    • dev.ihsn.org
    • catalog.ihsn.org
    • +2more
    Updated Apr 25, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghana Statistical Service (GSS) (2019). Demographic and Health Survey 1998 - Ghana [Dataset]. https://dev.ihsn.org/nada/catalog/study/GHA_1998_DHS_v01_M
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset authored and provided by
    Ghana Statistical Service (GSS)
    Time period covered
    1998 - 1999
    Area covered
    Ghana
    Description

    Abstract

    The 1998 Ghana Demographic and Health Survey (GDHS) is the latest in a series of national-level population and health surveys conducted in Ghana and it is part of the worldwide MEASURE DHS+ Project, designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 1998 GDHS is to provide current and reliable data on fertility and family planning behaviour, child mortality, children’s nutritional status, and the utilisation of maternal and child health services in Ghana. Additional data on knowledge of HIV/AIDS are also provided. This information is essential for informed policy decisions, planning and monitoring and evaluation of programmes at both the national and local government levels.

    The long-term objectives of the survey include strengthening the technical capacity of the Ghana Statistical Service (GSS) to plan, conduct, process, and analyse the results of complex national sample surveys. Moreover, the 1998 GDHS provides comparable data for long-term trend analyses within Ghana, since it is the third in a series of demographic and health surveys implemented by the same organisation, using similar data collection procedures. The GDHS also contributes to the ever-growing international database on demographic and health-related variables.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men age 15-59

    Kind of data

    Sample survey data

    Sampling procedure

    The major focus of the 1998 GDHS was to provide updated estimates of important population and health indicators including fertility and mortality rates for the country as a whole and for urban and rural areas separately. In addition, the sample was designed to provide estimates of key variables for the ten regions in the country.

    The list of Enumeration Areas (EAs) with population and household information from the 1984 Population Census was used as the sampling frame for the survey. The 1998 GDHS is based on a two-stage stratified nationally representative sample of households. At the first stage of sampling, 400 EAs were selected using systematic sampling with probability proportional to size (PPS-Method). The selected EAs comprised 138 in the urban areas and 262 in the rural areas. A complete household listing operation was then carried out in all the selected EAs to provide a sampling frame for the second stage selection of households. At the second stage of sampling, a systematic sample of 15 households per EA was selected in all regions, except in the Northern, Upper West and Upper East Regions. In order to obtain adequate numbers of households to provide reliable estimates of key demographic and health variables in these three regions, the number of households in each selected EA in the Northern, Upper West and Upper East regions was increased to 20. The sample was weighted to adjust for over sampling in the three northern regions (Northern, Upper East and Upper West), in relation to the other regions. Sample weights were used to compensate for the unequal probability of selection between geographically defined strata.

    The survey was designed to obtain completed interviews of 4,500 women age 15-49. In addition, all males age 15-59 in every third selected household were interviewed, to obtain a target of 1,500 men. In order to take cognisance of non-response, a total of 6,375 households nation-wide were selected.

    Note: See detailed description of sample design in APPENDIX A of the survey report.

    Mode of data collection

    Face-to-face

    Research instrument

    Three types of questionnaires were used in the GDHS: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire. These questionnaires were based on model survey instruments developed for the international MEASURE DHS+ programme and were designed to provide information needed by health and family planning programme managers and policy makers. The questionnaires were adapted to the situation in Ghana and a number of questions pertaining to on-going health and family planning programmes were added. These questionnaires were developed in English and translated into five major local languages (Akan, Ga, Ewe, Hausa, and Dagbani).

    The Household Questionnaire was used to enumerate all usual members and visitors in a selected household and to collect information on the socio-economic status of the household. The first part of the Household Questionnaire collected information on the relationship to the household head, residence, sex, age, marital status, and education of each usual resident or visitor. This information was used to identify women and men who were eligible for the individual interview. For this purpose, all women age 15-49, and all men age 15-59 in every third household, whether usual residents of a selected household or visitors who slept in a selected household the night before the interview, were deemed eligible and interviewed. The Household Questionnaire also provides basic demographic data for Ghanaian households. The second part of the Household Questionnaire contained questions on the dwelling unit, such as the number of rooms, the flooring material, the source of water and the type of toilet facilities, and on the ownership of a variety of consumer goods.

    The Women’s Questionnaire was used to collect information on the following topics: respondent’s background characteristics, reproductive history, contraceptive knowledge and use, antenatal, delivery and postnatal care, infant feeding practices, child immunisation and health, marriage, fertility preferences and attitudes about family planning, husband’s background characteristics, women’s work, knowledge of HIV/AIDS and STDs, as well as anthropometric measurements of children and mothers.

    The Men’s Questionnaire collected information on respondent’s background characteristics, reproduction, contraceptive knowledge and use, marriage, fertility preferences and attitudes about family planning, as well as knowledge of HIV/AIDS and STDs.

    Response rate

    A total of 6,375 households were selected for the GDHS sample. Of these, 6,055 were occupied. Interviews were completed for 6,003 households, which represent 99 percent of the occupied households. A total of 4,970 eligible women from these households and 1,596 eligible men from every third household were identified for the individual interviews. Interviews were successfully completed for 4,843 women or 97 percent and 1,546 men or 97 percent. The principal reason for nonresponse among individual women and men was the failure of interviewers to find them at home despite repeated callbacks.

    Note: See summarized response rates by place of residence in Table 1.1 of the survey report.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of shortfalls made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 1998 GDHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 1998 GDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 1998 GDHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 1998 GDHS is the ISSA Sampling Error Module. This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

    Note: See detailed tables in APPENDIX C of the survey report.

  4. i

    Demographic and Health Survey 2017-2018 - Pakistan

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    • +1more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Population Studies (NIPS) (2019). Demographic and Health Survey 2017-2018 - Pakistan [Dataset]. https://datacatalog.ihsn.org/catalog/7970
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    National Institute of Population Studies (NIPS)
    Time period covered
    2017 - 2018
    Area covered
    Pakistan
    Description

    Abstract

    The Pakistan Demographic and Health Survey PDHS 2017-18 was the fourth of its kind in Pakistan, following the 1990-91, 2006-07, and 2012-13 PDHS surveys.

    The primary objective of the 2017-18 PDHS is to provide up-to-date estimates of basic demographic and health indicators. The PDHS provides a comprehensive overview of population, maternal, and child health issues in Pakistan. Specifically, the 2017-18 PDHS collected information on:

    • Key demographic indicators, particularly fertility and under-5 mortality rates, at the national level, for urban and rural areas, and within the country’s eight regions
    • Direct and indirect factors that determine levels and trends of fertility and child mortality
    • Contraceptive knowledge and practice
    • Maternal health and care including antenatal, perinatal, and postnatal care
    • Child feeding practices, including breastfeeding, and anthropometric measures to assess the nutritional status of children under age 5 and women age 15-49
    • Key aspects of family health, including vaccination coverage and prevalence of diseases among infants and children under age 5
    • Knowledge and attitudes of women and men about sexually transmitted infections (STIs), including HIV/AIDS, and potential exposure to risk
    • Women's empowerment and its relationship to reproductive health and family planning
    • Disability level
    • Extent of gender-based violence
    • Migration patterns

    The information collected through the 2017-18 PDHS is intended to assist policymakers and program managers at the federal and provincial government levels, in the private sector, and at international organisations in evaluating and designing programs and strategies for improving the health of the country’s population. The data also provides information on indicators relevant to the Sustainable Development Goals.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-49

    Universe

    The survey covered all de jure household members (usual residents), children age 0-5 years, women age 15-49 years and men age 15-49 years resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2017-18 PDHS is a complete list of enumeration blocks (EBs) created for the Pakistan Population and Housing Census 2017, which was conducted from March to May 2017. The Pakistan Bureau of Statistics (PBS) supported the sample design of the survey and worked in close coordination with NIPS. The 2017-18 PDHS represents the population of Pakistan including Azad Jammu and Kashmir (AJK) and the former Federally Administrated Tribal Areas (FATA), which were not included in the 2012-13 PDHS. The results of the 2017-18 PDHS are representative at the national level and for the urban and rural areas separately. The survey estimates are also representative for the four provinces of Punjab, Sindh, Khyber Pakhtunkhwa, and Balochistan; for two regions including AJK and Gilgit Baltistan (GB); for Islamabad Capital Territory (ICT); and for FATA. In total, there are 13 secondlevel survey domains.

    The 2017-18 PDHS followed a stratified two-stage sample design. The stratification was achieved by separating each of the eight regions into urban and rural areas. In total, 16 sampling strata were created. Samples were selected independently in every stratum through a two-stage selection process. Implicit stratification and proportional allocation were achieved at each of the lower administrative levels by sorting the sampling frame within each sampling stratum before sample selection, according to administrative units at different levels, and by using a probability-proportional-to-size selection at the first stage of sampling.

    The first stage involved selecting sample points (clusters) consisting of EBs. EBs were drawn with a probability proportional to their size, which is the number of households residing in the EB at the time of the census. A total of 580 clusters were selected.

    The second stage involved systematic sampling of households. A household listing operation was undertaken in all of the selected clusters, and a fixed number of 28 households per cluster was selected with an equal probability systematic selection process, for a total sample size of approximately 16,240 households. The household selection was carried out centrally at the NIPS data processing office. The survey teams only interviewed the pre-selected households. To prevent bias, no replacements and no changes to the pre-selected households were allowed at the implementing stages.

