West Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.
This collection contains data obtained from families of wage earners or salaried workers in industrial locales scattered throughout the United States. The purpose of the survey was to estimate the cost of living of a "typical" American family. The completed questionnaires contain information about income sources and family expenditures including specific quantities and costs of food, housing, clothing, fuel, furniture, and miscellaneous household items for the calendar year. Demographic characteristics recorded for each household member include relationship to head, age, sex, occupation, weeks spent in the household and employed, wage rate, and total earnings.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimated Mean Real Household Wages Adjusted by Cost of Living for Lake County, OH (MWACL39085) from 2009 to 2023 about Lake County, OH; Cleveland; adjusted; OH; average; wages; real; and USA.
This statistic shows the best states to make living in the United States in 2019. In 2019, Wyoming was ranked as the best state to make a living in the United States, with the cost of living index at 90.5 value and the median income of 40,240 U.S. dollars.
In 2024, the annual cost for a private room in an assisted living facility in the U.S. amounted to 70,800 U.S. dollars. However, costs varied greatly from one state to another. The most expensive states for a private room in assisted living was found in Hawaii, followed by Alaska and DC.
YouTube and TikTok are the most popular social networks among Generation X for finding helpful content on the cost of living crisis in the United States in 2023. While 56 percent of YouTube users state they find helpful content there, it's 47 percent among TikTok users respectively.
Out of all 50 states, New York had the highest per-capita real gross domestic product (GDP) in 2023, at 90,730 U.S. dollars, followed closely by Massachusetts. Mississippi had the lowest per-capita real GDP, at 39,102 U.S. dollars. While not a state, the District of Columbia had a per capita GDP of more than 214,000 U.S. dollars. What is real GDP? A country’s real GDP is a measure that shows the value of the goods and services produced by an economy and is adjusted for inflation. The real GDP of a country helps economists to see the health of a country’s economy and its standard of living. Downturns in GDP growth can indicate financial difficulties, such as the financial crisis of 2008 and 2009, when the U.S. GDP decreased by 2.5 percent. The COVID-19 pandemic had a significant impact on U.S. GDP, shrinking the economy 2.8 percent. The U.S. economy rebounded in 2021, however, growing by nearly six percent. Why real GDP per capita matters Real GDP per capita takes the GDP of a country, state, or metropolitan area and divides it by the number of people in that area. Some argue that per-capita GDP is more important than the GDP of a country, as it is a good indicator of whether or not the country’s population is getting wealthier, thus increasing the standard of living in that area. The best measure of standard of living when comparing across countries is thought to be GDP per capita at purchasing power parity (PPP) which uses the prices of specific goods to compare the absolute purchasing power of a countries currency.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimated Mean Real Household Wages Adjusted by Cost of Living for New York County, NY (MWACL36061) from 2009 to 2023 about New York County, NY; adjusted; New York; average; NY; wages; real; and USA.
The main objectives of the 2018/19 NLSS are: i) to provide critical information for production of a wide range of socio-economic and demographic indicators, including for benchmarking and monitoring of SDGs; ii) to monitor progress in population's welfare; iii) to provide statistical evidence and measure the impact on households of current and anticipated government policies. In addition, the 2018/19 NLSS could be utilized to improve other non-survey statistical information, e.g. to determine and calibrate the contribution of final consumption expenditures of households to GDP; to update the weights and determine the basket for the national Consumer Price Index (CPI); to improve the methodology and dissemination of micro-economic and welfare statistics in Nigeria.
The 2018/19 NLSS collected a comprehensive and diverse set of socio-economic and demographic data pertaining to the basic needs and conditions under which households live on a day to day basis. The 2018/19 NLSS questionnaire includes wide-ranging modules, covering demographic indicators, education, health, labour, expenditures on food and non-food goods, non-farm enterprises, household assets and durables, access to safety nets, housing conditions, economic shocks, exposure to crime and farm production indicators.
National coverage
Households
The survey covered all de jure households excluding prisons, hospitals, military barracks, and school dormitories.
Sample survey data [ssd]
SAMPLING PROCEDURE The 2018/19 NLSS sample is designed to provide representative estimates for the 36 states and the Federal Capital Territory (FCT), Abuja. By extension. The sample is also representative at the national and zonal levels. Although the sample is not explicitly stratified by urban and rural areas, it is possible to obtain urban and rural estimates from the NLSS data at the national level. At all stages, the relative proportion of urban and rural EAs as has been maintained. Before designing the sample for the 2018/19 NLSS, the results from the 2009/10 HNLSS were analysed to extract the sampling properties (variance, design effect, etc.) and estimate the required sample size to reach a desired precision for poverty estimates in the 2018/19 NLSS.
EA SELECTION: The sampling frame for the 2018/19 NLSS was based on the national master sample developed by the NBS, referred to as the NISH2 (Nigeria Integrated Survey of Households 2). This master sample was based on the enumeration areas (EAs) defined for the 2006 Nigeria Census Housing and Population conducted by National Population Commission (NPopC). The NISH2 was developed by the NBS to use as a frame for surveys with state-level domains. NISH2 EAs were drawn from another master sample that NBS developed for surveys with LGA-level domains (referred to as the “LGA master sample”). The NISH2 contains 200 EAs per state composed of 20 replicates of 10 sample EAs for each state, selected systematically from the full LGA master sample. Since the 2018/19 NLSS required domains at the state-level, the NISH2 served as the sampling frame for the survey. Since the NISH2 is composed of state-level replicates of 10 sample EAs, a total of 6 replicates were selected from the NISH2 for each state to provide a total sample of 60 EAs per state. The 6 replicates selected for the 2018/19 NLSS in each state were selected using random systematic sampling. This sampling procedure provides a similar distribution of the sample EAs within each state as if one systematic sample of 60 EAs had been selected directly from the census frame of EAs.
A fresh listing of households was conducted in the EAs selected for the 2018/19 NLSS. Throughout the course of the listing, 139 of the selected EAs (or about 6%) were not able to be listed by the field teams. The primary reason the teams were not able to conduct the listing in these EAs was due to security issues in the country. The fieldwork period of the 2018/19 NLSS saw events related to the insurgency in the north east of the country, clashes between farmers and herdsman, and roving groups of bandits. These events made it impossible for the interviewers to visit the EAs in the villages and areas affected by these conflict events. In addition to security issues, some EAs had been demolished or abandoned since the 2006 census was conducted. In order to not compromise the sample size and thus the statistical power of the estimates, it was decided to replace these 139 EAs. Additional EAs from the same state and sector were randomly selected from the remaining NISH2 EAs to replace each EA that could not be listed by the field teams. This necessary exclusion of conflict affected areas implies that the sample is representative of areas of Nigeria that were accessible during the 2018/19 NLSS fieldwork period. The sample will not reflect conditions in areas that were undergoing conflict at that time. This compromise was necessary to ensure the safety of interviewers.
HOUSEHOLD SELECTION: Following the listing, the 10 households to be interviewed were selected from the listed households. These households were selected systemically after sorting by the order in which the households were listed. This systematic sampling helped to ensure that the selected households were well dispersed across the EA and thereby limit the potential for clustering of the selected households within an EA. Occasionally, interviewers would encounter selected households that were not able to be interviewed (e.g. due to migration, refusal, etc.). In order to preserve the sample size and statistical power, households that could not be interviewed were replaced with an additional randomly selected household from the EA. Replacement households had to be requested by the field teams on a case-by-case basis and the replacement household was sent by the CAPI managers from NBS headquarters. Interviewers were required to submit a record for each household that was replaced, and justification given for their replacement. These replaced households are included in the disseminated data. However, replacements were relatively rare with only 2% of sampled households not able to be interviewed and replaced.
Although a sample was initially drawn for Borno state, the ongoing insurgency in the state presented severe challenges in conducting the survey there. The situation in the state made it impossible for the field teams to reach large areas of the state without compromising their safety. Given this limitation it was clear that a representative sample for Borno was not possible. However, it was decided to proceed with conducting the survey in areas that the teams could access in order to collect some information on the parts of the state that were accessible.
The limited area that field staff could safely operate in in Borno necessitated an alternative sample selection process from the other states. The EA selection occurred in several stages. Initially, an attempt was made to limit the frame to selected LGAs that were considered accessible. However, after selection of the EAs from the identified LGAs, it was reported by the NBS listing teams that a large share of the selected EAs were not safe for them to visit. Therefore, an alternative approach was adopted that would better ensure the safety of the field team but compromise further the representativeness of the sample. First, the list of 788 EAs in the LGA master sample for Borno were reviewed by NBS staff in Borno and the EAs they deemed accessible were identified. The team identified 359 EAs (46%) that were accessible. These 359 EAs served as the frame for the Borno sample and 60 EAs were randomly selected from this frame. However, throughout the course of the NLSS fieldwork, additional insurgency related events occurred which resulted in 7 of the 60 EAs being inaccessible when they were to be visited. Unlike for the main sample, these EAs were not replaced. Therefore, 53 EAs were ultimately covered from the Borno sample. The listing and household selection process that followed was the same as for the rest of the states.