    For further details on sample design, see Appendix A of the final report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Six questionnaires were used in the 2017-18 PDHS: Household Questionnaire, Woman’s Questionnaire, Man’s Questionnaire, Biomarker Questionnaire, Fieldworker Questionnaire, and the Community Questionnaire. The first five questionnaires, based on The DHS Program’s standard Demographic and Health Survey (DHS-7) questionnaires, were adapted to reflect the population and health issues relevant to Pakistan. The Community Questionnaire was based on the instrument used in the previous rounds of the Pakistan DHS. Comments were solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. The survey protocol was reviewed and approved by the National Bioethics Committee, Pakistan Health Research Council, and ICF Institutional Review Board. After the questionnaires were finalised in English, they were translated into Urdu and Sindhi. The 2017-18 PDHS used paper-based questionnaires for data collection, while computerassisted field editing (CAFE) was used to edit the questionnaires in the field.

    Cleaning operations

    The processing of the 2017-18 PDHS data began simultaneously with the fieldwork. As soon as data collection was completed in each cluster, all electronic data files were transferred via IFSS to the NIPS central office in Islamabad. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted to any inconsistencies and errors. Secondary editing was carried out in the central office, which involved resolving inconsistencies and coding the openended questions. The NIPS data processing manager coordinated the exercise at the central office. The PDHS core team members assisted with the secondary editing. Data entry and editing were carried out using the CSPro software package. The concurrent processing of the data offered a distinct advantage as it maximised the likelihood of the data being error-free and accurate. The secondary editing of the data was completed in the first week of May 2018. The final cleaning of the data set was carried out by The DHS Program data processing specialist and completed on 25 May 2018.

    Response rate

    A total of 15,671 households were selected for the survey, of which 15,051 were occupied. The response rates are presented separately for Pakistan, Azad Jammu and Kashmir, and Gilgit Baltistan. Of the 12,338 occupied households in Pakistan, 11,869 households were successfully interviewed, yielding a response rate of 96%. Similarly, the household response rates were 98% in Azad Jammu and Kashmir and 99% in Gilgit Baltistan.

    In the interviewed households, 94% of ever-married women age 15-49 in Pakistan, 97% in Azad Jammu and Kashmir, and 94% in Gilgit Baltistan were interviewed. In the subsample of households selected for the male survey, 87% of ever-married men age 15-49 in Pakistan, 94% in Azad Jammu and Kashmir, and 84% in Gilgit Baltistan were successfully interviewed.

    Overall, the response rates were lower in urban than in rural areas. The difference is slightly less pronounced for Azad Jammu and Kashmir and Gilgit Baltistan. The response rates for men are lower than those for women, as men are often away from their households for work.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017-18 Pakistan Demographic and Health Survey (2017-18 PDHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017-18 PDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that

  5. u

    Population and Family Health Survey 2012 - Jordan

    • microdata.unhcr.org
    • catalog.ihsn.org
    • +3more
    Updated May 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (DoS) (2021). Population and Family Health Survey 2012 - Jordan [Dataset]. https://microdata.unhcr.org/index.php/catalog/405
    Explore at:
    Dataset updated
    May 19, 2021
    Dataset authored and provided by
    Department of Statistics (DoS)
    Time period covered
    2012
    Area covered
    Jordan
    Description

    Abstract

    The Jordan Population and Family Health Survey (JPFHS) is part of the worldwide Demographic and Health Surveys Program, which is designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 2012 Jordan Population and Family Health Survey (JPFHS) is to provide reliable estimates of demographic parameters, such as fertility, mortality, family planning, and fertility preferences, as well as maternal and child health and nutrition, that can be used by program managers and policymakers to evaluate and improve existing programs. The JPFHS data will be useful to researchers and scholars interested in analyzing demographic trends in Jordan, as well as those conducting comparative, regional, or cross-national studies.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Women age 15-49

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample Design The 2012 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, urban and rural areas, each of the 12 governorates, and for the two special domains: the Badia areas and people living in refugee camps. To facilitate comparisons with previous surveys, the sample was also designed to produce estimates for the three regions (North, Central, and South). The grouping of the governorates into regions is as follows: the North consists of Irbid, Jarash, Ajloun, and Mafraq governorates; the Central region consists of Amman, Madaba, Balqa, and Zarqa governorates; and the South region consists of Karak, Tafiela, Ma'an, and Aqaba governorates.

    The 2012 JPFHS sample was selected from the 2004 Jordan Population and Housing Census sampling frame. The frame excludes the population living in remote areas (most of whom are nomads), as well as those living in collective housing units such as hotels, hospitals, work camps, prisons, and the like. For the 2004 census, the country was subdivided into convenient area units called census blocks. For the purposes of the household surveys, the census blocks were regrouped to form a general statistical unit of moderate size (30 households or more), called a "cluster", which is widely used in surveys as a primary sampling unit (PSU).

    Stratification was achieved by first separating each governorate into urban and rural areas and then, within each urban and rural area, by Badia areas, refugee camps, and other. A two-stage sampling procedure was employed. In the first stage, 806 clusters were selected with probability proportional to the cluster size, that is, the number of residential households counted in the 2004 census. A household listing operation was then carried out in all of the selected clusters, and the resulting lists of households served as the sampling frame for the selection of households in the second stage. In the second stage of selection, a fixed number of 20 households was selected in each cluster with an equal probability systematic selection. A subsample of two-thirds of the selected households was identified for anthropometry measurements.

    Refer to Appendix A in the final report (Jordan Population and Family Health Survey 2012) for details of sampling weights calculation.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The 2012 JPFHS used two questionnaires, namely the Household Questionnaire and the Woman’s Questionnaire (see Appendix D). The Household Questionnaire was used to list all usual members of the sampled households, and visitors who slept in the household the night before the interview, and to obtain information on each household member’s age, sex, educational attainment, relationship to the head of the household, and marital status. In addition, questions were included on the socioeconomic characteristics of the household, such as source of water, sanitation facilities, and the availability of durable goods. Moreover, the questionnaire included questions about child discipline. The Household Questionnaire was also used to identify women who were eligible for the individual interview (ever-married women age 15-49 years). In addition, all women age 15-49 and children under age 5 living in the subsample of households were eligible for height and weight measurement and anemia testing.

    The Woman’s Questionnaire was administered to ever-married women age 15-49 and collected information on the following topics: • Respondent’s background characteristics • Birth history • Knowledge, attitudes, and practice of family planning and exposure to family planning messages • Maternal health (antenatal, delivery, and postnatal care) • Immunization and health of children under age 5 • Breastfeeding and infant feeding practices • Marriage and husband’s background characteristics • Fertility preferences • Respondent’s employment • Knowledge of AIDS and sexually transmitted infections (STIs) • Other health issues specific to women • Early childhood development • Domestic violence

    In addition, information on births, pregnancies, and contraceptive use and discontinuation during the five years prior to the survey was collected using a monthly calendar.

    The Household and Woman’s Questionnaires were based on the model questionnaires developed by the MEASURE DHS program. Additions and modifications to the model questionnaires were made in order to provide detailed information specific to Jordan. The questionnaires were then translated into Arabic.

    Anthropometric data were collected during the 2012 JPFHS in a subsample of two-thirds of the selected households in each cluster. All women age 15-49 and children age 0-4 in these households were measured for height using Shorr height boards and for weight using electronic Seca scales. In addition, a drop of capillary blood was taken from these women and children in the field to measure their hemoglobin level using the HemoCue system. Hemoglobin testing was used to estimate the prevalence of anemia.

    Cleaning operations

    Fieldwork and data processing activities overlapped. Data processing began two weeks after the start of the fieldwork. After field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman, where they were registered and stored. Special teams were formed to carry out office editing and coding of the openended questions.

    Data entry and verification started after two weeks of office data processing. The process of data entry, including 100 percent reentry, editing, and cleaning, was done by using PCs and the CSPro (Census and Survey Processing) computer package, developed specially for such surveys. The CSPro program allows data to be edited while being entered. Data processing operations were completed by early January 2013. A data processing specialist from ICF International made a trip to Jordan in February 2013 to follow up on data editing and cleaning and to work on the tabulation of results for the survey preliminary report, which was published in March 2013. The tabulations for this report were completed in April 2013.

    Response rate

    In all, 16,120 households were selected for the survey and, of these, 15,722 were found to be occupied households. Of these households, 15,190 (97 percent) were successfully interviewed.

    In the households interviewed, 11,673 ever-married women age 15-49 were identified and interviews were completed with 11,352 women, or 97 percent of all eligible women.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2012 Jordan Population and Family Health Survey (JPFHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2012 JPFHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2012 JPFHS sample is the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulae. The computer

  6. Gallup Poll Social Series (GPSS)

    • redivis.com
    • stanford.redivis.com
    application/jsonl +7
    Updated Jul 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford University Libraries (2025). Gallup Poll Social Series (GPSS) [Dataset]. http://doi.org/10.57761/vxfa-he67
    Explore at:
    csv, spss, sas, avro, stata, arrow, parquet, application/jsonlAvailable download formats
    Dataset updated
    Jul 10, 2025
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford University Libraries
    Description

    Abstract

    The Gallup Poll Social Series (GPSS) is a set of public opinion surveys designed to monitor U.S. adults' views on numerous social, economic, and political topics. The topics are arranged thematically across 12 surveys. Gallup administers these surveys during the same month every year and includes the survey's core trend questions in the same order each administration. Using this consistent standard allows for unprecedented analysis of changes in trend data that are not susceptible to question order bias and seasonal effects.

    Introduced in 2001, the GPSS is the primary method Gallup uses to update several hundred long-term Gallup trend questions, some dating back to the 1930s. The series also includes many newer questions added to address contemporary issues as they emerge.

    The dataset currently includes responses from up to and including 2025.

    Methodology

    Gallup conducts one GPSS survey per month, with each devoted to a different topic, as follows:

    January: Mood of the Nation

    February: World Affairs

    March: Environment

    April: Economy and Finance

    May: Values and Beliefs

    June: Minority Rights and Relations (discontinued after 2016)

    July: Consumption Habits

    August: Work and Education

    September: Governance

    October: Crime

    November: Health

    December: Lifestyle (conducted 2001-2008)

    The core questions of the surveys differ each month, but several questions assessing the state of the nation are standard on all 12: presidential job approval, congressional job approval, satisfaction with the direction of the U.S., assessment of the U.S. job market, and an open-ended measurement of the nation's "most important problem." Additionally, Gallup includes extensive demographic questions on each survey, allowing for in-depth analysis of trends.