Computer Assisted Personal Interview [capi]
Two sets of questionnaires – household and community – were used to collect information in the NLSS2018/19. The Household Questionnaire was administered to all households in the sample. The Community Questionnaire was administered to the community to collect information on the socio-economic indicators of the enumeration areas where the sample households reside.
Household Questionnaire: The Household Questionnaire provides information on demographics; education; health; labour; food and non-food expenditure; household nonfarm income-generating activities; food security and shocks; safety nets; housing conditions; assets; information and communication technology; agriculture and land tenure; and other sources of household income.
Community Questionnaire: The Community Questionnaire solicits information on access to transported and infrastructure; community organizations; resource management; changes in the community; key events; community needs, actions and achievements; and local retail price information.
CAPI: The 2018/19 NLSS was conducted using the Survey Solutions Computer Assisted Person Interview (CAPI) platform. The Survey Solutions software was developed and maintained by the Development Economics Data Group (DECDG) at the World Bank. Each interviewer and supervisor was given a tablet which they used to
VITAL SIGNS INDICATOR Poverty (EQ5)
FULL MEASURE NAME The share of the population living in households that earn less than 200 percent of the federal poverty limit
LAST UPDATED December 2018
DESCRIPTION Poverty refers to the share of the population living in households that earn less than 200 percent of the federal poverty limit, which varies based on the number of individuals in a given household. It reflects the number of individuals who are economically struggling due to low household income levels.
DATA SOURCE U.S Census Bureau: Decennial Census http://www.nhgis.org (1980-1990) http://factfinder2.census.gov (2000)
U.S. Census Bureau: American Community Survey Form C17002 (2006-2017) http://api.census.gov
METHODOLOGY NOTES (across all datasets for this indicator) The U.S. Census Bureau defines a national poverty level (or household income) that varies by household size, number of children in a household, and age of householder. The national poverty level does not vary geographically even though cost of living is different across the United States. For the Bay Area, where cost of living is high and incomes are correspondingly high, an appropriate poverty level is 200% of poverty or twice the national poverty level, consistent with what was used for past equity work at MTC and ABAG. For comparison, however, both the national and 200% poverty levels are presented.
For Vital Signs, the poverty rate is defined as the number of people (including children) living below twice the poverty level divided by the number of people for whom poverty status is determined. Poverty rates do not include unrelated individuals below 15 years old or people who live in the following: institutionalized group quarters, college dormitories, military barracks, and situations without conventional housing. The household income definitions for poverty change each year to reflect inflation. The official poverty definition uses money income before taxes and does not include capital gains or noncash benefits (such as public housing, Medicaid, and food stamps). For the national poverty level definitions by year, see: https://www.census.gov/hhes/www/poverty/data/threshld/index.html For an explanation on how the Census Bureau measures poverty, see: https://www.census.gov/hhes/www/poverty/about/overview/measure.html
For the American Community Survey datasets, 1-year data was used for region, county, and metro areas whereas 5-year rolling average data was used for city and census tract.
To be consistent across metropolitan areas, the poverty definition for non-Bay Area metros is twice the national poverty level. Data were not adjusted for varying income and cost of living levels across the metropolitan areas.
Of the most populous cities in the U.S., San Jose, California had the highest annual income requirement at ******* U.S. dollars annually for homeowners to have an affordable and comfortable life in 2024. This can be compared to Houston, Texas, where homeowners needed an annual income of ****** U.S. dollars in 2024.