    Interviews are conducted with U.S. adults aged 18 and older living in all 50 states and the District of Columbia using a dual-frame design, which includes both landline and cellphone numbers. Gallup samples landline and cellphone numbers using random-digit-dial methods. Gallup purchases samples for this study from Survey Sampling International (SSI). Gallup chooses landline respondents at random within each household based on which member had the next birthday. Each sample of national adults includes a minimum quota of 70% cellphone respondents and 30% landline respondents, with additional minimum quotas by time zone within region. Gallup conducts interviews in Spanish for respondents who are primarily Spanish-speaking.

    Gallup interviews a minimum of 1,000 U.S. adults aged 18 and older for each GPSS survey. Samples for the June Minority Rights and Relations survey are significantly larger because Gallup includes oversamples of Blacks and Hispanics to allow for reliable estimates among these key subgroups.

    Gallup weights samples to correct for unequal selection probability, nonresponse, and double coverage of landline and cellphone users in the two sampling frames. Gallup also weights its final samples to match the U.S. population according to gender, age, race, Hispanic ethnicity, education, region, population density, and phone status (cellphone only, landline only, both, and cellphone mostly).

    Demographic weighting targets are based on the most recent Current Population Survey figures for the aged 18 and older U.S. population. Phone status targets are based on the most recent National Health Interview Survey. Population density targets are based on the most recent U.S. Census.

    Usage

    The year appended to each table name represents when the data was last updated. For example, January: Mood of the Nation - 2025** **has survey data collected up to and including 2025.

    For more information about what survey questions were asked over time, see the Supporting Files.

    Bulk Data Access

    Data access is required to view this section.

  7. c

    ALLBUS 2021 - Sociodemographic Standard Variables (KonsortSWD)

    • datacatalogue.cessda.eu
    Updated Apr 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hadjar, Andreas; Ackermann, Kathrin; Auspurg, Katrin; Bühler, Christoph; Carol, Sarah; Friehs, Maria-Therese; Hillmert, Steffen; Tausendpfund, Markus (2025). ALLBUS 2021 - Sociodemographic Standard Variables (KonsortSWD) [Dataset]. http://doi.org/10.4232/1.14451
    Explore at:
    Dataset updated
    Apr 25, 2025
    Dataset provided by
    University College Dublin
    Universität Tübingen
    LMU München
    Universität Hannover
    Universität Luxemburg
    Universität Siegen
    FernUniversität Hagen
    Authors
    Hadjar, Andreas; Ackermann, Kathrin; Auspurg, Katrin; Bühler, Christoph; Carol, Sarah; Friehs, Maria-Therese; Hillmert, Steffen; Tausendpfund, Markus
    Time period covered
    Jun 1, 2021 - Aug 1, 2021
    Area covered
    Germany
    Measurement technique
    • Self-administered questionnaire: Paper • Self-administered questionnaire: Web-based (CAWI); ALLBUS/GGSS 2021 was conducted as a mixed-mode survey. The target persons had the choice between the two modes MAIL and CAWI. Different survey modes are preferred by different subpopulations, as was the case in ALLBUS/GGSS 2021. To account for this self-selection, it is strongly recommended that the cases from both modes be analyzed together.
    Description

    ALLBUS (GGSS - the German General Social Survey) is a biennial trend survey based on random samples of the German population. Established in 1980, its mission is to monitor attitudes, behavior, and social change in Germany. Each ALLBUS cross-sectional survey consists of one or two main question modules covering changing topics, a range of supplementary questions and a core module providing detailed demographic information. Additionally, data on the interview and the interviewers are provided as well. Key topics generally follow a 10-year replication cycle, many individual indicators and item batteries are replicated at shorter intervals. The present data set contains socio-demographic variables from the ALLBUS 2021, which were harmonized to the standards developed as part of the KonsortSWD sub-project “Harmonized Variables” (Schneider et al., 2023). While there are already established recommendations for the formulation of socio-demographic questionnaire items (e.g. the “Demographic Standards” by Hoffmeyer-Zlotnik et al., 2016), there were no such standards at the variable level. The KonsortSWD project closes this gap and establishes 32 standard variables for 19 socio-demographic characteristics contained in this dataset.

  8. i

    Population and Family Health Survey 2017-2018 - Jordan

    • dev.ihsn.org
    • datacatalog.ihsn.org
    • +2more
    Updated Apr 9, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (DoS) (2019). Population and Family Health Survey 2017-2018 - Jordan [Dataset]. https://dev.ihsn.org/nada/catalog/66516
    Explore at:
    Dataset updated
    Apr 9, 2019
    Dataset authored and provided by
    Department of Statistics (DoS)
    Time period covered
    2017 - 2018
    Area covered
    Jordan
    Description

    Abstract

    The primary objective of the 2017-18 Jordan Population and Family Health Survey (JPFHS) is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the 2017-18 JPFHS: - Collected data at the national level that allowed calculation of key demographic indicators - Explored the direct and indirect factors that determine levels of and trends in fertility and childhood mortality - Measured levels of contraceptive knowledge and practice - Collected data on key aspects of family health, including immunisation coverage among children, the prevalence and treatment of diarrhoea and other diseases among children under age 5, and maternity care indicators such as antenatal visits and assistance at delivery among ever-married women - Obtained data on child feeding practices, including breastfeeding, and conducted anthropometric measurements to assess the nutritional status of children under age 5 and ever-married women age 15-49 - Conducted haemoglobin testing on children age 6-59 months and ever-married women age 15-49 to provide information on the prevalence of anaemia among these groups - Collected data on knowledge and attitudes of ever-married women and men about sexually transmitted infections (STIs) and HIV/AIDS - Obtained data on ever-married women’s experience of emotional, physical, and sexual violence - Obtained data on household health expenditures

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-59

    Universe

    The survey covered all de jure household members (usual residents), children age 0-5 years, women age 15-49 years and men age 15-59 years resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2017-18 JPFHS is based on Jordan's Population and Housing Census (JPHC) frame for 2015. The current survey is designed to produce results representative of the country as a whole, of urban and rural areas separately, of three regions, of 12 administrative governorates, and of three national groups: Jordanians, Syrians, and a group combined from various other nationalities.

    The sample for the 2017-18 JPFHS is a stratified sample selected in two stages from the 2015 census frame. Stratification was achieved by separating each governorate into urban and rural areas. Each of the Syrian camps in the governorates of Zarqa and Mafraq formed its own sampling stratum. In total, 26 sampling strata were constructed. Samples were selected independently in each sampling stratum, through a two-stage selection process, according to the sample allocation. Before the sample selection, the sampling frame was sorted by district and sub-district within each sampling stratum. By using a probability-proportional-to-size selection for the first stage of selection, an implicit stratification and proportional allocation were achieved at each of the lower administrative levels.

    In the first stage, 970 clusters were selected with probability proportional to cluster size, with the cluster size being the number of residential households enumerated in the 2015 JPHC. The sample allocation took into account the precision consideration at the governorate level and at the level of each of the three special domains. After selection of PSUs and clusters, a household listing operation was carried out in all selected clusters. The resulting household lists served as the sampling frame for selecting households in the second stage. A fixed number of 20 households per cluster were selected with an equal probability systematic selection from the newly created household listing.

    For further details on sample design, see Appendix A of the final report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Four questionnaires were used for the 2017-18 JPFHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. These questionnaires, based on The DHS Program’s standard Demographic and Health Survey questionnaires, were adapted to reflect population and health issues relevant to Jordan. After all questionnaires were finalised in English, they were translated into Arabic.

    Cleaning operations

    All electronic data files for the 2017-18 JPFHS were transferred via IFSS to the DOS central office in Amman, where they were stored on a password-protected computer. The data processing operation included secondary editing, which required resolution of computer-identified inconsistencies and coding of open-ended questions. Data editing was accomplished using CSPro software. During the duration of fieldwork, tables were generated to check various data quality parameters, and specific feedback was given to the teams to improve performance. Secondary editing and data processing were initiated in October 2017 and completed in February 2018.

    Response rate

    A total of 19,384 households were selected for the sample, of which 19,136 were found to be occupied at the time of the fieldwork. Of the occupied households, 18,802 were successfully interviewed, yielding a response rate of 98%.

    In the interviewed households, 14,870 women were identified as eligible for an individual interview; interviews were completed with 14,689 women, yielding a response rate of 99%. A total of 6,640 eligible men were identified in the sampled households and 6,429 were successfully interviewed, yielding a response rate of 97%. Response rates for both women and men were similar across urban and rural areas.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017-18 Jordan Population and Family Health Survey (JPFHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017-18 JPFHS is only one of many samples that could have been selected from the same population, using the same design and sample size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected by simple random sampling, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2017-18 JPFHS sample was the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed using SAS programmes developed by ICF International. These programmes use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    The Taylor linearisation method treats any percentage or average as a ratio estimate, r = y/x, where y represents the total sample value for variable y, and x represents the total number of cases in the group or subgroup under consideration.

    A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

    See details of the data quality tables in Appendix C of the survey final report.

  9. p

    Demographic Health Survey 2007 - Nauru

    • microdata.pacificdata.org
    Updated Aug 18, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Demographic Health Survey 2007 - Nauru [Dataset]. https://microdata.pacificdata.org/index.php/catalog/25
    Explore at:
    Dataset updated
    Aug 18, 2013
    Dataset authored and provided by
    Nauru Bureau of Statistics
    Time period covered
    2007
    Area covered
    Nauru
    Description

    Abstract

    The main objective of a demographic household survey (DHS) is to provide estimates of a number of basic demographic and health variables. This is done through interviews with a scientifically selected probability sample that is chosen from a well-defined population.

    The 2007 Nauru Demographic and Health Survey (2007 NDHS) was one of four pilot demographic and health surveys conducted in the Pacific under an Asian Development Bank ADB/ Secretariat of the Pacific Community (SPC) Regional DHS Pilot Project. The primary objective of this survey was to provide up-to-date information for policy-makers, planners, researchers and programme managers, for use in planning, implementing, monitoring and evaluating population and health programmes within the country. The survey was intended to provide key estimates of Nauru's demographics and health situation. The findings of the 2007 NDHS are very important in measuring the achievements of family planning and other health programmes. To ensure better understanding and use of these data, the results of this survey should be widely disseminated at different planning levels. Different dissemination techniques will be used to reach different segments of society.

    The primary purpose of the 2007 NDHS was to furnish policy-makers and planners with detailed information on fertility, family planning, infant and child mortality, maternal and child health, nutrition, and knowledge of HIV and AIDS and other sexually transmitted infections.

    NOTE: The only dissemination used was wide distribution of the report. A planned data use workshop was not undertaken. Hence there is some misconceptions and lack of awareness on the results obtained from the survey. The report is provided on the NBOS website free for download.

    Geographic coverage

    National Coverage - Districts

    Analysis unit

    • Households
    • Children (0-14yrs)
    • Individual women of reproductive age (15-49 yrs)
    • Individual men of reproductive age (15yrs+)
    • Facilities providing reproductive and child health services

    Universe

    The survey covered all household members (usual residents), - All children (aged 0-14 years) resident in the household - All women of reproductive age (15-49 years) resident in all household - All males (15yrs and above) in every second household (approx. 50%) resident in selected household

    Results: The 2007 Nauru Demographic Health Survey (2007 NDHS) is a nationally representative survey of 655 eligible women (aged 15-49) and 392 eligible men (aged 15 and above).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    IDG NOTES: Locate sampling documentation with SPC (Graeme Brown) and internal files. Add in this sections. Or second option dilute appendix A Sampling and extract key issues.

    ESTIMATES OF SAMPLING ERRORS - Refer to Appendix A of final NDHS2007 report or; - External Resources - 2007 DHS- Appendix A and B Sampling (to be created separatedly by IDG progress ongoing)

    Sampling deviation

    IDG NOTES: Locate sampling documentation with Macro and internal files. Add in this section. Or second option dilute appendix B Sampling and extract key issues.

    ESTIMATES OF SAMPLING ERRORS - Refer to Appendix B of final NDHS2007 report or;

    • External Resources
      • 2007 DHS- Appendix A and B Sampling (to be created separatedly by IDG progress ongoing)

    Extract:

    In the 2007 NDHS Report of the survey results, sampling errors for selected variables have been presented in a tabular format. The sampling error tables should include:

    .. Variable name

    R: Value of the estimate; SE: Sampling error of the estimate; N: Unweighted number of cases on which the estimate is based; WN: Weighted number of cases; DEFT: Design effect value that compensates for the loss of precision that results from using cluster rather than simple random sampling; SE/R: Relative standard error (i.e. ratio of the sampling error to the value estimate); R-2SE: Lower limit of the 95% confidence interval; R+2SE: Upper limit of the 95% confidence interval (never >1.000 for a proportion).

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    DHS questionnaire for women cover the following sections:

    • Background characteristics (age, education, religion, etc)
    • Reproductive history
    • Knowledge and use of contraception methods
    • Antenatal care, delivery care and postnatal care
    • Breastfeeding and infant feeding
    • Immunization, child health and nutrition
    • Marriage and recent sexual activity
    • Fertility preferences
    • Knowledge about HIV/AIDS and other sexually transmitted infections
    • Husbands background and women's work

    The men's questionnaire covers the same except for sections 4, 5, 6 which are not applicable to men.

    It was also recognized that some countries have a need for special information that is not contained in the core questionnaire. Separate questionnaire modules were developed on a series of topics. These topics are optional and include:

    • maternal mortality
    • pill-taking behaviour
    • sterilization experience
    • children's education
    • women's status
    • domestic violence
    • health expenditures
    • consanguinity

    The Papua New Guinea (PNG) questionnaire was proposed for Nauru to adapt as in comparison to the existing DHS model, this is not as lengthy and time-consuming. The PNG questionnaire also dealt with high incidence of alcohol and tobacco in Nauru. Questions on HIV/AIDS and STI knowledge were included in the men's questionnaire where it was not included in the PNG questionnaire.

    Response rate

    IDG NOTES: Locate response rate documentation with SPC (Graeme Brown) and internal files. Add in this sections.

  10. a

    The 2014 Lesotho Demographic and Health Survey - Lesotho

    • microdata-catalog.afdb.org
    Updated Jul 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The 2014 Lesotho Demographic and Health Survey - Lesotho [Dataset]. https://microdata-catalog.afdb.org/index.php/catalog/158
    Explore at:
    Dataset updated
    Jul 12, 2022
    Dataset authored and provided by
    Ministry of Health
    Time period covered
    2014
    Area covered
    Lesotho
    Description

    Abstract

    The 2014 Lesotho Demographic and Health Survey (LDHS) was implemented by the Lesotho Ministry of Health (MOH). Data collection took place from 22 September to 7 December 2014. The primary objective of the 2014 LDHS project is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the LDHS collected information on fertility levels, marriage, sexual activity, fertility preferences, awareness and use of family planning methods, breastfeeding practices, nutrition, childhood and maternal mortality, maternal and child health, awareness and behaviour regarding HIV/AIDS and other sexually transmitted infections (STIs), and other health issues such as smoking, knowledge of breast cancer, and male circumcision. In addition, the 2014 LDHS provides estimates of anaemia prevalence among children age 6-59 months and adults, and gives estimates of hypertension, HIV prevalence and HIV incidence among adults. The 2014 LDHS is a follow-up to the 2004 and 2009 LDHS surveys.

    The information collected through the LDHS is intended to assist policy makers and programme managers in evaluating and designing programmes and strategies for improving the health of the country’s population.

    Geographic coverage

    National coverage

    Analysis unit

    Households Women Men Children

    Universe

    The Lesotho DHS 2014 covered all household members, all women 15-49 years, all children aged 0-59 months and all men aged 15-59 years in the half of households

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2014 LDHS is an updated frame from the 2006 Lesotho Population and Housing Census (PHC) provided by the Lesotho Bureau of Statistics (BOS). The sampling frame excluded nomadic and institutional populations such as persons in hotels, barracks, and prisons.

    The 2014 LDHS followed a two-stage sample design and was intended to allow estimates of key indicators at the national level as well as in urban and rural areas, four ecological zones,1 and each of Lesotho’s 10 districts.2 The first stage involved selecting sample points (clusters) consisting of enumeration areas (EAs) delineated for the 2006 PHC. A total of 400 clusters were selected, 118 in urban areas and 282 in rural areas.

    The second stage involved systematic sampling of households. A household listing operation was undertaken in all of the selected EAs in July 2014, and households to be included in the survey were randomly selected from these lists. About 25 households were selected from each sample point, for a total sample size of 9,942 households. Because of the approximately equal sample sizes in each district, the sample is not self-weighting at the national level, and weighting factors have been added to the data file so that the results will be proportional at the national level.

    All women age 15-49 who were either permanent residents of the selected households or visitors who stayed in the household the night before the survey were eligible to be interviewed. In half of the households, all men age 15-59 who were either permanent residents of the selected households or visitors who stayed in the household the night before the survey were eligible to be interviewed. In the subsample of households selected for the male survey, blood pressure measurements and anaemia testing were performed among eligible women and men who consented to being tested. With the parent’s or guardian’s consent, children age 6-59 months were also tested for anaemia. In the same subsample of households, blood specimens were collected for laboratory testing of HIV from eligible women and men who consented; height and weight were measured for eligible women, men, and children age 0-59 months; and mid-upper-arm circumference (MUAC) measurements were collected for children age 6-59 months.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Three questionnaires were used for the 2014 LDHS: the Household Questionnaire, the Woman’s Questionnaire, and the Man’s Questionnaire. These questionnaires, based on The DHS Program’s standard Demographic and Health Survey questionnaires, were adapted to reflect the population and health issues relevant to Lesotho. Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. After the preparation of the definitive questionnaires in English, the questionnaires were translated into Sesotho.

    Cleaning operations

    All electronic data files for the 2014 LDHS were transferred via IFSS to the MOH central office in Maseru, where they were stored on a password-protected computer. The data processing operation included secondary editing, which involved resolution of computer-identified inconsistencies and coding of open-ended questions. The data were processed by one person who took part in the main fieldwork training. Data editing was accomplished using CSPro software. Secondary editing and data processing were initiated in October 2014 and completed in February 2015.

    Response rate

    A total of 9,942 households were selected for the sample, of which 9,543 were occupied. Of the occupied households, 9,402 were successfully interviewed, yielding a response rate of 99%. This compares favourably to the 2009 LDHS response rate (98%).

    In the interviewed households, 6,818 eligible women were identified for individual interviews; interviews were completed with 6,621 women, yielding a response rate of 97%. In the subsample of households selected for the male survey, 3,133 eligible men were identified and 2,931 were successfully interviewed, yielding a response rate of 94%. The lower response rate for men was likely due to their more frequent and longer absences from the household.

    The response rates for both women and men were slightly lower in the 2014 LDHS than in the 2009 LDHS (in which response rates were 98% for women and 95% for men). Strikingly, however, the numbers of eligible women and men identified in households in the 2014 LDHS were substantially lower than in the 2009 LDHS. Whereas there was an average of 0.83 eligible women and 0.72 eligible men per household in the 2009 LDHS, the corresponding averages in 2014 were 0.73 and 0.67 (data not shown).