In 1992, Bosnia-Herzegovina, one of the six republics in former Yugoslavia, became an independent nation. A civil war started soon thereafter, lasting until 1995 and causing widespread destruction and losses of lives. Following the Dayton accord, BosniaHerzegovina (BiH) emerged as an independent state comprised of two entities, namely, the Federation of Bosnia-Herzegovina (FBiH) and the Republika Srpska (RS), and the district of Brcko. In addition to the destruction caused to the physical infrastructure, there was considerable social disruption and decline in living standards for a large section of the population. Alongside these events, a period of economic transition to a market economy was occurring. The distributive impacts of this transition, both positive and negative, are unknown. In short, while it is clear that welfare levels have changed, there is very little information on poverty and social indicators on which to base policies and programs. In the post-war process of rebuilding the economic and social base of the country, the government has faced the problems created by having little relevant data at the household level. The three statistical organizations in the country (State Agency for Statistics for BiH -BHAS, the RS Institute of Statistics-RSIS, and the FBiH Institute of Statistics-FIS) have been active in working to improve the data available to policy makers: both at the macro and the household level. One facet of their activities is to design and implement a series of household series. The first of these surveys is the Living Standards Measurement Study survey (LSMS). Later surveys will include the Household Budget Survey (an Income and Expenditure Survey) and a Labour Force Survey. A subset of the LSMS households will be re-interviewed in the two years following the LSMS to create a panel data set.
The three statistical organizations began work on the design of the Living Standards Measurement Study Survey (LSMS) in 1999. The purpose of the survey was to collect data needed for assessing the living standards of the population and for providing the key indicators needed for social and economic policy formulation. The survey was to provide data at the country and the entity level and to allow valid comparisons between entities to be made. The LSMS survey was carried out in the Fall of 2001 by the three statistical organizations with financial and technical support from the Department for International Development of the British Government (DfID), United Nations Development Program (UNDP), the Japanese Government, and the World Bank (WB). The creation of a Master Sample for the survey was supported by the Swedish Government through SIDA, the European Commission, the Department for International Development of the British Government and the World Bank. The overall management of the project was carried out by the Steering Board, comprised of the Directors of the RS and FBiH Statistical Institutes, the Management Board of the State Agency for Statistics and representatives from DfID, UNDP and the WB. The day-to-day project activities were carried out by the Survey Management Team, made up of two professionals from each of the three statistical organizations. The Living Standard Measurement Survey LSMS, in addition to collecting the information necessary to obtain a comprehensive as possible measure of the basic dimensions of household living standards, has three basic objectives, as follows: 1. To provide the public sector, government, the business community, scientific institutions, international donor organizations and social organizations with information on different indicators of the population's living conditions, as well as on available resources for satisfying basic needs. 2. To provide information for the evaluation of the results of different forms of government policy and programs developed with the aim to improve the population's living standard. The survey will enable the analysis of the relations between and among different aspects of living standards (housing, consumption, education, health, labour) at a given time, as well as within a household. 3. To provide key contributions for development of government's Poverty Reduction Strategy Paper, based on analysed data.
National coverage
Households
Sample survey data [ssd]
(a) SAMPLE SIZE A total sample of 5,400 households was determined to be adequate for the needs of the survey: with 2,400 in the Republika Srpska and 3,000 in the Federation of BiH. The difficulty was in selecting a probability sample that would be representative of the country's population. The sample design for any survey depends upon the availability of information on the universe of households and individuals in the country. Usually this comes from a census or administrative records. In the case of BiH the most recent census was done in 1991. The data from this census were rendered obsolete due to both the simple passage of time but, more importantly, due to the massive population displacements that occurred during the war. At the initial stages of this project it was decided that a master sample should be constructed. Experts from Statistics Sweden developed the plan for the master sample and provided the procedures for its construction. From this master sample, the households for the LSMS were selected. Master Sample [This section is based on Peter Lynn's note "LSMS Sample Design and Weighting - Summary". April, 2002. Essex University, commissioned by DfID.] The master sample is based on a selection of municipalities and a full enumeration of the selected municipalities. Optimally, one would prefer smaller units (geographic or administrative) than municipalities. However, while it was considered that the population estimates of municipalities were reasonably accurate, this was not the case for smaller geographic or administrative areas. To avoid the error involved in sampling smaller areas with very uncertain population estimates, municipalities were used as the base unit for the master sample. The Statistics Sweden team proposed two options based on this same method, with the only difference being in the number of municipalities included and enumerated.