    The reason for the difference in the average number of eligible women and men between the 2009 and 2014 LDHS surveys is unknown. Possibilities range from a demographic shift in the population of Lesotho to data quality issues such as age displacement or omission of household members (or a combination of both).

  11. d

    Current Population Survey (CPS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  12. g

    Demographic and Health Survey 2019-2020 - Gambia

    • microdata.gbosdata.org
    • datacatalog.ihsn.org
    • +2more
    Updated Jun 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gambia Bureau of Statistics (GBoS) (2025). Demographic and Health Survey 2019-2020 - Gambia [Dataset]. https://microdata.gbosdata.org/index.php/catalog/2
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Gambia Bureau of Statistics (GBoS)
    Time period covered
    2019 - 2020
    Area covered
    The Gambia
    Description

    Abstract

    The 2019-20 Gambia Demographic and Health Survey (2019-20 GDHS) is a nationwide survey with a nationally representative sample of residential households. The survey was implemented by The Gambia Bureau of Statistics (GBoS) in collaboration with the Ministry of Health (MoH).

    The primary objective of the 2019-20 GDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the 2019-20 GDHS: ▪ collected data on fertility levels and preferences; contraceptive use; maternal and child health; infant, child, and neonatal mortality levels; maternal mortality; gender; nutrition; awareness about HIV/AIDS; self-reported sexually transmitted infections (STIs); and other health issues relevant to the achievement of the Sustainable Development Goals (SDGs) ▪ obtained information on the availability of, access to, and use of mosquito nets as part of the National Malaria Control Programme ▪ gathered information on other health issues such as injections, tobacco use, hypertension, diabetes, and health insurance ▪ collected data on women’s empowerment, domestic violence, fistula, and female genital mutilation/cutting ▪ tested household salt for the presence of iodine ▪ obtained data on child feeding practices, including breastfeeding, and conducted anthropometric measurements to assess the nutritional status of children under age 5 and women age 15-49 ▪ conducted anaemia testing of women age 15-49 and children age 6-59 months ▪ conducted malaria testing of children age 6-59 months

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15 to 59

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49, all men age 15-59, and all children aged 0-5 resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2019-20 GDHS was based on an updated version of the 2013 Gambia Population and Housing Census (2013 GPHC) conducted by GBoS. The census counts were updated in 2015-16 based on district-level projected counts from the 2015-16 Integrated Household Survey (IHS). Administratively, The Gambia is divided into eight Local Government Areas (LGAs). Each LGA is subdivided into districts and each district is subdivided into settlements. A settlement, a group of small settlements, or a part of a large settlement can form an enumeration area (EA). These units allow the country to be easily separated into small geographical area units, each with an urban or rural designation. There are 48 districts, 120 wards, and 4,098 EAs in The Gambia; the EAs have an average size of 68 households.

    The sample for the 2019-20 GDHS was a stratified sample selected in two stages. In the first stage, EAs were selected with a probability proportional to their size within each sampling stratum. A total of 281 EAs were selected.

    In the second stage, the households were systematically sampled. A household listing operation was undertaken in all of the selected clusters. The resulting lists of households served as the sampling frame from which a fixed number of 25 households were systematically selected per cluster, resulting in a total sample size of 7,025 selected households. Results from this sample are representative at the national, urban, and rural levels and at the LGA levels.

    For further details on sample selection, see Appendix A of the final report.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Five questionnaires were used for the 2019-20 GDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, the Biomarker Questionnaire, and the Fieldworker Questionnaire. These questionnaires, based on The DHS Program’s standard questionnaires, were adapted to reflect the population and health issues relevant to The Gambia. Suggestions were solicited from various stakeholders representing government ministries, departments, and agencies; nongovernmental organisations; and international donors. All questionnaires were written in English, and interviewers translated the questions into the appropriate local language to carry out the interview.

    Cleaning operations

    All electronic data files were transferred via the Internet File Streaming System (IFSS) to the GBoS central office. The IFSS automatically encrypts the data and sends the data to a server, and the server in turn downloads the data to the data processing supervisor’s password-protected computer in the central office. The data processing operation included secondary editing, which required resolution of computeridentified inconsistencies and coding of open-ended questions. The data were processed by two IT specialists and three secondary editors who took part in the main fieldwork training; they were supervised remotely by staff from The DHS Program. Data editing was accomplished using CSPro software. During the fieldwork, field-check tables were generated to check various data quality parameters, and specific feedback was given to the teams to improve performance. Secondary editing and data processing were initiated in November 2019 and completed in May 2020.

    Response rate

    All 6,985 households in the selected housing units were eligible for the survey, of which 6,736 were occupied. Of the occupied households, 6,549 were successfully interviewed, yielding a response rate of 97%. Among the households successfully interviewed, 1,948 interviews were completed in 2019 and 4,601 in 2020.

    In the interviewed households, 12,481 women age 15-49 were identified for individual interviews; interviews were completed with 11,865 women, yielding a response rate of 95%, a 4 percentage point increase from the 2013 GDHS. Among men, 5,337 were eligible for individual interviews, and 4,636 completed an interview; this yielded a response rate of 87%, a 5 percentage point increase from the previous survey.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2019-20 Gambia Demographic and Health Survey (GDHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2019-20 GDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2019-20 GDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Note: A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables

    • Household age distribution
    • Age distribution of eligible and interviewed women
    • Age distribution of eligible and interviewed men
    • Completeness of reporting
    • Births by calendar years
    • Reporting of age at death in days
    • Reporting of age at death in months
    • Standardisation exercise results from anthropometry training
    • Height and weight data completeness and quality for children
    • Height measurements from random subsample of measured children
    • Number of enumeration areas completed by month, according to Local Government Area, The Gambia DHS 2019-20
    • Percentage of children age 6-59 months classified as having malaria according to RDT, by month and Local Government Area, The Gambia DHS 2019-20
    • Completeness of information on siblings
    • Sibship size and sex ratio of siblings

    See details of the data quality tables in Appendix C of the final report.

  13. a

    The 2019 Sierra Leone Demographic and Health Survey - Sierra Leone

    • microdata-catalog.afdb.org
    Updated Jun 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Sierra Leone (2022). The 2019 Sierra Leone Demographic and Health Survey - Sierra Leone [Dataset]. https://microdata-catalog.afdb.org/index.php/catalog/147
    Explore at:
    Dataset updated
    Jun 16, 2022
    Dataset authored and provided by
    Statistics Sierra Leone
    Time period covered
    2019
    Area covered
    Sierra Leone
    Description

    Abstract

    The Government of Sierra Leone, through the Ministry of Health and Sanitation and Statistics Sierra Leone (Stats SL), together with its development partners, conducted the 2019 Sierra Leone Demographic and Health Survey (2019 SLDHS). Data collection took place from 15 May to 31 August 2019.

    The primary objective of the 2019 SLDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the survey collected information on fertility, awareness and use of family planning methods, breastfeeding practices, nutritional status of women and children, maternal and child health, adult and childhood mortality, women’s empowerment, domestic violence, female genital cutting, prevalence and awareness and behaviour regarding HIV/AIDS and other sexually transmitted infections (STIs), and other health-related issues such as smoking.

    The information collected through the 2019 SLDHS is intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving the health of the country’s population.

    Geographic coverage

    National coverage

    Analysis unit

    Household Women Men Children

    Universe

    the 2019 SLDHS covered all household members, all women aged 15-49, all children 0-59 months and all men aged 15-59 in one-half of the sample households

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2019 SLDHS is the Population and Housing Census of the Republic of Sierra Leone, which was conducted in 2015 by Statistics Sierra Leone. Administratively, Sierra Leone is divided into provinces. Each province is subdivided into districts, each district is further divided into chiefdoms/census wards, and each chiefdom/census ward is divided into sections. During the 2015 Population and Housing Census, each locality was subdivided into convenient areas called census enumeration areas (EAs). The primary sampling unit (PSU), referred to as a cluster for the 2019 SLDHS, is defined based on EAs from the 2015 EA census frame. The 2015 Population and Housing Census provided the list of EAs that served as a foundation to estimate the number of households and distinguish EAs as urban or rural for the survey sample frame.

    The sample for the 2019 SLDHS was a stratified sample selected in two stages. Stratification was achieved by separating each district into urban and rural areas. In total, 31 sampling strata were created. Samples were selected independently in every stratum via a two-stage selection process. Implicit stratifications were achieved at each of the lower administrative levels by sorting the sampling frame before sample selection according to administrative order and by using probability-proportional-to-size selection during the first sampling stage.

    In the first stage, 578 EAs were selected with probability proportional to EA size. EA size was the number of households residing in the EA. A household listing operation was carried out in all selected EAs, and the resulting lists of households served as a sampling frame for the selection of households in the second stage. In the second stage’s selection, a fixed number of 24 households were selected in every cluster through equal probability systematic sampling, resulting in a total sample size of approximately 13,872 selected households. The household listing was carried out using tablets, and random selection of households was carried out through computer programming. The survey interviewers interviewed only the pre-selected households. To prevent bias, no replacements and no changes of the pre-selected households were allowed in the implementing stages.

    Due to the non-proportional allocation of the sample to the different districts and the possible differences in response rates, sampling weights were calculated, added to the data file, and applied so that the results would be representative at the national level as well as the domain level. Because the 2019 SLDHS sample was a two-stage stratified cluster sample selected from the sampling frame, sampling weights were calculated based on sampling probabilities separately for each sampling stage and for each cluster.