(b) SAMPLE DESIGN For reasons of funding, the smaller option proposed by the team was used, or Option B. Stratification of Municipalities The first step in creating the Master Sample was to group the 146 municipalities in the country into three strata- Urban, Rural and Mixed - within each of the two entities. Urban municipalities are those where 65 percent or more of the households are considered to be urban, and rural municipalities are those where the proportion of urban households is below 35 percent. The remaining municipalities were classified as Mixed (Urban and Rural) Municipalities. Brcko was excluded from the sampling frame. Urban, Rural and Mixed Municipalities: It is worth noting that the urban-rural definitions used in BiH are unusual with such large administrative units as municipalities classified as if they were completely homogeneous. Their classification into urban, rural, mixed comes from the 1991 Census which used the predominant type of income of households in the municipality to define the municipality. This definition is imperfect in two ways. First, the distribution of income sources may have changed dramatically from the pre-war times: populations have shifted, large industries have closed, and much agricultural land remains unusable due to the presence of land mines. Second, the definition is not comparable to other countries' where villages, towns and cities are classified by population size into rural or urban or by types of services and infrastructure available. Clearly, the types of communities within a municipality vary substantially in terms of both population and infrastructure. However, these imperfections are not detrimental to the sample design (the urban/rural definition may not be very useful for analysis purposes, but that is a separate issue).
Face-to-face [f2f]
(a) DATA ENTRY
An integrated approach to data entry and fieldwork was adopted in Bosnia and Herzegovina. Data entry proceeded side by side with data gathering to ensure verification and correction in the field. Data entry stations were located in the regional offices of the entity institutes and were equipped with computers, modem and a dedicated telephone line. The completed questionnaires were delivered to these stations each day for data entry. Twenty data entry operators (10 from Federation and 10 from RS) were trained in two training sessions held for a week each in Sarajevo and Banja Luka. The trainers were the staff of the two entity institutes who had undergone training in the CSPro software earlier and had participated in the workshops of the Pilot survey. Prior to the training, laptop computers were provided to the entity institutes, and the CSPro software was installed in them. The training for the data entry operators covered the following elements:
The principal objective of this survey is to collect basic data reflecting the actual living conditions of the population in Tajikistan. These data will then be used for evaluating socio-economic development and formulating policies to improve living conditions.
The first assessment of living standards in Tajikistan was conducted in 1999. This assessment is bringing about data in order to update the 1999 assessment.
The survey collects information on education, health, employment and other productive activities, demographic characteristics, migration, housing conditions, expenditures and assets.
The information gathered is intended to improve economic and social policy in Tajikistan. It should enable decision-makers to 1) identify target groups for government assistance, 2) inform programs of socio-economic development, and 3) analyse the impact of decisions already made and the current economic conditions on households.
National coverage. The 2003 data are representative at the regional level (4 regions) and urban/rural.
Sample survey data [ssd]
The Tajikistan Living Standards Survey (TLSS) for 2003 was based on a stratified random probability sample, with the sample stratified according to oblast and urban/rural settlements and with the share of each strata in the overall sample being in proportion to its share in the total number of households as recorded in the 2000 Census. The same approach was used in the TLSS 1999 although there were some differences in the sampling. First the share of each strata in the overall sample in 1999 was determined according to ‘best estimates’, as it was conducted prior to the 2000 Census. Second the TLSS 2003 over-sampled by 40 percent in Dushanbe, 300 percent in rural Gorno-Badakhshan Administrative Oblast (GBAO) and 600 percent in urban GBAO. Third the sample size was increased in 2003 in comparison with 1999 in order to reduce sampling error. In 2003, the overall sample size was 4,156 households compared with 2,000 households in 1999. [Note: Taken from “Republic of Tajikistan: Poverty Assessment Update”, Report No. 30853, Human Development Sector Unit, Central Asia Country Unit, Europe and Central Asia Region, World Bank, January 2005.]
In addition to the capital city of Dushanbe, the country has several oblasts (regions): (i) Khatlon (comprising Kurban-Tube and Khulyab), which is an agricultural area with most of the country’s cotton growing districts; (ii) the Rayons of Republican Subordination (RRS) with the massive aluminum smelter in the west and agricultural valleys in the east growing crops other than cotton; (iii) Sugd which is the most industrialized oblast; and (iv) Gorno-Badakhshan Administrative Oblast which is mountainous and remote with a small population.
The 2003 data are representative at the regional level (4 regions) and urban/rural.
Face-to-face [f2f]
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2021 based on 165 countries was 79.81 index points. The highest value was in Bermuda: 212.7 index points and the lowest value was in Syria: 33.25 index points. The indicator is available from 2017 to 2021. Below is a chart for all countries where data are available.