    The 2019 SLDHS included all women age 15-49 in the sample households. Those who were either permanent residents of the selected households or visitors who stayed in the households the night before the survey were eligible to be interviewed. The men’s survey was conducted in one-half of the sample households, and all men age 15-59 in these households were included. In this subsample, one eligible woman in each household was randomly selected to be asked additional questions about domestic violence. Similarly, biomarker information was collected only in those households selected for the men’s survey. The biomarkers included in this survey were height and weight for women age 15-49, men age 15-59, and children age 0-59 months; haemoglobin testing for women age 15-49, men age 15-59, and children age 6-59 months; and HIV testing for women age 15-49 and men age 15-59. The survey was successfully carried out in 578 clusters.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Five questionnaires were used for the 2019 SLDHS: The Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, the Biomarker Questionnaire, and the Fieldworker Questionnaire. The questionnaires, based on The DHS Program’s standard Demographic and Health Survey (DHS-7) questionnaires, were adapted to reflect the population and health issues relevant to Sierra Leone. Comments were solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. The survey protocol was reviewed and approved by the Sierra Leone Ethics and Scientific Review Committee and the ICF Institutional Review Board. All questionnaires were finalised in English, and the 2019 SLDHS used computer-assisted personal interviewing (CAPI) for data collection.

    The Household Questionnaire listed all members of and visitors to selected households. Basic demographic information was collected on each person listed, including age, sex, marital status, education, and relationship to the head of the household. For children under age 18, parents’ survival status was determined. Data on age, sex, and marital status of household members were used to identify women and men who were eligible for individual interviews. The Household Questionnaire also collected information on characteristics of the household’s dwelling unit, such as source of drinking water; type of toilet facilities; materials used for flooring, external walls, and roofing; ownership of various durable goods; and ownership of mosquito nets. In addition, data were gathered on whether iodised salt was present in households.

    The Woman’s Questionnaire was used to collect information from all eligible women age 15-49. These women were asked questions on the following topics:

    • Background characteristics (including age, education, and media exposure)
    • Birth history and child mortality
    • Knowledge, use, and source of family planning methods
    • Antenatal, delivery, and postnatal care
    • Vaccinations and childhood illnesses
    • Breastfeeding and infant feeding practices
    • Minimum dietary diversity
    • Marriage and sexual activity
    • Fertility preferences (including desire for more children and ideal number of children)
    • Women’s work and husbands’ background characteristics
    • Knowledge, awareness, and behaviour regarding HIV/AIDS and other sexually transmitted infections (STIs)
    • Knowledge, attitudes, and behaviour related to other health issues (e.g., smoking)
    • Female genital cutting
    • Adult and maternal mortality
    • Domestic violence

    The Man’s Questionnaire was administered to all men age 15-59 in the subsample of households selected for the men’s survey. The Man’s Questionnaire collected much of the same information as the Woman’s Questionnaire but was shorter because it did not contain a detailed reproductive history or questions on maternal and child health.

    The Biomarker Questionnaire was used to record the results of anthropometry measurements and other biomarkers for men, women, and children. This questionnaire was administered only to a subsample selected for the men’s survey. All children age 0-59 months, all men age 15-59, and all women age 15-49 were eligible for height and weight measurements. Men age 15-59 and women age 15-49 were also eligible for haemoglobin and HIV testing, and children age 6-59 months were also eligible for haemoglobin testing.

    The Fieldworker Questionnaire recorded background information from the interviewers to serve as a tool in conducting analyses of data quality. Each interviewer completed the self-administered questionnaire after the final selection of interviewers and before the fieldworkers entered the field. No personal identifiers were attached to the 2019 SLDHS fieldworkers’ data file.

    Cleaning operations

    The processing of the 2019 SLDHS data began almost as soon as the fieldwork started. As data collection was completed in each cluster, all electronic data files were transferred via the IFSS to the Stats SL central office in Freetown. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams received alerts on any inconsistencies and errors. Secondary editing, carried out in the central office, involved resolving inconsistencies and coding open-ended questions. The Stats SL data processor coordinated the exercise at the central office. The biomarker

  14. n

    Method-Naming-Standards-Survey-Dataset

    • narcis.nl
    • data.mendeley.com
    • +1more
    Updated Jan 25, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alsuhaibani, R (via Mendeley Data) (2021). Method-Naming-Standards-Survey-Dataset [Dataset]. http://doi.org/10.17632/5d7vx88sph.1
    Explore at:
    Dataset updated
    Jan 25, 2021
    Dataset provided by
    Data Archiving and Networked Services (DANS)
    Authors
    Alsuhaibani, R (via Mendeley Data)
    Description

    This dataset includes the following files:

    1. A pdf file containing the method naming standards survey questions we used in Qualtrics for surveying professional developers. The file contains the Likert scale questions and source code examples used in the survey.

    2. A CSV file containing professional developers responses to the Likert scale questions and their feedback about each method naming standard, as well as their answers to the demographic questions.

    3. A pdf copy of the survey paper (Preprint).

    Survey Paper Citation: Alsuhaibani, R., Newman, C., Decker, M., Collard, M.L., Maletic, J.I., "On the Naming of Methods: A Survey of Professional Developers", in the Proceedings of the 43rd International Conference on Software Engineering (ICSE), Madrid Spain, May 25 - 28, 2021, 12 pages

  15. N

    Standard City, IL Population Breakdown by Gender and Age

    • neilsberg.com
    csv, json
    Updated Sep 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Standard City, IL Population Breakdown by Gender and Age [Dataset]. https://www.neilsberg.com/research/datasets/67a4aa07-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 14, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Illinois, Standard City
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Standard City by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Standard City. The dataset can be utilized to understand the population distribution of Standard City by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Standard City. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Standard City.

    Key observations

    Largest age group (population): Male # 0-4 years (27) | Female # 50-54 years (25). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Standard City population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Standard City is shown in the following column.
    • Population (Female): The female population in the Standard City is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Standard City for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Standard City Population by Gender. You can refer the same here

  16. A

    Microcensus 2002, 1. quarter: Labour Force Survey (SUF edition)

    • dv05.aussda.at
    • data.aussda.at
    • +1more
    bin, pdf, tsv
    Updated Jan 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Austria; Statistics Austria (2024). Microcensus 2002, 1. quarter: Labour Force Survey (SUF edition) [Dataset]. http://doi.org/10.11587/57IRI2
    Explore at:
    bin(6893122), pdf(3446020), pdf(159062), pdf(358419), pdf(611451), pdf(124148), pdf(315324), bin(8242974), tsv(34319525), pdf(408680), tsv(42962863), tsv(178024)Available download formats
    Dataset updated
    Jan 18, 2024
    Dataset provided by
    AUSSDA
    Authors
    Statistics Austria; Statistics Austria
    License

    https://data.aussda.at/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.11587/57IRI2https://data.aussda.at/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.11587/57IRI2

    Area covered
    Austria
    Dataset funded by
    The standard program is commissioned by the Austrian Republic and statutorily regulated
    Description

    Full edition for scientific use. Since 1983 labour force surveys (LFS) are conducted annually in all European Union (EU) member states. The LFS serve as a basis for internationally compatible (in terms of definition and survey method) data on employment and unemployment for the European Commission. In Austria the LFS is conducted in full annually. The chosen month therefore is March because in this month the Microcensus-quarterly-survey which is most suitable in terms of scheduling for the LFS is performed. Central questions for the assessment of the number of employed and unemployed persons (and as a result for the calculation of the unemployment rate according to international standards) are in addition (since 1994) asked quarterly in the Microcensus standard survey. The survey conducted in March always relates to the week before the interview and includes the whole population, which means everybody who has their main residence in Austria. Data for persons not found have to be added via a substitution method so that results for the whole population can be provided. In Austria (as well as in several other states) the LFS is only conducted among the population in private households; people who live in institutions (retirement homes, boarding homes, etc) are not included in the survey. These are topics of the LFS: -> immigrants with and without the Austrian citizenship (4 questions) -> features of the first job (21 questions) -> statements on part-time jobs (6 questions) -> previous employments of unemployed persons (7 questions) -> job-seeking (13 questions) -> situation of unemployed persons (3 questions) -> school and professional education (9 questions) -> situation one year previous to the survey (7 questions). Furthermore, there are questions on the demographic background. The questions have remained more or less the same over the years. The only questions that have been changed slightly were those on education. Missing information is substituted with information from persons with similar socio-demographic variables (imputation), so that there are no unknown cases.

  17. The 2016 Ethiopia Demographic and Health Survey (EDHS) - Ethiopia

    • microdata-catalog.afdb.org
    Updated Jun 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistical Agency(CSA) (2022). The 2016 Ethiopia Demographic and Health Survey (EDHS) - Ethiopia [Dataset]. https://microdata-catalog.afdb.org/index.php/catalog/123
    Explore at:
    Dataset updated
    Jun 2, 2022
    Dataset provided by
    Central Statistical Agencyhttps://ess.gov.et/
    Authors
    Central Statistical Agency(CSA)
    Time period covered
    2016
    Area covered
    Ethiopia
    Description

    Abstract

    The 2016 Ethiopia Demographic and Health Survey (EDHS) is the fourth Demographic and Health Survey conducted in Ethiopia. It was implemented by the Central Statistical Agency (CSA) at the request of the Federal Ministry of Health (FMoH). Data collection took place from January 18, 2016, to June 27, 2016.

    SURVEY OBJECTIVES The primary objective of the 2016 EDHS is to provide up-to-date estimates of key demographic and health indicators. The EDHS provides a comprehensive overview of population, maternal, and child health issues in Ethiopia. More specifically, the 2016 EDHS: - Collected data at the national level that allowed calculation of key demographic indicators, particularly fertility and under-5 and adult mortality rates - Explored the direct and indirect factors that determine levels and trends of fertility and child mortality - Measured levels of contraceptive knowledge and practice - Collected data on key aspects of family health, including immunisation coverage among children, prevalence and treatment of diarrhoea and other diseases among children under age 5, and maternity care indicators such as antenatal visits and assistance at delivery - Obtained data on child feeding practices, including breastfeeding - Collected anthropometric measures to assess the nutritional status of children under age 5, women age 15-49, and men age 15-59 - Conducted haemoglobin testing on eligible children age 6-59 months, women age 15-49, and men age 15-59 to provide information on the prevalence of anaemia in these groups - Collected data on knowledge and attitudes of women and men about sexually transmitted diseases and HIV/AIDS and evaluated potential exposure to the risk of HIV infection by exploring high-risk behaviours and condom use - Conducted HIV testing of dried blood spot (DBS) samples collected from women age 15-49 and men age 15-59 to provide information on the prevalence of HIV among adults of reproductive age - Collected data on the prevalence of injuries and accidents among all household members - Collected data on knowledge and prevalence of fistula and female genital mutilation or cutting (FGM/C) among women age 15-49 and their daughters age 0-14 - Obtained data on women’s experience of emotional, physical, and sexual violence.

    As the fourth DHS conducted in Ethiopia, following the 2000, 2005, and 2011 EDHS surveys, the 2016 EDHS provides valuable information on trends in key demographic and health indicators over time. The information collected through the 2016 EDHS is intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving the health of the country’s population.

    Additionally, the 2016 EDHS included a health facility component that recorded data on children’s vaccinations, which were then combined with the household data on vaccinations.

    Geographic coverage

    National coverage

    Analysis unit

    • Households
    • Men
    • Women
    • Children

    Universe

    Household members women age 15-49 men age 15-59 children under age 5

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2016 EDHS is the Ethiopia Population and Housing Census (PHC), which was conducted in 2007 by the Ethiopia Central Statistical Agency. The census frame is a complete list of 84,915 enumeration areas (EAs) created for the 2007 PHC. An EA is a geographic area covering on average 181 households. The sampling frame contains information about the EA location, type of residence (urban or rural), and estimated number of residential households. With the exception of EAs in six zones of the Somali region, each EA has accompanying cartographic materials. These materials delineate geographic locations, boundaries, main access, and landmarks in or outside the EA that help identify the EA. In Somali, a cartographic frame was used in three zones where sketch maps delineating the EA geographic boundaries were available for each EA; in the remaining six zones, satellite image maps were used to provide a map for each EA.

    Administratively, Ethiopia is divided into nine geographical regions and two administrative cities. The sample for the 2016 EDHS was designed to provide estimates of key indicators for the country as a whole, for urban and rural areas separately, and for each of the nine regions and the two administrative cities.

    The 2016 EDHS sample was stratified and selected in two stages. Each region was stratified into urban and rural areas, yielding 21 sampling strata. Samples of EAs were selected independently in each stratum in two stages. Implicit stratification and proportional allocation were achieved at each of the lower administrative levels by sorting the sampling frame within each sampling stratum before sample selection, according to administrative units in different levels, and by using a probability proportional to size selection at the first stage of sampling.

    In the first stage, a total of 645 EAs (202 in urban areas and 443 in rural areas) were selected with probability proportional to EA size (based on the 2007 PHC) and with independent selection in each sampling stratum. A household listing operation was carried out in all of the selected EAs from September to December 2015. The resulting lists of households served as a sampling frame for the selection of households in the second stage. Some of the selected EAs were large, consisting of more than 300 households. To minimise the task of household listing, each large EA selected for the 2016 EDHS was segmented. Only one segment was selected for the survey with probability proportional to segment size. Household listing was conducted only in the selected segment; that is, a 2016 EDHS cluster is either an EA or a segment of an EA.

    In the second stage of selection, a fixed number of 28 households per cluster were selected with an equal probability systematic selection from the newly created household listing. All women age 15-49 and all men age 15-59 who were either permanent residents of the selected households or visitors who stayed in the household the night before the survey were eligible to be interviewed. In half of the selected households, all women age 15-49 were eligible for the FGM/C module, and only one woman per household was selected for the domestic violence module. In all of the selected households, height and weight measurements were collected from children age 0-59 months, women age 15-49, and men age 15-59. Anaemia testing was performed on consenting women age 15-49 and men age 15-59 and on children age 6-59 months whose parent/guardian consented to the testing. In addition, DBS samples were collected for HIV testing in the laboratory from women age 15-49 and men age 15-59 who consented to testing.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Five questionnaires were used for the 2016 EDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, the Biomarker Questionnaire, and the Health Facility Questionnaire. These questionnaires, based on the DHS Program’s standard Demographic and Health Survey questionnaires, were adapted to reflect the population and health issues relevant to Ethiopia. Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. After all questionnaires were finalised in English, they were translated into Amarigna, Tigrigna, and Oromiffa.

    The Household Questionnaire was used to list all members of and visitors to selected households. Basic demographic information was collected on the characteristics of each person listed, including his or her age, sex, marital status, education, and relationship to the head of the household. For children under age 18, parents’ survival status was determined. The data on age and sex of household members obtained in the Household Questionnaire were used to identify women and men who were eligible for individual interviews. The Household Questionnaire also collected information on characteristics of the household’s dwelling unit, such as source of water, type of toilet facilities, and flooring materials, as well as on ownership of various durable goods. The Household Questionnaire included an additional module developed by the DHS Program to estimate the prevalence of injuries/accidents among all household members.

    The Woman’s Questionnaire was used to collect information from all eligible women age 15-49. These women were asked questions on the following topics: - Background characteristics (including age, education, and media exposure) - Birth history and childhood mortality - Family planning, including knowledge, use, and sources of contraceptive methods - Fertility preferences - Antenatal, delivery, and postnatal care - Breastfeeding and infant feeding practices - Vaccinations and childhood illnesses - Women’s work and husbands’ background characteristics - Knowledge, awareness, and behaviour regarding HIV/AIDS and other sexually transmitted diseases (STDs) - Knowledge, attitudes, and behaviours related to other health issues (e.g., injections, smoking, use of chat) - Adult and maternal mortality - Female genital mutilation or cutting - Fistula - Violence against women The Man’s Questionnaire was administered to all eligible men age 15-59. This questionnaire collected much of the same information elicited from the Woman’s Questionnaire but was shorter because it did not contain a detailed reproductive history, questions on maternal and child health, or questions on domestic violence. The Biomarker Questionnaire was used to record biomarker data

  18. u

    Interim Demographic and Health Survey 2007-2008 - Rwanda

    • microdata.unhcr.org
    • catalog.ihsn.org
    • +3more
    Updated May 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Statistics of Rwanda (NISR) (2021). Interim Demographic and Health Survey 2007-2008 - Rwanda [Dataset]. https://microdata.unhcr.org/index.php/catalog/420
    Explore at:
    Dataset updated
    May 19, 2021
    Dataset authored and provided by
    National Institute of Statistics of Rwanda (NISR)
    Time period covered
    2007 - 2008
    Area covered
    Rwanda
    Description

    Abstract

    Rwanda Interim Demographic and Health Survey (RIDHS) follows the Demographic and Health Surveys (RDHS) that were successfully conducted in 1992, 2000, and 2005, and is part of a broad, worldwide program of socio-demographic and health surveys conducted in developing countries since the mid-1980s. RIDHS collected the indicators on fertility, family planning and maternal and child health which the survey normally provides. In addition, RIDHS integrated a malaria module and tests for the prevalence of malaria and anemia among women and children, thus determining the prevalence of malaria and anemia for women and children at the national level.

    The main objectives of the RIDHS were: • At the national level, gather data to determine demographic rates, particularly fertility and infant and child mortality rates, and analyze the direct and indirect factors that determine fertility and child mortality rates and trends. • Evaluate the level of knowledge and use of contraceptives among women and men. • Gather data concerning family health: vaccinations; prevalence and treatment of diarrhea, acute respiratory infections (ARI), and fever in children under the age of five; antenatal care visits; and assistance during childbirth. • Gather data concerning the prevention and treatment of malaria, particularly the possession and use of mosquito nets, and the prevention of malaria in pregnant women. • Gather data concerning child feeding practices, including breastfeeding. • Gather data concerning circumcision among men between the ages of 15 and 59. • Collect blood samples in all of the households surveyed for anemia testing of women age 15-49, pregnant women and children under age five. • Collect blood samples in all of the households surveyed for hemoglobin and malaria diagnostic testing of women age 15 to 49, pregnant women and children under age five.

    Geographic coverage

    National coverage

    Analysis unit

    Household Individual Woman age 15-49 Man age 15-59

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for the RIDHS is a two-stage stratified area sample. Clusters are the primary sampling units and are constituted from enumeration areas (EA). The EA were defined in the 2002 General Population and Housing Census (RGPH) (SNR, 2005).

    These enumeration areas provided the master frame for the drawing of 250 clusters (187 rural and 63 urban), selected with a representative probability proportional to their size. Only 249 of these clusters were surveyed, because one cluster located in a refugee camp had to be eliminated from the sample. A strictly proportional sample allocation would have resulted in a very low number of urban households in certain provinces. It was therefore necessary to slightly oversample urban areas in order to survey a sufficient number of households to produce reliable estimates for urban areas. The second stage involved selecting a sample of households in these enumeration areas. In order to adequately guarantee the accuracy of the indicators, the total number drawn was limited to 30 households per cluster. Because of the nonproportional distribution of the sample among the different strata and the fact that the number of households was set for each cluster, weighting was used to ensure the validity of the sample at both national and provincial levels.

    All women age 15-49 years who were either usual residents of the selected household or visitors present in the household on the night before the survey were eligible to be interviewed (7,528 women). In addition, a sample of men age 15-59 who were either usual residents of the selected household or visitors present in the household on the night before the survey were eligible for the survey (7,168 men). Finally, all women age 15-49 and all children under the age of five were eligible for the anemia and malaria diagnostic tests.