The cost of living is spiraling. Prices are going up, household expenses are rising, and the U.S. inflation rate reached a 40-year record high in 2023. Many consumers are looking for new ways to deal with this situation and refer to social media for support. So, which social media platforms have the most helpful content to deal with the current cost of living crisis in the U.S.? According to an exclusive survey by We Are Social and Statista Q, around 61 percent of TikTok users in the United States find helpful content there. Coming on number second is YouTube, as 56 percent of YouTube users find life hacks, tricks, money saving tips and other suitable advice to deal with inflation in 2023.
Household income is a potential predictor for a number of environmental influences, for example, application of urban pesticides. This product is a U.S. conterminous mapping of block group income derived from the 2010-2014 Census American Community Survey (ACS), adjusted by a 2013 county-level Cost-of-Living index obtained from the Council for Community and Economic Research. The resultant raster is provided at 200-m spatial resolution, in units of adjusted household income in thousands of dollars per year.
This statistic illustrates the most popular social networks among Millennials for finding the most relevant content on the cost of living crisis in the United States in 2023. According to a survey by We Are Social and Statista Q, 61 percent of Millennials who use TikTok find the most relevant content over there, followed by another 59 percent of the consumers who use YouTube.
The Tajik Living Standards Survey (TLSS) was conducted jointly by the State Statistical Agency and the Center for Strategic Studies under the Office of the President in collaboration with the sponsors, the United Nations Development Programme (UNDP) and the World Bank (WB). International technical assistance was provided by a team from the London School of Economics (LSE). The purpose of the survey is to provide quantitative data at the individual, household and community level that will facilitate purposeful policy design on issues of welfare and living standards of the population of the Republic of Tajikistan in 1999.
National coverage. The TLSS sample was designed to represent the population of the country as a whole as well as the strata. The sample was stratified by oblast and by urban and rural areas.
The country is divided into 4 oblasts, or regions; Leninabad in the northwest of the country, Khatlon in the southwest, Rayons of Republican Subordination (RRS) in the middle and to the west of the country, and Gorno-Badakhshan Autonomous Oblast (GBAO) in the east. The capital, Dushanbe, in the RRS oblast, is a separately administrated area. Oblasts are divided into rayons (districts). Rayons are further subdivided into Mahallas (committees) in urban areas, and Jamoats (villages) in rural areas.
Sample survey data [ssd]
The TLSS sample was designed to represent the population of the country as a whole as well as the strata. The sample was stratified by oblast and by urban and rural areas.
In common with standard LSMS practice a two-stage sample was used. In the first stage 125 primary sample units (PSU) were selected with the probability of selection within strata being proportional to size. At the second stage, 16 households were selected within each PSU, with each household in the area having the same probability of being chosen. [Note: In addition to the main sample, the TLSS also included a secondary sample of 15 extra PSU (containing 400 households) in Dangara and Varzob. Data in the oversampled areas were collected for the sole purpose of providing baseline data for the World Bank Health Project in these areas. The sampling for these additional units was carried out separately after the main sampling procedure in order to allow for their exclusion in nationally representative analysis.] The twostage procedure has the advantage that it provides a self-weighted sample. It also simplified the fieldwork operation as a one-field team could be assigned to cover a number of PSU.
A critical problem in the sample selection with Tajikistan was the absence of an up to date national sample frame from which to select the PSU. As a result lists of the towns, rayons and jamoats (villages) within rayons were prepared manually. Current data on population size according to village and town registers was then supplied to the regional offices of Goskomstat and conveyed to the center. This allowed the construction of a sample frame of enumeration units by sample size from which to draw the PSU.
This procedure worked well in establishing a sample frame for the rural population. However administrative units in some of the larger towns and in the cities of Dushanbe, Khojand and Kurgan-Tubbe were too large and had to be sub-divided into smaller enumeration units. Fortuitously the survey team was able to make use of information available as a result of the mapping exercise carried out earlier in the year as preparation for the 2000 Census in order to subdivide these larger areas into enumeration units of roughly similar size.
The survey team was also able to use the household listings prepared for the Census for the second stage of the sampling in urban areas. In rural areas the selection of households was made using the village registers – a complete listing of all households in the village which is (purported to be) regularly updated by the local administration. When selecting the target households a few extra households (4 in addition to the 16) were also randomly selected and were to be used if replacements were needed. In actuality non-response and refusals from households were very rare and use of replacement households was low. There was never the case that the refusal rate was so high that there were not enough households on the reserve list and this enabled a full sample of 2000 randomly selected households to be interviewed.
Face-to-face [f2f]
The questionnaire was based on the standard LSMS for the CIS countries, and adapted and abridged for Tajikistan. In particular the health section was extended to allow for more in depth information to be collected and a section on food security was also added. The employment section was reduced and excludes information on searching for employment.
The questionnaires were translated into Tajik, Russian and Uzbek.
The TLSS consists of three parts: a household questionnaire, a community level questionnaire and a price questionnaire.
Household questionnaire: the Household questionnaire is comprised of 10 sections covering both household and individual aspects.
Community/Population point Questionnaire: the Community level or Population Point Questionnaire consists of 8 sections. The community level questionnaire provides information on differences in demographic and economic infrastructure. Open-ended questions in the questionnaire were not coded and hence information on the responses to these qualitative questions is not provided in the data sets.
Summary of Section contents
The brief descriptions below provide a summary of the information found in each section. The descriptions are by no means exhaustive of the information covered by the survey and users of the survey need to refer to each particular section of the questionnaire for a complete picture of the information gathered.
Household information/roster This includes individual level information of all individuals in the household. It establishes who belongs to the household at the time of the interview. Information on gender, age, relation to household head and marital status are included. In the question relating to family status, question 7, “Nekared” means married where nekar is the Islamic (arabic) term for marriage contract. Under Islamic law a man may marry more than once (up-to four wives at any one time). Although during the Soviet period it was illegal to be married to more than one woman this practice did go on. There may be households where the household head is not present but the wife is married or nekared, or in the same household a respondent may answer married and another nekared to the household head.
Dwelling This section includes information covering the type of dwelling, availability of utilities and water supply as well as questions pertaining to dwelling expenses, rents, and the payment of utilities and other household expenses. Information is at the household level.
Education This section includes all individuals aged 7 years and older and looks at educational attainment of individuals and reasons for not continuing education for those who are not currently studying. Questions related to educational expenditures at the household level are also covered. Schooling in Tajikistan is compulsory for grades (classes) 1-9. Primary level education refers to grades 1 - 4 for children aged 7 to 11 years old. General secondary level education refers to grades 5-9, corresponding to the age group 12-16 year olds. Post-compulsory schooling can be divided into three types of school: - Upper secondary education covers the grades 10 and 11. - Vocational and Technical schools can start after grade 9 and last around 4 years. These schools can also start after grade 11 and then last only two years. Technical institutions provide medical and technical (e.g. engineering) education as well as in the field of the arts while vocational schools provide training for employment in specialized occupation. - Tertiary or University education can be entered after completing all 11 grades. - Kindergarten schools offer pre-compulsory education for children aged 3 – 6 years old and information on this type of schooling is not covered in this section.
Health This section examines individual health status and the nature of any illness over the recent months. Additional questions relate to more detailed information on the use of health care services and hospitals, including expenses incurred due to ill health. Section 4B includes a few terms, abbreviations and acronyms that need further clarification. A feldscher is an assistant to a physician. Mediniski dom or FAPs are clinics staffed by physical assistants and/or midwifes and a SUB is a local clinic. CRH is a local hospital while an oblast hospital is a regional hospital based in the oblast administrative centre, and the Repub. Hospital is a national hospital based in the capital, Dushanbe. The latter two are both public hospitals.
Employment This section covers individuals aged 11 years and over. The first part of this section looks at the different activities in which individuals are involved in order to determine if a person is engaged in an income generating activity. Those who are engaged in such activities are required to answer questions in Part B. This part relates to the nature of the work and the organization the individual is attached to as well as questions relating to income, cash income and in-kind payments. There are also a few questions relating to additional income generating activities in addition to the main activity. Part C examines employment
https://www.bearsavings.com/terms/https://www.bearsavings.com/terms/
Detailed cost of living comparison between United States and United States
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimated Mean Real Household Wages Adjusted by Cost of Living for Salt Lake County, UT (MWACL49035) from 2009 to 2023 about Salt Lake County, UT; Salt Lake City; UT; adjusted; average; wages; real; and USA.
West Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.