    The sample for the 2007-08 RIDHS covered the population residing in ordinary households across the country. A national sample of 7,469 households (1,863 in urban areas and 5,606 in rural areas) was selected. The sample was first stratified to provide adequate representation from urban and rural areas as well as all the four provinces and the city of Kigali, the nation’s capital.

    Sampling deviation

    One cluster located in a refugee camp had to be eliminated from the sample.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Three questionnaires were used in the 2007-08 RIDHS: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire. The content of these questionnaires was based on model questionnaires developed by the MEASURE DHS project.

    Initial technical meetings that were held beginning in September 2007 allowed a wide range of government agencies as well as local and international organizations to contribute to the development of the questionnaires. Based on these discussions, the DHS model questionnaires were modified to reflect the needs of users and relevant issues in population, family planning, anemia, malaria and other health concerns in Rwanda. The questionnaires were then translated from French into Kinyarwanda. These questionnaires were finalized in December 2007 before the training of male and female interviewers.

    The Household Questionnaire was used to list all of the usual members and visitors in the selected households. In addition, some basic information was collected on the characteristics of each person listed, including age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for the individual interview. The Household Questionnaire also collected information on characteristics of the household’s dwelling unit such as the main source of drinking water, type of toilet facilities, materials used for the floor of the house, the main energy source used for cooking and ownership of various durable goods. Finally, the Household Questionnaire was also used to identify women and children eligible for the hemoglobin (anemia) and malaria diagnostic tests.

    The Women’s Questionnaire was used to collect information on women of reproductive age (15-49 years) and covered questions on the following topics: • Background characteristics • Marital status • Birth history • Knowledge and use of family planning methods • Fertility preferences • Antenatal and delivery care • Breastfeeding practices • Vaccinations and childhood illnesses

    The Men’s Questionnaire was administered to all men age 15-59 years living in the selected households. The Men’s Questionnaire collected information similar to that of the Women’s Questionnaire, with the only difference being that it did not include birth history or questions on maternal and child health or nutrition. In addition, the Men’s Questionnaire also collected information on circumcision.

    Cleaning operations

    Data entry began on January 7, 2008, three weeks after the beginning of data collection activities in the field. Data were entered by a team of five data processing personnel recruited and trained by staff from ICF Macro. The data entry team was reinforced during this work with an additional staffer. Completed questionnaires were periodically brought in from the field to the National Institute of Statistics in Kigali, where assigned staff checked them and coded the open-ended questions. Next, the questionnaires were sent to the data entry staff. Data were entered using CSPro, a program developed jointly by the United States Census Bureau, the ICF Macro MEASURE DHS program, and Serpro S.A. All questionnaires were entered twice to eliminate as many data entry errors as possible from the files. In addition, a quality control program was used to detect data collection errors for each team. This information was shared with field teams during supervisory visits to improve data quality. The data entry and internal consistency verification phase of the survey was completed on May 14, 2008.

    Response rate

    The response rate was high for both men (95.4 percent) and women (97.5 percent).

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2007-08 RIDHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2007-08 RIDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population

  19. Demographic and Health Survey 2018 - Nigeria

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    • +1more
    Updated Jan 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Population Commission (NPC) (2021). Demographic and Health Survey 2018 - Nigeria [Dataset]. https://datacatalog.ihsn.org/catalog/8783
    Explore at:
    Dataset updated
    Jan 16, 2021
    Dataset provided by
    National Population Commissionhttps://nationalpopulation.gov.ng/
    Authors
    National Population Commission (NPC)
    Time period covered
    2018
    Area covered
    Nigeria
    Description

    Abstract

    The primary objective of the 2018 NDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the NDHS collected information on fertility, awareness and use of family planning methods, breastfeeding practices, nutritional status of women and children, maternal and child health, adult and childhood mortality, women’s empowerment, domestic violence, female genital cutting, prevalence of malaria, awareness and behaviour regarding HIV/AIDS and other sexually transmitted infections (STIs), disability, and other health-related issues such as smoking.

    The information collected through the 2018 NDHS is intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving the health of the country’s population. The 2018 NDHS also provides indicators relevant to the Sustainable Development Goals (SDGs) for Nigeria.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-49

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49 years resident in the household, and all children aged 0-5 years resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2018 NDHS is the Population and Housing Census of the Federal Republic of Nigeria (NPHC), which was conducted in 2006 by the National Population Commission. Administratively, Nigeria is divided into states. Each state is subdivided into local government areas (LGAs), and each LGA is divided into wards. In addition to these administrative units, during the 2006 NPHC each locality was subdivided into convenient areas called census enumeration areas (EAs). The primary sampling unit (PSU), referred to as a cluster for the 2018 NDHS, is defined on the basis of EAs from the 2006 EA census frame. Although the 2006 NPHC did not provide the number of households and population for each EA, population estimates were published for 774 LGAs. A combination of information from cartographic material demarcating each EA and the LGA population estimates from the census was used to identify the list of EAs, estimate the number of households, and distinguish EAs as urban or rural for the survey sample frame. Before sample selection, all localities were classified separately into urban and rural areas based on predetermined minimum sizes of urban areas (cut-off points); consistent with the official definition in 2017, any locality with more than a minimum population size of 20,000 was classified as urban.

    The sample for the 2018 NDHS was a stratified sample selected in two stages. Stratification was achieved by separating each of the 36 states and the Federal Capital Territory into urban and rural areas. In total, 74 sampling strata were identified. Samples were selected independently in every stratum via a two-stage selection. Implicit stratifications were achieved at each of the lower administrative levels by sorting the sampling frame before sample selection according to administrative order and by using a probability proportional to size selection during the first sampling stage.

    For further details on sample selection, see Appendix A of the final report.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Four questionnaires were used for the 2018 NDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s standard Demographic and Health Survey (DHS-7) questionnaires, were adapted to reflect the population and health issues relevant to Nigeria. Comments were solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. In addition, information about the fieldworkers for the survey was collected through a self-administered Fieldworker Questionnaire.

    Cleaning operations

    The processing of the 2018 NDHS data began almost immediately after the fieldwork started. As data collection was completed in each cluster, all electronic data files were transferred via the IFSS to the NPC central office in Abuja. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted to any inconsistencies and errors. Secondary editing, carried out in the central office, involved resolving inconsistencies and coding the open-ended questions. The NPC data processor coordinated the exercise at the central office. The biomarker paper questionnaires were compared with electronic data files to check for any inconsistencies in data entry. Data entry and editing were carried out using the CSPro software package. The concurrent processing of the data offered a distinct advantage because it maximised the likelihood of the data being error-free and accurate. Timely generation of field check tables allowed for effective monitoring. The secondary editing of the data was completed in the second week of April 2019.

    Response rate

    A total of 41,668 households were selected for the sample, of which 40,666 were occupied. Of the occupied households, 40,427 were successfully interviewed, yielding a response rate of 99%. In the households interviewed, 42,121 women age 15-49 were identified for individual interviews; interviews were completed with 41,821 women, yielding a response rate of 99%. In the subsample of households selected for the male survey, 13,422 men age 15-59 were identified and 13,311 were successfully interviewed, yielding a response rate of 99%.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2018 Nigeria Demographic and Health Survey (NDHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2018 NDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2018 NDHS sample is the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Note: A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months - Standardisation exercise results from anthropometry training - Height and weight data completeness and quality for children - Height measurements from random subsample of measured children - Sibship size and sex ratio of siblings - Pregnancy-related mortality trends - Data collection period - Malaria prevalence according to rapid diagnostic test (RDT)

    Note: See detailed data quality tables in APPENDIX C of the report.

  20. f

    Measuring Quality of Maternal and Newborn Care in Developing Countries Using...

    • plos.figshare.com
    docx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zoe Dettrick; Hebe N. Gouda; Andrew Hodge; Eliana Jimenez-Soto (2023). Measuring Quality of Maternal and Newborn Care in Developing Countries Using Demographic and Health Surveys [Dataset]. http://doi.org/10.1371/journal.pone.0157110
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Zoe Dettrick; Hebe N. Gouda; Andrew Hodge; Eliana Jimenez-Soto
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundOne of the greatest obstacles facing efforts to address quality of care in low and middle income countries is the absence of relevant and reliable data. This article proposes a methodology for creating a single “Quality Index” (QI) representing quality of maternal and neonatal health care based upon data collected as part of the Demographic and Health Survey (DHS) program.MethodsUsing the 2012 Indonesian Demographic and Health Survey dataset, indicators of quality of care were identified based on the recommended guidelines outlined in the WHO Integrated Management of Pregnancy and Childbirth. Two sets of indicators were created; one set only including indicators available in the standard DHS questionnaire and the other including all indicators identified in the Indonesian dataset. For each indicator set composite indices were created using Principal Components Analysis and a modified form of Equal Weighting. These indices were tested for internal coherence and robustness, as well as their comparability with each other. Finally a single QI was chosen to explore the variation in index scores across a number of known equity markers in Indonesia including wealth, urban rural status and geographical region.ResultsThe process of creating quality indexes from standard DHS data was proven to be feasible, and initial results from Indonesia indicate particular disparities in the quality of care received by the poor as well as those living in outlying regions.ConclusionsThe QI represents an important step forward in efforts to understand, measure and improve quality of MNCH care in developing countries.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
City of Tucson (2024). Spanish TEDS Standard Demographic Questions [Dataset]. https://teds.tucsonaz.gov/documents/6c12141f86494172b393c3de90348fcc

Spanish TEDS Standard Demographic Questions

Explore at:
Dataset updated
Mar 14, 2024
Dataset authored and provided by
City of Tucson
Area covered
Description

Includes questions written in Spanish pertaining to: race & ethnicitygenderagetribal affiliationdisabilityincomelanguagelocation

Search
Clear search
Close search
Google apps
Main menu